首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this study, an efficient transformation system for the medicinal plant Anisodus acutangulus was successfully developed and optimized using Agrobacterium rhizogenes. Three bacterial strains, A4, R1601, and modified C58C1 and three explant types, leaf blade, petiole, and stem, were examined. The highest transformation efficiency of 94.44% was achieved using strain C58C1 with stem explants. Over 20 independent hairy root lines were successfully established with strain C58C1 using stem explants, all of which contained the ro/B and ro/C genes as confirmed by polymerase chain reaction (PCR). Out of four media compositions, the liquid 1/2 MS medium was found the most suitable for hairy root growth. The maximum biomass of one hairy root line increased up to 80 times in liquid 1/2 MS medium after a 30 day culture period. Different hairy root lines displayed a varied capacity for tropane alkaloid production and the best hairy root line (T4) from the C58C1-stem combination produced up to 10.21 mg/g (dw) of hyoscyamine, which was about 1.5-fold higher than in the wild type plants. To our knowledge, this is the first report to demonstrate the production of tropane alkaloids in hairy roots of A. acutangulus.  相似文献   

3.
Soil bacteria may have properties of plant growth promotion but not be sufficiently beneficial for plants under stress conditions. This challenge has led researchers to extend their searches into extreme environments for potential soil bacteria with multiple plant beneficial traits as well as abiotic stress tolerance abilities. In the current study, an attempt was made to evaluate soil bacteria from an extreme environment, volcano soils, based on plant growth promoting and abiotic stress mitigating characteristics. The screening led to the isolation of eight (NBRISH4, NBRISH6, NBRISH10, NBRISH11, NBRISH13, NBRISH14, NBRISH16 and NBRISH26) bacterial isolates capable of withstanding stresses, namely temperature (up to 45 °C), salt (up to 2 M NaCl) and drought (up to 60% Poly Ethylene Glycol 6000) in vitro. Further, the selected isolates were notable for their in vitro temporal performance with regards to survival (in terms of colony count), phosphate solubilisation, biofilm formation, auxin, alginate and exo-polysaccharide production abilities under abiotic stresses i.e. 40 °C temperature; 500 mM NaCl salt and drought (PEG) conditions. In vivo seed treatments of individual selected bacteria to maize plants resulted into significant enhancement in root and shoot length, root and shoot fresh and dry weight and number of leaves per plant. Overall, the plant growth promoting and abiotic stress tolerance ability was most evident for bacterial isolate NBRISH6 which was identified as an Ochrobactrum sp. using 16S rRNA based phylogenetic analysis.  相似文献   

4.
The effects of medium exchange and methyl jasmonate addition on growth and production of shikonin and its derivatives acetylshikonin and isobutyrylshikonin in hairy root cultures of Lithospermum canescens were investigated. Responses varied depending on the transgenic line and stage of growth at which these lines were subjected to treatment. Shikonin itself was not detected, irrespective of the transgenic line and culture treatment used. A eightfold increase in acetylshikonin and isobutyrylshikonin accumulation was achieved when 32-day-old transgenic roots of Lc1D line were transferred from LS to M9 medium for the subsequent 3 weeks of culture. Methyl jasmonate exerted a detrimental effect on red naphthoquinones production. The extracts obtained from roots cultivated in M9 medium for 3 weeks were subjected to a cytotoxicity assay and displayed cytotoxic activity against human promyelocytic leukemia cells (HL-60) at the dose of 4 μg ml−1.  相似文献   

