首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interleukin-13 (IL-13) is a central regulator of Th2-dominated respiratory disorders such as asthma. Lesions of the airway epithelial barrier frequently observed in chronic respiratory inflammatory diseases are repaired through proliferation, migration and differentiation of epithelial cells. Our work is focused on the effects of IL-13 in human cellular models of airway epithelial cell regeneration. We have previously shown that IL-13 altered epithelial cell polarity during mucociliary differentiation of human nasal epithelial cells. In particular, the cytokine inhibited ezrin expression and interfered with its apical localization during epithelial cell differentiation in vitro. Here we show that CFTR expression is enhanced in the presence of the cytokine, that two additional CFTR protein isoforms are expressed in IL-13-treated cells and that part of the protein is retained within the endoplasmic reticulum. We further show that aquaporin 5 expression, a water channel localized within the apical membrane of epithelial cells, is completely abolished in the presence of the cytokine. These results show that IL-13 interferes with ion and water channel expression and localization during epithelial regeneration and may thereby influence mucus composition and hydration.  相似文献   

2.
S Kwon  S C George 《Nitric oxide》1999,3(4):348-357
Nitric oxide (NO) is an important mediator molecule in regulating normal airway function, as well as in the pathophysiology of inflammatory airway diseases. In addition, cytokines are potent messenger molecules at sites of inflammation. The specific relationship among IL-1beta, TNF-alpha, and IFN-gamma on iNOS induction and NO synthesis in human alveolar epithelial cells has not been determined. In addition, rigorous methods to determine potential synergistic action between the cytokines have not been employed. We exposed monolayer cultures of A549 cells to a factorial combination of three cytokines (IL-1beta, TNF-alpha, and IFN-gamma) and three concentrations (0, 5, and 100 ng/mL). TNF-alpha alone does not induce NO production directly; however, it does have a stimulatory effect on IL-1beta-induced NO production. IL-1beta and INF-gamma both induce NO production alone, yet at different concentration thresholds, and act synergistically when present together. In the presence of all three cytokines, the net effect of NO production exceeds the predicted additive effect of each individual cytokine and the two-way interactions. Several plausible mechanisms of synergy among IL-1beta, TNF-alpha, and IFN-gamma in NO production from human alveolar epithelial cells (A549) are proposed. In order to verify the proposed mechanisms of synergy, future experimental and theoretical studies must address several molecular steps through which the iNOS gene is expressed and regulated, as well as the expression and regulation of enzyme cofactors and substrates.  相似文献   

3.
The study of mucosal immunity has revealed that complex reciprocal interactions occur between intestinal intraepithelial lymphocytes (IEL) and intestinal epithelial cells (IEC). The present study focuses on the induction of inducible nitric oxide (NO) synthase in cocultures of freshly isolated rat IEL and the rat epithelial cell line IEC-18 after the addition of interleukin-1beta (IL-1beta), tumor necrosis factor-alpha, or lipopolysaccharide. When IEL and IEC were separated using Transwell chambers, NO synthesis was not induced, indicating that cell-cell contact was required. Culture of IEC-18 with IEL, even in the absence of inflammatory stimuli such as IL-1beta, resulted in upregulation of class I and II antigens on IEC-18, due to the interferon-gamma (IFN-gamma) that is constitutively produced by IEL. Addition of anti-IFN-gamma antibody to the NO-producing cocultures resulted in inhibition of NO synthesis as well as the upregulation of class I and II antigen expression. These data indicate that IFN-gamma production by IEL conditions IEC for the expression of other components of the inflammatory process.  相似文献   

4.
The airway epithelium forms a barrier against infection but also produces antimicrobial peptides (AMPs) and other inflammatory mediators to activate the immune system. It has been shown that in allergic disorders, Th2 cytokines may hamper the antimicrobial activity of the epithelium. However, the presence of Th2 cytokines also affects the composition of the epithelial layer which may alter its function. Therefore, we investigated whether exposure of human primary bronchial epithelial cells (PBEC) to Th2 cytokines during mucociliary differentiation affects expression of the human cathelicidin antimicrobial protein (hCAP18)/LL-37 and human beta defensins (hBD), and antimicrobial activity.PBEC were cultured at an air-liquid interface (ALI) for two weeks in the presence of various concentrations of IL-4 or IL-13. Changes in differentiation and in expression of various AMPs and the antimicrobial proteinase inhibitors secretory leukocyte protease inhibitor (SLPI) and elafin were investigated as well as antimicrobial activity.IL-4 and IL-13 increased mRNA expression of hCAP18/LL-37 and hBD-2. Dot blot analysis also showed an increase in hCAP18/LL-37 protein in apical washes of IL-4-treated ALI cultures, whereas Western Blot analysis showed expression of a protein of approximately 4.5 kDa in basal medium of IL-4-treated cultures. Using sandwich ELISA we found that also hBD-2 in apical washes was increased by both IL-4 and IL-13. SLPI and elafin levels were not affected by IL-4 or IL-13 at the mRNA or protein level. Apical wash obtained from IL-4- and IL-13-treated cultures displayed increased antimicrobial activity against Pseudomonas aeruginosa compared to medium-treated cultures. In addition, differentiation in the presence of Th2 cytokines resulted in increased MUC5AC production as has been shown previously.These data suggest that prolonged exposure to Th2 cytokines during mucociliary differentiation contributes to antimicrobial defence by increasing the expression and release of selected antimicrobial peptides and mucus.  相似文献   

