首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The human epidermal growth factor receptor (HER) family plays an important role in cell growth and signaling and alteration of its function has been demonstrated in many different kinds of cancer. Receptor dimerization is necessary for the HER signal transduction pathway and tyrosine kinase activity. Recently, several monoclonal antibodies have been developed to directly interfere with ligand–HER receptor binding and receptor dimerization. A single chain variable fragment (ScFv) is a valuable alternative to an intact antibody. This report describes the production and purification of an ScFv specific for domain II of the HER2 receptor in Escherichia coli BL21 (DE3) cytoplasm. The majority of expressed of anti-her2his-ScFv protein was produced as inclusion bodies. A Ni-NTA affinity column was used to purify the anti-her2his-ScFv protein. The molecular weight of anti-her2his-ScFv protein was estimated to be approximately 27 kDa, as confirmed by SDS-PAGE and Western blotting assay. The anti-her2his-ScFv showed near 95 % purity and reached a yield of approximately 29 mg/l in flask fermentation. The purified anti-her2his-ScFv showed its biological activity by binding to HER2 receptor on the surface of BT-474 cells. This ScFv may be a potential pharmaceutical candidate for targeting tumour cells overexpressing HER2 receptor.  相似文献   

2.
3.
A monoclonal antibody against human epidermal growth factor (hEGF) was obtained from a mouse hybridoma cell line. The purified monoclonal antibody from the ascites fluid of a mouse injected with one of the cell lines was specific for hEGF and did not cross-react with mouse EGF (mEGF). Its Kd value for hEGF was 1.4 X 10(-9) M. This monoclonal antibody inhibited the biological activities of hEGF, including its binding to the receptor of BALB/3T3 cells and its stimulation of DNA synthesis in the cells, but did not affect the activities of mEGF. The monoclonal antibody completely inhibited DNA synthesis stimulated by human urine from a patient without a tumor, but only partially inhibited the stimulatory activity in urine from a tumor-bearing patient.  相似文献   

4.
To determine the importance of single-chain Fv (scFv) affinity on binding, uptake, and cytotoxicity of tumor-targeting nanoparticles, the affinity of the epidermal growth factor receptor (EGFR) scFv antibody C10 was increased using molecular evolution and yeast display. A library containing scFv mutants was created by error-prone PCR, displayed on the surface of yeast, and higher affinity clones selected by fluorescence activated cell sorting. Ten mutant scFv were identified that had a 3-18-fold improvement in affinity (KD=15-88 nM) for EGFR-expressing A431 tumor cells compared to C10 scFv (KD=264 nM). By combining mutations, higher affinity scFv were generated with KD ranging from 0.9 nM to 10 nM. The highest affinity scFv had a 280-fold higher affinity compared to that of the parental C10 scFv. Immunoliposome nanoparticles (ILs) were prepared using EGFR scFv with a 280-fold range of affinities, and their binding and uptake into EGFR-expressing tumor cells was quantified. At scFv densities greater than 148 scFv/IL, there was no effect of scFv affinity on IL binding and uptake into tumor cells, or on cytotoxicity. At lower scFv densities, there was less uptake and binding for ILs constructed from the very low affinity C10 scFv. The results show the importance of antibody fragment density on nanoparticle uptake, and suggest that engineering ultrahigh affinity scFv may be unnecessary for optimal nanoparticle targeting.  相似文献   