5.
6.
The biosynthetic potential for six lignans accumulation in two lines of Taxus x media hairy roots was investigated. The cultures of KT and ATMA hairy root lines were supplemented with precursors: coniferyl alcohol (CA 1, 10 or 100 µM) and/or l-phenylalanine (100 µM PHEN) and/or methyl jasmonate (100 µM MeJa). Moreover the two-phase in vitro cultures supported with perfluorodecalin (PFD) as a gas carrier and in situ extrahent were used. The hairy root lines differed in lignan production profiles. In the control untreated cultures KT roots did not accumulate secoisolariciresinol and lariciresinol while ATMA roots did not accumulate matairesinol. In ATMA roots the treatment with CA (1 or 10 µM) resulted in the production of lariciresinol and secoisolariciresinol whereas solely lariciresinol was present after 100 µM CA application. Elicitation with 1 µM CA and MeJa yielded with hydroxymatairesinol aglyca and lariciresinol glucosides with their highest content 37.88 and 3.19 µg/g DW, respectively. The stimulatory effect of simultaneous treatment with 1 µM CA, PHEN and MeJa on lignan production was observed when the cultures were supplemented with PFD-aerated or degassed. In ATMA root cultures these applied conditions were the most favourable for matairesinol content which amounted to 199.86 and 160.25 µg/g DW in PFD-aerated and PFD-degassed supported cultures, respectively. In KT root cultures solely, hydroxymatairesinol and coniferin/CA content was enhanced with their highest yield 59.29 and 134.60 µg/g DW in PFD-aerated and PFD-degassed cultures, respectively.  相似文献   

7.
Control of pyrimidine formation was examined in Pseudomonas fulva ATCC 31418. Pyrimidine supplementation lowered pyrimidine biosynthetic pathway enzyme activities in cells grown on glucose or succinate as a carbon source indicating possible repression of enzyme synthesis. Pyrimidine limitation experiments were conducted using an orotidine 5′-monophosphate decarboxylase mutant strain isolated in this study. Compared to uracil-supplemented, glucose-grown mutant cells, pyrimidine limitation of this strain caused aspartate transcarbamoylase, dihydroorotase, dihydroorotate dehydrogenase and orotate phosphoribosyltransferase activities to increase about 6-, 13-, 3-, 15-fold, respectively, which confirmed regulation of enzyme synthesis by pyrimidines. At the level of enzyme activity, transcarbamoylase activity in Ps. fulva was strongly inhibited by pyrophosphate, CTP, GTP and GDP under saturating substrate concentrations.  相似文献   

8.
Plants of which the roots are colonized by selected strains of non-pathogenic, fluorescent Pseudomonas spp. develop an enhanced defensive capacity against a broad spectrum of foliar pathogens. In Arabidopsis thaliana, this rhizobacteria-induced systemic resistance (ISR) functions independently of salicylic acid but requires responsiveness to jasmonic acid and ethylene. In contrast to pathogen-induced systemic acquired resistance (SAR), ISR is not associated with systemic changes in the expression of genes encoding pathogenesis-related (PR) proteins. To identify genes that are specifically expressed in response to colonization of the roots by ISR-inducing Pseudomonas fluorescens WCS417r bacteria, we screened a collection of Arabidopsis enhancer trap and gene trap lines containing a transposable element of the Ac/Ds system and the GUS reporter gene. We identified an enhancer trap line (WET121) that specifically showed GUS activity in the root vascular bundle upon colonization of the roots by WCS417r. Fluorescent Pseudomonas spp. strains P. fluorescens WCS374r and P. putida WCS358r triggered a similar expression pattern, whereas ISR-non-inducing Escherichia coli bacteria did not. Exogenous application of the ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC) mimicked the rhizobacteria-induced GUS expression pattern in the root vascular bundle, whereas methyl jasmonic acid and salicylic acid did not, indicating that the Ds element in WET121 is inserted in the vicinity of an ethylene-responsive gene. Analysis of the expression of the genes in the close vicinity of the Ds element revealed AtTLP1 as the gene responsible for the in cis activation of the GUS reporter gene in the root vascular bundle. AtTLP1 encodes a thaumatin-like protein that belongs to the PR-5 family of PR proteins, some of which possess antimicrobial properties. AtTLP1 knockout mutant plants showed normal levels of WCS417r-mediated ISR against the bacterial leaf pathogen Pseudomonas syringae pv. tomato DC3000, suggesting that expression of AtTLP1 in the roots is not required for systemic expression of ISR in the leaves. Together, these results indicate that induction of AtTLP1 is a local response of Arabidopsis roots to colonization by non-pathogenic fluorescent Pseudomonas spp. and is unlikely to play a role in systemic resistance.  相似文献   