5.
Freshly isolated human mucosal T lymphocytes in vitro can markedly diminish an important property of intestinal epithelium—its barrier function. On the other hand, cytokines and their cellular receptors, which maintain homeostasis of epithelia, limit epithelial permeability, and preserve barrier function, are not well characterized. Using a described human colonic epithelial cell monolayer system, we found that transforming growth factor-β1 (TGF-β1) preserved 75% or more of epithelial barrier function, quantitated electrophysiologically, even in the presence of cytokines generated by a high density of barrier-disruptive mucosa-derived mononuclear cells. In opposing the TGF-β1 effect, cytokines able to reduce barrier function were spontaneously secreted by mucosal T cells and were increased in their barrier effect after T-lymphocyte activation. Further, neutralization of individual cytokines with specific monoclonal antibodies abrogated the lymphocyte-induced reduction in epithelial barrier function, and identified interferon gamma (IFN-γ), interleukin (IL)-4, and IL-10, but not IL-6, as the primary cytokines whose barrier effects were curtailed by TGF-β1. Receptors (RI and RII) for TGF-β1 were found to be localized primarily to the apical and basal membranes of surface epithelium in colonic crypts. These findings provide the scientific basis for new strategies to pharmacologically enhance the barrier function of epithelia in mucosal organs regularly exposed to environmental antigens and to T-lymphocyte products. J. Cell. Physiol. 181:55–66, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

6.
7.
The production and the mechanism of excretion of cloacin DF13 were investigated in noninduced and mitomycin C-induced cell cultures. A mitomycin C concentration was selected which did not cause lysis of cloacinogenic cells, but at the same time induced a maximal production of cloacin DF13. Native cloacin DF13, possessing killing activity, was first released into the cytoplasm. Shortly thereafter, the bacteriocin was transported through the cytoplasmic membrane and accumulated in the periplasm. Finally, cloacin DF13 was excreted into the culture medium. A small amount of cloacin DF13 remained associated with the cell surface. Producing cells did not become permeable for the cytoplasmic enzyme beta-galactosidase. Apparently the cloacin DF13 leaves the producing cells by an excretion process which is not similar to the mechanism proposed for bacterial secretory proteins. The processes of excretion by producing cells and of uptake by susceptible cells were also not identical because mutant cloacin DF13, which was not transported through the outer membrane into susceptible cells, was excreted like the wild-type cloacin DF13. The composition of the culture medium greatly affected production of cloacin DF13. The presence of sugars known to cause catabolite repression not only inhibited the production but also strongly reduced the excretion of cloacin DF13 into the culture medium.  相似文献   

8.
Inducible nitric oxide synthase (iNOS) activity in colonic epithelial HT-29 cells is modulated by the T-cell-derived cytokines IL-4 and IL-13, but is not affected by IL-10 despite its effect in models of colitis. We studied the effects of these cytokines on nitric oxide (NO) production by colonic tissue. IL-10 and IL-4 but not IL-13 suppressed the NO production and iNOS expression by inflamed tissue and cytokine-stimulated noninflamed tissue from patients with ulcerative colitis, whereas the three cytokines suppressed NO production in cytokine-stimulated biopsies from controls. To examine why colonic biopsies and HT-29 cells respond differently to immunomodulatory cytokines, a coculture of mixed mononuclear monocytes (MMC) and HT-29 cells was studied. Treatment of HT-29 cells with conditioned medium from IFN-γ/LPS-stimulated MMC produced significant amounts of NO, which suggested the presence of an MMC-derived soluble factor modifying epithelial NO production. Pretreatment of IFN-γ/LPS-stimulated MMC with IL-10 and IL-4 but not IL-13 suppressed NO production by HT-29 cells. Interestingly, pretreatment of HT-29 cells with IL-1 receptor antagonist suppressed the IFN-γ/LPS-stimulated MMC-induced NO production. These results suggest that immunomodulatory cytokines might exert an inhibitory effect on NO up-regulation by colonic epithelium via the inhibition of MMC-derived soluble mediators, such as IL-1.  相似文献   