5.
Luo Y  Xia Y 《Analytical biochemistry》2012,421(1):130-137
A single-chain variable fragment (ScFv) complementary DNA (cDNA) library against fenitrothion was constructed, and ScFvs specific for fenitrothion were selected by ribosome display from the library. After three rounds of ribosome display, the ScFv genes were cloned into Escherichia coli for expression. The expressed ScFvs of 160 clones were analyzed by indirect enzyme-linked immunosorbent assay (ELISA). Of these, 40 clones produced antibodies with relatively high activity against fenitrothion, and 3 were selected for Biacore and ELISA analysis. These 3 antibodies-ScFv-AF50, ScFv-AF93, and ScFv-AF132-had IC(50) values of 1.6, 3.4, and 2.2 ng/ml, respectively. Cross-reactivity with other organophosphorus (OP) pesticides was below 0.1% except for parathion-methyl (≤2.8%). The IC(50) values and cross-reactivity were lower than achieved previously with polyclonal or monoclonal antibodies against fenitrothion. The equilibrium dissociation constant (K(D)) values determined by Biacore analysis were 4.56×10(-10)M for ScFv-AF50, 1.42×10(-9)M for ScFv-AF93, and 2.66×10(-10)M for ScFv-AF132. These results demonstrate that the ribosome display has great potential in selection of ScFvs against pesticides. Recoveries of fenitrothion from fortified rice and cucumber were in the range 80.6 to 108%, indicating that the ELISAs with the isolated ScFvs can accurately determine fenitrothion in food samples after the simple and rapid extraction procedure.  相似文献   

6.
We have isolated from a human synthetic phage display library a clone, 2A3, which discriminates native lysozyme from denatured forms. Binding of single-chain Fv fragments (scFvs) of the clone to native hen egg white lysozyme was competitively inhibited by native hen egg white (hew) and human (h) lysozymes. Dot blotting analysis indicated that scFv of the clone did not react with denatured lysozymes. The K(d) values for scFv of 2A3 binding to native hew- and h-lysozymes were 3.78 x 10(-9) and 9.31 x 10(-9) M, respectively, indicating that 2A3 binds more strongly to native hew-lysozyme than to native h-lysozyme. The deduced amino acid sequence of the V(H) chain-CDR3 region of 2A3 was RRYALDY, of which the Arg residues at positions 1 and 2 of the CDR3 region were observed to be extremely rare in other antibodies by homology analysis. Based on these observations, site-directed mutagenesis of the RRYALDY-coding region was carried out. The results, combined with biomolecular analyses, demonstrated that Arg residues at positions 1 and 2 of this region were important for native lysozyme-binding.  相似文献   

7.
Lee CM  Iorno N  Sierro F  Christ D 《Nature protocols》2007,2(11):3001-3008
Here, we describe a protocol for the selection of human antibody fragments using repertoires displayed on filamentous bacteriophage. Antigen-specific clones are enriched by binding to immobilized antigen, followed by elution and repropagation of phage. After multiple rounds of binding selection, specific clones are identified by ELISA. This article provides an overview of phage display and antibody technology, as well as detailed protocols for the immobilization of antigen, the selection of repertoires on purified or complex antigens and the identification of binders.  相似文献   

8.
Single-chain variable fragment (scFv) is a fusion protein of the variable regions of the heavy (VH) and light (VL) chains of immunoglobulin, connected with a short linker peptide of 10 to about 20 amino acids. In this study, the scFv of a monoclonal antibody against the third domain of human CD4 was cloned from OKT4 hybridoma cells using the phage display technique and produced in E. coli. The expression, production, and purification of anti-CD4 scFv were tested using SDS-PAGE and Western blot, and the specificity of anti-CD4 scFv was examined using ELISA. A 31 kDa recombinant anti-CD4 scFv was expressed and produced in bacteria, which was confirmed by SDS-PAGE and Western blot assays. Sequence analysis proved the ScFv structure of the construct. It was able to bind to CD4 in quality ELISA assay. The canonical structure of anti-CD4 scFv antibody was obtained using the SWISS_MODEL bioinformatics tool for comparing with the scFv general structure. To the best of our knowledge, this is the first report for generating scFv against human CD4 antigen. Engineered anti-CD4 scFv could be used in immunological studies, including fluorochrome conjugation, bispecific antibody production, bifunctional protein synthesis, and other genetic engineering manipulations. Since the binding site of our product is domain 3 (D3) of the CD4 molecule and different from the CD4 immunological main domain, including D1 and D2, further studies are needed to evaluate the anti-CD4 scFv potential for diagnostic and therapeutic applications.  相似文献   