9.
Biodegradation and hydrophobicity of Pseudomonas spp. and Bacillus spp. strains were tested at different concentrations of the biosurfactant Quillaya saponin. A model mixture of hydrocarbon (dodecane and hexadecane) was used for estimating the influence of surfactants on biodegradation. The bacterial adhesion to hydrocarbon method for determination of bacterial cell surface hydrophobicity was exploited. Among the tested bacterial strains the higher hydrophobicity was noticed for Pseudomonas aeruginosa TK. The hydrophobicity of this strain was 84%. The highest hydrocarbon biodegradation was observed for P. aeruginosa TK (49%) and Bacillus subtilis (35%) strains after 7 days of experiments. Generally the addition of Quillaya saponin increased hydrocarbon biodegradation remarkably. The optimal concentration proved to be 80 mg l−1. The degree of hydrocarbon biodegradation was 75% for P. aeruginosa TK after the addition of saponin. However the most significant increase in biodegradation after addition of Quillaya saponin was in the case of P. aeruginosa 25 and Pseudomonas putida (the increase of biodegradation from 21 to 52% and from 31 to 66%, respectively). It is worth mentioning that decrease of hydrophobicity is correlated with the best biodegradation by P. aeruginosa strain. For the remaining strains, no significant hydrophobicity changes in relation to the system without surfactant were noticed.  相似文献   

10.
In plants, ROS signaling and increase in activities of antioxidants are among defense responses. The present study describes the oxidative stress profiling in model host plant tomato (Solanum lycopersicum L.), during an invasion of the wilt pathogen Fusarium oxysporum f. sp. lycopersici with or without seed priming with Pseudomonas isolates M80, M96 and T109. Tomato seeds were primed with known Pseudomonas isolates M80, M96 and T109 and the forty-day- old plants were challenged with spores of F. oxysporum under greenhouse conditions. Leaf samples were collected at 0, 24, 48 72 and 96 h post fungal challenge and analysed for systemic level of oxidative stress parameters including total phenolics, proline, hydrogen peroxide, lipid peroxidation and enzymatic antioxidants. Disease incidence in the plants under greenhouse conditions was also calculated. Results revealed that priming with Pseudomonas isolates resulted in reduced oxidative stress in the host, during pathogen invasion. M80-priming showed highest antioxidative protection to the host plants during F. oxysporum invasion. The observed reduction in hydrogen peroxide and lipid peroxidation in primed plants was in agreement with the increased activities of the corresponding antioxidant enzymes. Greenhouse results showed that the highest wilt disease symptoms were with M80-priming followed by M96 and T109. The present study gives substantial evidences on the oxidative stress mitigation in response to Pseudomonas-priming on the model tomato-Fusarium interaction system.  相似文献   

11.
The plastidic thioredoxin F-type (TrxF) protein plays an important role in plant saccharide metabolism. In this study, a gene encoding the TrxF protein, named SlTrxF, was isolated from tomato. The coding region of SlTrxF was cloned into a binary vector under the control of 35S promoter and then transformed into Arabidopsis thaliana. The transgenic Arabidopsis plants exhibited increased starch accumulation compared to the wild-type (WT). Real-time quantitative PCR analysis showed that constitutive expression of SlTrxF up-regulated the expression of ADP-glucose pyrophosphorylase (AGPase) small subunit (AtAGPase-S1 and AtAGPase-S2), AGPase large subunit (AtAGPase-L1 and AtAGPase-L2) and soluble starch synthase (AtSSS I, AtSSS II, AtSSS III and AtSSS IV) genes involved in starch biosynthesis in the transgenic Arabidopsis plants. Meanwhile, enzymatic analyses showed that the major enzymes (AGPase and SSS) involved in the starch biosynthesis exhibited higher activities in the transgenic plants compared to WT. These results suggest that SlTrxF may improve starch content of Arabidopsis by regulating the expression of the related genes and increasing the activities of the major enzymes involved in starch biosynthesis.  相似文献   