9.
To investigate the biological activity of epithelial cells in view of host defense, we analyzed the mRNA expression of inducible NOS (iNOS) as well as NO production by human gingival epithelial cells (HGEC) stimulated with IL-15. RT-PCR analysis revealed that HGEC expressed IL-15 receptor alpha-chain mRNA. In addition, stimulation with IL-15 enhanced iNOS expression by HGEC through an increase of both mRNA and protein levels. Moreover, IL-15 up-regulated the production of NO(2)(-)/NO(3)(-), a NO-derived stable end product, from HGEC. The enhanced NO production by IL-15 was inhibited by AMT, an iNOS-specific inhibitor. These results suggest that IL-15 is a potent regulator of iNOS expression by HGEC and involved in innate immunity in the mucosal epithelium.  相似文献   

10.
Summary Mucous cells of the airway epithelium play a crucial role in the pathogenesis of human inflammatory airway diseases. Therefore, it is of importance to complement in vivo studies that use murine models of allergic asthma with in vitro mechanistic studies that use murine airway epithelial cells, including mucus-containing cells. In this study, we report the development and characterization of an in vitro culture system for primary murine tracheal epithelial (MTE) cells comprising ciliated cells and a substantial number of mucous cells. The increase in mucous cell number over that observed in the native murine airway, or in previously described murine cultures, creates a culture intermediate between the in vivo murine airway epithelium and in vitro cultures of human airway epithelial cells. To establish the usefulness of this culture system for the study of epithelial effects during inflammatory airway diseases, the cells were exposed to interleukin (IL)-13, a central inflammatory mediator in allergic asthma. The IL-13 induced two characteristic epithelial effects, proliferation and modulation of MUC5AC gene expression. There was a concentration dependence of these events, wherein high concentrations of IL-13 (10 ng/ml) induced proliferation, whereas lower concentrations (1 ng/ml) increased MUC5AC mRNA (where mRNA is messenger RNA). Interestingly, these effects occurred in an inverse manner, with the high concentration of IL-13 also provoking a significant decrease in MUC5AC gene expression. Thus, MTE cells cultured in this manner may provide an important link between experimental findings from animal models of allergic asthma and their application to human disease.  相似文献   

11.
In sensitized individuals, exposure to allergens such as Dermatophagoides pteronyssinus (Der p) causes Th2 polarization and release of cytokines, including IL-4 and IL-13. Because Der p extracts also have direct effects on epithelial cells, we hypothesized that allergen augments the effects of Th2 cytokines by promoting mediator release from the bronchial epithelium in allergic asthma. To test our hypothesis, primary bronchial epithelial cultures were grown from bronchial brushings of normal and atopic asthmatic subjects. RT-PCR showed that each culture expressed IL-4R(alpha), common gamma-chain, and IL-13R(alpha)(1), as well as IL-13R(alpha)(2), which negatively regulates IL-13 signaling; FACS analysis confirmed IL-13R(alpha)(2) protein expression. Exposure of epithelial cultures to either Der p extracts, TNF-alpha, IL-4, or IL-13 enhanced GM-CSF and IL-8 release, and this was partially suppressible by corticosteroids. Simultaneous exposure of the epithelial cultures to IL-4 or IL-13 together with Der p resulted in a further increase in cytokine release, which was at least additive. Release of TGF-alpha was also increased by TNF-alpha and combinations of IL-4, IL-13, and Der p; however, this stimulation was only significant in the asthma-derived cultures. These data suggest that, in an allergic environment, Th2 cytokines and allergen have the potential to sustain airway inflammation through a cooperative effect on cytokine release by the bronchial epithelium. Our novel finding that IL-4, IL-13, and allergen enhance release of TGF-alpha, a ligand for the epidermal growth factor receptor that stimulates fibroblast proliferation and goblet cell differentiation, provides a potential link between allergen exposure, Th2 cytokines, and airway remodelling in asthma.  相似文献   