9.
Zinc transporter 8(ZnT8) is a major autoantigen and a predictive marker in type 1 diabetes(T1D). To investigate ZnT8-specific antibodies, a phage display library from T1 D was constructed and single-chain antibodies against ZnT 8 were screened and identified. Human T1 D single-chain variable fragment(sc Fv) phage display library consists of approximately 1í10~8 clones. After four rounds of bio-panning, seven unique clones were positive by phage ELISA. Among them, C27 and C22, which demonstrated the highest affinity to ZnT8, were expressed in Escherichia coli Top10F' and then purified by affinity chromatography. C27 and C22 specifically bound ZnT8 N/C fusion protein and ZnT8 C terminal dimer with one Arg325 Trp mutation. The specificity to human islet cells of these sc Fvs were further confirmed by immunohistochemistry. In conclusion, we have successfully constructed a T1 D phage display antibody library and identified two ZnT8-specific sc Fv clones, C27 and C22. These ZnT8-specific sc Fvs are potential agents in immunodiagnostic and immunotherapy of T1 D.  相似文献   

10.
Human glandular kallikrein 2 (hK2) is a trypsin-like serine protease expressed predominantly in the prostate epithelium. Recently, hK2 has proven to be a useful marker that can be used in combination with prostate specific antigen for screening and diagnosis of prostate cancer. The cleavage by hK2 of certain substrates in the proteolytic cascade suggest that the kallikrein may be involved in prostate cancer development; however, there has been very little other progress toward its biochemical characterization or elucidation of its true physiological role. In the present work, we adapt phage substrate technology to study the substrate specificity of hK2. A phage-displayed random pentapeptide library with exhaustive diversity was generated and then screened with purified hK2. Phages displaying peptides susceptible to hK2 cleavage were amplified in eight rounds of selection and genes encoding substrates were transferred from the phage to a fluorescent system using cyan fluorescent protein (derived from green fluorescent protein) that enables rapid determination of specificity constants. This study shows that hK2 has a strict preference for Arg in the P1 position, which is further enhanced by a Ser in P'1 position. The scissile bonds identified by phage display substrate selection correspond to those of the natural biological substrates of hK2, which include protein C inhibitor, semenogelins, and fibronectin. Moreover, three new putative hK2 protein substrates, shown elsewhere to be involved in the biology of the cancer, have been identified thus reinforcing the importance of hK2 in prostate cancer development.  相似文献   

11.
Mammalian sulfoglycolipids are comprised of two major classes of compounds, sulfatide (SO(3)-3Gal-ceramide) and seminolipid (SO(3)-3Gal-alkylacylglycerol). Sulfatide is present in relatively high levels in myelin, and seminolipid is present in testis. The sulfation of these sulfoglycolipids is catalyzed by a common enzyme, cerebroside sulfotransferase (CST). Disruption of the Cst gene in mice revealed that sulfatide and seminolipid are essential for, respectively, myelin formation and spermatogenesis. The present study describes the generation of a recombinant single-chain variable fragment (scFv) antibody against sulfoglycolipid, for use in the functional analysis of sulfoglycolipids in living cells. A positive hybridoma producing anti-sulfoglycolipid IgG3, referred to as DI8, was initially obtained by immunizing CST-null mice with an isolated sulfatide. The DI8 monoclonal antibody was found to bind specifically to sulfoglycolipids with the terminal 3-O-sulfated galactose structure, as evidenced by ELISA and thin-layer chromatogram-immunostaining. The antibody stained seminolipid on the cell surface of spermatogenic cells of wild-type testis, but it did not react with any cells in the seminiferous tubules of CST-null testis. Total RNA was extracted from this hybridoma, and cDNAs that encode the variable regions of the heavy and light chains of IgG3 were obtained by RT-PCR. These DNA fragments were linked through a DNA linker coding (Gly(4)Ser)(3), and the recombinant scFv fragment was then inserted into a phagemid vector pCANTAB 5E. The scFv antibody that was displayed at the tip of the M13 phage in the form of a g3p fusion protein bound to sulfatide. Furthermore, a soluble form of the scFv antibody was also found to bind to the sulfoglycolipids in ELISA.  相似文献   

12.