12.
Zhou L  Cao X  Zhang R  Peng Y  Zhao S  Wu J 《Biotechnology letters》2007,29(4):631-634
Two oligosaccharides, a heptasaccharide (HS) and an octasaccharide (OS), isolated from Paris polyphylla var. yunnanensis, stimulated the growth and saponin accumulation of Panax ginseng hairy roots at 5–30 mg l−1. HS and OS at 30 mg l−1, fed separately to hairy root cultures at 10 days post-inoculation, increased the root biomass dry weight by more than 70% to ∼20 g l−1 from 13 g l−1 and the total saponin content of roots by more than 1-fold to ∼3.5% from 1.6% (w/w). The results suggest that the two oligosaccharides may have plant growth-regulatory activity in plant tissue cultures.  相似文献   

13.
Two repeated DNA sequences isolated from a partial genomic DNA library of Helianthus annuus, p HaS13 and p HaS211, were shown to represent portions of the int gene of a Ty3 /gypsy retroelement and of the RNase-Hgene of a Ty1 /copia retroelement, respectively. Southern blotting patterns obtained by hybridizing the two probes to BglII- or DraI-digested genomic DNA from different Helianthus species showed p HaS13 and p HaS211 were parts of dispersed repeats at least 8 and 7 kb in length, respectively, that were conserved in all species studied. Comparable hybridization patterns were obtained in all species with p HaS13. By contrast, the patterns obtained by hybridizing p HaS211 clearly differentiated annual species from perennials. The frequencies of p HaS13- and p HaS211-related sequences in different species were 4.3x10(4)-1.3x10(5) copies and 9.9x10(2)-8.1x10(3) copies per picogram of DNA, respectively. The frequency of p HaS13-related sequences varied widely within annual species, while no significant difference was observed among perennial species. Conversely, the frequency variation of p HaS211-related sequences was as large within annual species as within perennials. Sequences of both families were found to be dispersed along the length of all chromosomes in all species studied. However, Ty3 /gypsy-like sequences were localized preferentially at the centromeric regions, whereas Ty1/ copia-like sequences were less represented or absent around the centromeres and plentiful at the chromosome ends. These findings suggest that the two sequence families played a role in Helianthusgenome evolution and species divergence, evolved independently in the same genomic backgrounds and in annual or perennial species, and acquired different possible functions in the host genomes.  相似文献   

14.
The complete nucleotide sequence of pNI10 (3.75 kb), from which pNI105 and pNI107 were constructed as medium-host-range vectors for Gram-negative bacteria, was determined. A fragment of about 2.1 kb of pNI10 was essential for replication in Escherichia coli and Pseudomonas fluorescens. This fragment encodes a putative origin of replication ( ori) and one putative replication-controlling protein (Rep). An improved version of the medium-host-range plasmid vector pNUK73 (5.13 kb) was constructed with the basic-replicon of pNI10 and pHSG298 (2.68 kb). We show that expression in pseudomonads of the bromoperoxidase gene ( bpo) of Pseudomonas putida, inserted downstream of the lac promoter in pNUK73, resulted in about 30% (13.6 U/l culture) of the enzyme level obtained in E. coli.  相似文献   

15.
16.
Using different explants of in vitro seed grown Scutellaria baicalensis Georgi plantlets, hairy roots were induced following inoculation of Agrobacterium rhizogenes strains A4GUS, R1000 LBA 9402 and ATCC11325. The A4GUS proved to be more competent than other strains and the highest transformation rates were observed in cotyledonary leaf explant (42.6 %). The transformed roots appeared after 15–20 d of incubation on hormone free Murashige and Skoog medium. Growth of hairy roots was assessed on the basis of total root elongation, lateral root density and biomass accumulation. Maximum growth rate was recorded in root:medium ratio 1:100 (m/v). Hairy root lines were further established in Gamborg B5 medium and the biomass increase was maximum from 15 to 30 d. PCR, Southern hybridization and RT-PCR confirmed integration and expression of left and right termini-linked Ri T-DNA fragment of the Ri plasmid from A4GUS into the genome of Scutellaria baicalensis hairy roots. GUS assay was also performed for further integration and expression. All the clones showed higher growth rate them non-transformed root and accumulated considerable amounts of the root-specific flavonoids. Baicalin content was 14.1–30.0 % of dry root mass which was significantly higher then that of control field grown roots (18 %). The wogonin content varies from 0.08 to 0.18 % among the hairy root clones which was also higher than in non-transformed roots (0.07 %).  相似文献   