12.
Inducible nitric oxide synthase (iNOS) activity in colonic epithelial HT-29 cells is modulated by the T-cell-derived cytokines IL-4 and IL-13, but is not affected by IL-10 despite its effect in models of colitis. We studied the effects of these cytokines on nitric oxide (NO) production by colonic tissue. IL-10 and IL-4 but not IL-13 suppressed the NO production and iNOS expression by inflamed tissue and cytokine-stimulated noninflamed tissue from patients with ulcerative colitis, whereas the three cytokines suppressed NO production in cytokine-stimulated biopsies from controls. To examine why colonic biopsies and HT-29 cells respond differently to immunomodulatory cytokines, a coculture of mixed mononuclear monocytes (MMC) and HT-29 cells was studied. Treatment of HT-29 cells with conditioned medium from IFN-γ/LPS-stimulated MMC produced significant amounts of NO, which suggested the presence of an MMC-derived soluble factor modifying epithelial NO production. Pretreatment of IFN-γ/LPS-stimulated MMC with IL-10 and IL-4 but not IL-13 suppressed NO production by HT-29 cells. Interestingly, pretreatment of HT-29 cells with IL-1 receptor antagonist suppressed the IFN-γ/LPS-stimulated MMC-induced NO production. These results suggest that immunomodulatory cytokines might exert an inhibitory effect on NO up-regulation by colonic epithelium via the inhibition of MMC-derived soluble mediators, such as IL-1.  相似文献   

13.
《Cytokine》2014,65(2):236-244
Interleukin 17A (IL-17A) is a cytokine linked to inflammatory bowel disease. We investigated IL-17A expression in human colonic mucosa, whether IL-17A can elicit colonic mucosal damage in a human explant model and modulate gastrointestinal epithelial permeability in cell culture. We also tested if select cannabinoid ligands, shown to be protective in colitis models could attenuate damage caused by IL-17A. In addition, the ability of pro-inflammatory cytokines TNF-α and IL-1β to modulate levels of IL-17A in the explant colitis model was also explored. IL-17A incubation caused significant mucosal epithelial and crypt damage which were attenuated following hydrocortisone treatment, and also reduced following anandamide or cannabidiol incubation. IL-17A-evoked mucosal damage was also associated with an increase in matrix metalloprotease activity. However, IL-17A did not induce any significant changes in epithelial permeability in confluent Caco-2 cell monolayers over a 48 h incubation period. IL-17A was located predominantly in human mucosal epithelium together with IL-17C, but both IL-17A and IL-17C were also expressed in the lamina propria and submucosa. Incubation of human colonic mucosal tissue or Caco-2 cells with pro-inflammatory cytokines TNF-α and IL-1β however did not alter IL-17A expression. These results indicate IL-17A has a widespread distribution in the human colon and the capacity to elicit mucosal damage which can be attenuated by cannabinoid ligands.  相似文献   

14.
In confluent cultures of BHK-21/C13 cells there was little uptake oxogenous polyamines and only a low level of polyamine biosynthesis. These cultures continously excreted polyamines into the extracellular medium. Spermidine, in both the free and bound form, was the predominant excretion product, whereas the major intracellular polyamine was spermine implying that excretion of polyamines was specific. Reinitiation of growth by the addition of fresh serum immediately increased the uptake of exogenous putrescine, increased the biosynthesis of polyamines and decreased the excretion of polyamines. Thus, polyamine transport into and out of the cell appears to be regulated by the growth status of that cell.  相似文献   

15.
To characterize the role of intestinal epithelial cells in mucosal host defense, we have examined endogenous antioxidant reactivity and inflammatory response in Caco-2 cell line. When differentiated Caco-2 cells were incubated with iron/ascorbate for 1-24 h, they exhibited increased malondialdehyde levels and decreased polyunsaturated fatty acid proportion in favor of saturated fatty acids. These modifications were accompanied with alterations in membrane fluidity and permeability. The oxidative stress did not induce changes in the antioxidant enzyme activity of superoxide dismutase, catalase, glutathione peroxidase, and glutathione transferase, or in cellular glutathione content. However, iron/ascorbate-mediated lipid peroxidation promoted inhibitor-kappaB degradation and NF-kappaB activation, as well as gave rise to IL-8, cyclooxygenase-2, and ICAM-1. These results support the importance of oxidant/antioxidant balance in the epithelial cell inflammatory response.  相似文献   