Background  

The ability of cytosine deaminase (CD) to convert the antifungal agent 5-fluorocytosine (5-FC) into one of the most potent and largely used anticancer compound such as 5-fluorouracil (5-FU) raised considerable interest in this enzyme to model gene or antibody – directed enzyme-prodrug therapy (GDEPT/ADEPT) aiming to improve the therapeutic ratio (benefit versus toxic side-effects) of cancer chemotherapy. The selection and characterization of a human monoclonal antibody in single chain fragment (scFv) format represents a powerful reagent to allow in in vitro and in vivo detection of CD expression in GDEPT/ADEPT studies.  相似文献   

13.
Clinical studies have suggested that human epidermal growth factor receptor-2 (HER2) provide a useful target for antitumor therapy. We previously described the generation of a chimeric HER2-targeted immunocasp-3 protein. In this study, we extend the repertoire of chimeric proapoptotic proteins with immunocasp-6, a construct that comprises a HER2-specific single-chain Ab, a single-chain Pseudomonas exotoxin A, and an active caspase-6, which can directly cleave lamin A leading to nucleus damage and inducing programmed cell death. We demonstrate that the secreted immunocasp-6 molecule selectively recognizes and induces apoptosis in HER2-overexpressing tumor cells in vitro, but not in cells with undetectable HER2. The immunocasp-6 gene was next transferred into BALB/c athymic mice bearing human breast SK-BR-3 tumors by i.m. injection of liposome-encapsulated vectors, by intratumor injection of adenoviral vectors, or by i.v. injection of PBMC modified by retroviral infection. Regardless of the method used, expression of immunocasp-6 suppressed tumor growth and prolonged animal survival significantly. Our data show that the chimeric immunocasp-6 molecule can recognize HER2-positive tumor cells, promptly attack their nucleus, and induce their apoptotic death, suggesting the potential of this strategy for the treatment of human cancers that overexpress HER2.  相似文献   

14.
Recombinant monoclonal antibodies specific for 11-dehydro-thromboxane B(2) (11D-TX) were isolated from the combinatorial libraries on a pComb3 phage-display vector using a magnetic cell sorting (MACS) system. The libraries were constructed from repertories of light and heavy-chains derived from the total RNA of 11D-TX conjugated keyhole limpet haemocyanin-immunized mice. Biotinylation of 11D-TX conjugated bovine serum albumin (BSA) was performed through free thiol groups on BSA using 1-biotinamido-4-[4'-(maleimidomethyl) cyclohexanecarboxamido] butane (Biotin-BMCC). Affinity bio-panning was performed to enrich the phage display libraries against biotinylated 11D-TX conjugated BSA with the MACS system. Results indicated that the selected anti-11D-TX Fab fragments expressed by E. coli exhibited a five-fold higher affinity for BSA conjugated 11D-TX compared to BSA alone and little specificity to other related compounds as determined by the binding assay and inhibition enzyme-linked immunosorbent assay (ELISA). This is the first report of an antibody against prostaglandin produced by phage display technology and also determination of the DNA sequence of this antibody. The MACS system was shown to be a simpler and more efficient method of panning than the conventional ELISA procedure. According to our results, we concluded that the phage display technique combined with the MACS system allowed the selection of the antibody with high affinity and some specificity.  相似文献   