17.
Agrobacterium rhizogenes A4M70GUS-mediated transformation of two local breeding lines of sugar beet was obtained using 4-week-old seedlings. Root formation efficiency was 61.54% for SBa genotype and 36.36% for SBb genotype. Five highly proliferated hairy root lines have been established in liquid hormone-free MS medium. Transgenic nature of the hairy root clones was evaluated by GUS assay, PCR and RT-PCR analyses. Hairy root-derived calli were induced using different plant growth regulators (PGRs): auxin, auxin/cytokinin and cytokinin. The best callus induction response was achieved on MS medium containing both 1 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D) and 1 mg/l thidiazuron (TDZ). Globular embryo-like structures were observed in friable callus after its prolonged cultivation on MS medium supplemented with TDZ and giberellic acid (GA3) at 1 mg/l each, followed by growth on MS medium containing 1% glucose and 0.5 mg/l 2,3,5-triiodobenzoic acid (TIBA). Histological analysis revealed somatic embryos at different stages of development in hairy root-derived callus of sugar beet.  相似文献   

18.
A revision of Penstemon sect. Saccanthera subsect. Serrulati includes a new species (P. salmonensis), a new variety (P. triphyllus var. infernalis), and the elevation of a subspecies to species (P. curtiflorus), bringing the total number of species to eight, which are keyed and described, complete with nomenclature and type citations.  相似文献   

19.
Pseudomonas fluorescens-CS2 metabolized ethylbenzene as the sole source of carbon and energy. The involvement of catechol as the hydroxylated intermediate during the biodegradation of ethylbenzene was established by TLC, HPLC and enzyme analysis. The specific activity of Catechol 2,3-dioxygenase in the cell free extracts of P. fluorescens-CS2 was determined to be 0.428 μmoles min−1 mg−1 protein. An aqueous-organic, Two-Phase Batch Culture System (TPBCS) was developed to overcome inhibition due to higher substrate concentrations. In TPBCS, P. fluorescens-CS2 demonstrated ethylbenzene utilization up to 50 mM without substrate inhibition on inclusion of n-decanol as the second phase. The rate of ethylbenzene metabolism in TPBCS was found enhance by fivefold in comparison with single phase system. Alternatively the alginate, agar and polyacrylamide matrix immobilized P. fluorescens-CS2 cells efficiently degraded ethylebenzene with enhanced efficiency compared to free cell cultures in single and two-phase systems. The cells entrapped in ployacrylamide and alginate were found to be stable and degradation efficient for a period of 42 days where as agar-entrapped P. fluorescens was stable and efficient a period of 36 days. This demonstrates that alginate and polyacrylamide matrices are more promising as compared to agar for cell immobilization.  相似文献   

20.
A genetic transformation system has been developed for callus cells of Crataegus aronia using Agrobacterium tumefaciens. Callus culture was established from internodal stem segments incubated on Murashige and Skoog (MS) medium supplemented with 5 mg l−1 Indole-3-butyric acid (IBA) and 0.5 mg l−1 6-benzyladenine (BA). In order to optimize the callus culture system with respect to callus growth and coloration, different types and concentrations of plant growth regulators were tested. Results indicated that the best average fresh weight of red colored callus was obtained on MS medium supplemented with 2 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1.5 mg l−1 kinetin (Kin) (callus maintenance medium). Callus cells were co-cultivated with Agrobacterium harboring the binary plasmid pCAMBIA1302 carrying the mgfp5 and hygromycin phosphotransferase (hptII) genes conferring green fluorescent protein (GFP) activity and hygromycin resistance, respectively. Putative transgenic calli were obtained 4 weeks after incubation of the co-cultivated explants onto maintenance medium supplemented with 50 mg l−1 hygromycin. Molecular analysis confirmed the integration of the transgenes in transformed callus. To our knowledge, this is the first time to report an Agrobacterium-mediated transformation system in Crataegus aronia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号