16.
Biliary tract infection with the Group I carcinogenic liver fluke Opisthorchis viverrini is associated with severe inflammation leading to cholangiocarcinoma--a major biliary cancer in Southeast Asia. However, mechanism(s) by which the liver fluke induces host mucosal immune/inflammatory responses is unclear. In the present study we address whether a normal immortalized human cholangiocyte cell line (H69 cells) recognizes and responds to O. viverrini excretory/secretory products (OVES). Expression of multiple TLRs, activation of NF-κB, and expression of pro-inflammatory cytokines were monitored in the presence and absence of OVES. Our results showed that OVES induced increased cholangiocyte TLR4 mRNA expression, induced IκB-α degradation in a MyD88-dependent manner, and activated NF-κB nuclear translocation. Moreover, OVES induced expression and secretion of the strong chemoattractant chemokine interleukin 8 (IL-8) and pro-inflammatory cytokine IL-6. These results demonstrate that secreted/excreted products of O. viverrini are recognized by human cholangiocytes and initiate innate mucosal immunity/inflammatory cascades, a primary event in the pathogenesis of opisthorchiasis and cholangiocarcinoma.  相似文献   

17.
18.
The cytokines IL-4 and IL-13 inhibit the production of NO from activated macrophages through an unresolved molecular mechanism. We show here that IL-4 and IL-13 regulate NO production through depletion of arginine, the substrate of inducible NO synthase (iNOS). Inhibition of NO production from murine macrophages stimulated with LPS and IFN-gamma by IL-4 or IL-13 was dependent on Stat6, cell density in the cultures, and pretreatment for at least 6 h. IL-4/IL-13 did not interfere with the expression or activity of iNOS but up-regulated arginase I (the liver isoform of arginase) in a Stat6-dependent manner. Addition of exogenous arginine completely restored NO production in IL-4-treated macrophages. Furthermore, impaired killing of the intracellular pathogen Toxoplasma gondii in IL-4-treated macrophages was overcome by supplementing L-arginine. The simple system of regulated substrate competition between arginase and iNOS has implications for understanding the physiological regulation of NO production.  相似文献   

19.
Interleukin-13 (IL-13) has been linked to the pathogenesis of inflammatory diseases of the gastrointestinal tract. It is postulated that IL-13 drives inflammatory lesions through the modulation of both hematopoietic and nonhematopoietic cell function in the intestine. To delineate the relevant contribution of elevated levels of intestinal IL-13 to intestinal structure and function, we generated an intestinal IL-13 transgenic mouse (iIL-13Tg). We show that constitutive overexpression of IL-13 in the small bowel induces modification of intestinal epithelial architecture (villus blunting, goblet cell hyperplasia, and increased epithelial proliferation) and epithelial function (altered basolateral → apical Cl(-) ion conductance). Pharmacological analyses in vitro and in vivo determined that elevated Cl(-) conductance is mediated by altered cystic fibrosis transmembrane conductance regulator expression and activity. Generation of iIL-13Tg/Il13rα1(-/-), iIL-13Tg/Il13rα2(-/-), and iIL-13Tg/Stat6(-/-) mice revealed that IL-13-mediated dysregulation of epithelial architecture and Cl(-) conductance is dependent on IL-13Rα1 and STAT-6. These observations demonstrate a central role for the IL-13/IL-13Rα1 pathway in the regulation of intestinal epithelial cell Cl(-) secretion via up-regulation of cystic fibrosis transmembrane conductance regulator, suggesting an important role for this pathway in secretory diarrhea.  相似文献   

20.
Expression of functional P2Y(6) receptors was demonstrated in primary cultures of human bronchial cells (NHBE cells). P2Y(6) receptors were located only on the apical membranes of NHBE cells. Their stimulation by UDP induced a chloride secretion (short-circuit current) reflected by the development of two I(sc) components (I(fast) and I(late)). A pharmacological characterization of those two I(sc) components showed the involvement of CaCC and CFTR channel activity in I(fast) and I(late) respectively. I(fast) was also found to be under control of basolateral SK4 channels. Indeed, inhibition of SK4 channels opening by clotrimazole dramatically reduced I(fast) amplitude. The epithelial ion transporting phenotype depends on the cellular state of differentiation. As previously reported, we observed that Ultroser G increased the epithelial tightness and Na(+)-transport capacity while IL-13 switch the epithelial ion transport phenotype from a Na(+)-absorbing to a Cl(-)-secreting one. In our study, we report for the first time a change in the K(+) cell permeability associated to IL-13-induced cell differentiation. IL-13 treatment increased the-resting K(+) permeability as well as the Ca(2+)-dependent K(+) permeability stimulated by UDP or ionomycin. SK4 channels activity, underlying the Ca(2+)-dependent K(+) permeability was in particular increased by IL-13. The on/off effect of IL-13 on P2Y(6)-induced Cl-secretion may help to identify the molecular determinants responsible for the CaCC channel activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号