15.
Baloria U  Akhoon BA  Gupta SK  Sharma S  Verma V 《Amino acids》2012,42(4):1349-1360
Multiple different approaches are being used to activate the immune system against breast cancer. Vaccine therapy in general follows the principle that injections of various substances ultimately result in the presentation of tumor peptides to the patient’s immune system. We proposed a potential in silico DNA vaccine against breast cancer by integrating high affinity T cell (MHC-I and MHC-II) and B cell (continuous and discontinuous) epitopes. The matching of the HLA haplotype and antigen was performed to provide the appropriate peptide epitope suitable for majority of the patients. The immunogenic nature of the antigenic construct was also enhanced by the administration of consensus epitopes. The potency of DNA vaccines depends on the efficient expression and presentation of the encoded antigen of interest and the chances of efficient expression of our antigenic construct in host organism was also verified by in silico approaches. An attempt was made to overcome the limited potency of the DNA vaccine by targeting DNA to professional antigen-presenting cells (APCs). A higher immune response theoretically corresponds to a higher survival rate of patients. Therefore, optimization studies were also employed to enhance the immunogenicity of proposed in silico DNA vaccine.  相似文献   

16.
Epidermal growth factor (EGF) binds with high affinity to the EGF receptor, also known as ErbB-1, but upon replacement of the N-terminal linear region by neuregulin (NRG) 1 or transforming growth factor (TGF) alpha sequences it gains in addition high affinity for ErbB-2/ErbB-3 heterodimers. However, these chimeras weakly bind to ErbB-3 alone. To further dissect the ligand binding selectivity of the ErbB network, we have applied the phage display technique to examine the role of the linear N-terminal region in EGF for interaction with ErbB-2/ErbB-3 heterodimers. A library of EGF variants was constructed in which residues 2, 3, and 4 were randomly mutated, followed by selection for binding to intact MDA-MB-453 cells that overexpress ErbB-2 and ErbB-3 but lack ErbB-1. Analysis of the selected phage EGF variants revealed clones with high binding affinity to ErbB-2/ErbB-3 while maintaining high affinity to ErbB-1. In these variants, Trp (or alternatively His) was almost exclusively present at position 2, while specific combinations of hydrophobic, basic, and small residues were found at positions 3 and 4. The mitogenic activity of the phage EGF variants corresponded with their relative binding affinity. Two of the selected EGF variants, EGF/WVS and EGF/WRS, were further characterized as recombinant proteins. In contrast to previously characterized chimeras of EGF with NRG-1 or TGF-alpha, these variants did not only show high binding affinity for ErbB-2/ErbB-3 heterodimers but also for ErbB-3 alone. These data show that the linear N-terminal region of EGF-like growth factors is directly involved in binding to ErbB-3.  相似文献   

17.
Most therapeutic antibodies (Abs) target cell surface proteins on tumor and immune cells. Cloning of Ab gene libraries in E. coli and their display on bacteriophages is commonly used to select novel therapeutic Abs binding target antigens, either purified or expressed on cells. However, the sticky nature of bacteriophages renders phage display selections on cells challenging. We previously reported an E. coli display system for expression of VHHs (i.e., nanobodies, Nbs) on the surface of bacteria and selection of high-affinity clones by magnetic cell sorting (MACS). Here, we demonstrate that E. coli display is also an attractive method for isolation of Nbs against cell surface antigens, such as the epidermal growth factor receptor (EGFR), upon direct selection and screening of Ab libraries on live cells. We employ a whole cell-based strategy using a VHH library obtained by immunization with human tumor cells over-expressing EGFR (i.e., A431), and selection of bacterial clones bound to murine fibroblast NIH-3T3 cells transfected with human EGFR, after depletion of non-specific clones on untransfected cells. This strategy resulted in the isolation of high-affinity Nbs binding distinct epitopes of EGFR, including Nbs competing with the ligand, EGF, as characterized by flow cytometry of bacteria displaying the Nbs and binding assays with purified Nbs using surface plasmon resonance. Hence, our study demonstrates that E. coli display of VHH libraries and selection on cells enables efficient isolation and characterization of high-affinity Nbs against cell surface antigens.  相似文献   

18.
A prerequisite for the enrichment of antibodies screened from phage display libraries is their stable expression on a phage during multiple selection rounds. Thus, if stringent panning procedures are employed, selection is simultaneously driven by antigen affinity, stability and solubility. To take advantage of robust pre-selected scaffolds of such molecules, we grafted single-chain Fv (scFv) antibodies, previously isolated from a human phage display library after multiple rounds of in vitro panning on tumor cells, with the specificity of the clinically established murine monoclonal anti-CD22 antibody RFB4. We show that a panel of grafted scFvs retained the specificity of the murine monoclonal antibody, bound to the target antigen with high affinity (6.4-9.6 nM), and exhibited exceptional biophysical stability with retention of 89-93% of the initial binding activity after 6 days of incubation in human serum at 37 degrees C. Selection of stable human scaffolds with high sequence identity to both the human germline and the rodent frameworks required only a small number of murine residues to be retained within the human frameworks in order to maintain the structural integrity of the antigen binding site. We expect this approach may be applicable for the rapid generation of highly stable humanized antibodies with low immunogenic potential.  相似文献   

19.
Ligand-targeted anticancer therapeutics represent an opportunity for the selective and efficient delivery of drugs to tumours. The chemical coupling of ligands to drugs or drug carrier systems is, however, often hampered by the presence of multiple reactive groups within the ligand, for example, epsilon-NH(2) groups in lysine side chains. In this paper, we describe the isolation by phage display of human epidermal growth factor (EGF) variants without lysine and a reduced number of arginine residues. The selection on A431 carcinoma cells also revealed that R41 is indispensable for EGF binding activity as all EGF variants contained an arginine residue at this position. One EGF variant (EGFm1) with K28Q, R45S, K48S and R53S mutations was expressed in bacteria and showed an identical binding activity as wild-type EGF. EGFm1 could be labelled with fluorescein isothiocyanate demonstrating the accessibility of the N-terminal amino group for coupling reagents. Furthermore, coupling of EGFm1 to PEGylated liposomes resulted in target cell-specific binding and internalization of the liposomes. These human EGF variants should be advantageous for the generation of anticancer therapeutics targeting the EGF receptor, which is overexpressed by a wide variety of different tumours.  相似文献   

20.
The HER-2 antigen, which is overexpressed in many breast carcinomas, is an ideal target for monoclonal antibodies due to its low expression in normal tissue and its homogeneous distribution in the tumor mass. We have developed and characterized the murine MAb MGR6 against HER-2, which is able to inhibit proliferation of tumor cells overexpressing HER-2. On the basis of these preclinical results, phase I studies in breast carcinoma patients were conducted and radiolocalization data indicated an antibody half life which directly paralleled that of other whole antibodies and thus resulting in a limited in vivo diagnostic capacity. To obtain a smaller reagent with possibly improved in vivo properties, a single chain variable fragment (scFv) of the original MGR6-producing hybridoma was generated by phage display technology. Biologically active MGR6 scFv was purified rapidly and at high yield by metal affinity chromatography. Competition FACS and ELISA analyses identified an epitope on the HER-2 extracellular domain that was shared by the scFv and the parental MAb. BIAcore analysis indicated a Koff of 9.3 × 10−4 s−1, similar to that of the intact MGR6 MAb. Distribution and elimination half-lives of MGR6 scFv, calculated from in vivo preclinical evaluations, were much faster (13 min and 6.2 h, respectively) than previously published results for the intact MAb (mean t1/2β of 46 h). This represents a theoretical improvement in pharmacokinetics with respect to the parental murine MAb and points to the potential for utilizing this fragment in redirecting therapeutic agents, such as radioisotopes, to different human carcinomas overexpressing HER-2. Received: 10 August 2000 / Accepted: 19 October 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号