首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Birt-Hogg-Dube disease occurs as a result of germline mutations in the human Folliculin gene (FLCN), and is characterized by clinical features including fibrofolliculomas, lung cysts and multifocal renal neoplasia. Clinical and genetic evidence suggest that FLCN acts as a tumor suppressor gene. The human cell line UOK257, derived from the renal cell carcinoma of a patient with a germline mutation in the FLCN gene, harbors a truncated version of the FLCN protein. Reconstitution of the wild type FLCN protein into UOK257 cells delays cell cycle progression, due to a slower progression through the late S and G2/M-phases. Similarly, Flcn –/– mouse embryonic fibroblasts progress more rapidly through the cell cycle than wild type controls (Flcn flox/flox). The reintroduction of tumor-associated FLCN mutants (FLCN ΔF157, FLCN 1–469 or FLCN K508R) fails to delay cell cycle progression in UOK257 cells. Additionally, FLCN phosphorylation (on Serines 62 and 73) fluctuates throughout the cell cycle and peaks during the G2/M phase in cells treated with nocodazole. In keeping with this observation, the reintroduction of a FLCN phosphomimetic mutant into the UOK257 cell line results in faster progression through the cell cycle compared to those expressing the wild type FLCN protein. These findings suggest that the tumor suppression function of FLCN may be linked to its impact on the cell cycle and that FLCN phosphorylation is important for this activity. Additionally, these observations describe a novel in vitro assay for testing the functional significance of FLCN mutations and/or genetic polymorphisms.  相似文献   

3.
《Autophagy》2013,9(2):247-249
The characteristics of tumor cell killing by an anti-cancer agent can determine the long-term effectiveness of the treatment. For example, if dying tumor cells release the immune modulator HMGB1 after treatment with anti-cancer drugs, they can activate a tumor-specific immune response that boosts the effectiveness of the initial treatment. Recent work from our group examined the mechanism of action of a targeted toxin called DT-EGF that selectively kills Epidermal Growth Factor Receptor-expressing tumor cells. We found that DT-EGF kills glioblastoma cells by a caspase-independent mechanism that involves high levels of autophagy, which inhibits cell death by blocking apoptosis. In contrast, DT-EGF kills epithelial tumor cells by caspase-dependent apoptosis and in these cells autophagy is not induced. These differences allowed us to discover that the different death mechanisms were associated with differences in the release of HMGB1 and that autophagy induction is required and sufficient to cause release of HMGB1 from the dying cells. These data identify a new function for autophagy during cell death and open up the possibility of manipulating autophagy during cancer treatment as a way to influence the immunogenicity of dying tumor cells.  相似文献   

4.
The PI3K/AKT/mTOR pathway plays a key role in the development of the hypervascular tumor renal cell carcinoma (RCC). NVP‐BEZ235 (NVP), a novel dual PI3K/mTOR inhibitor, showed great antitumor benefit and provided a treatment strategy in RCC. In this study, we test the effect of NVP on survival rate, apoptosis and autophagy in the RCC cell line, 786‐0. We also explore the hypothesis that NVP, in combination with autophagy inhibitors, leads to apoptosis enhancement in 786‐0 cells. The results showed that the PI3K/AKT/mTOR pathway proteins p‐AKT and p‐P70S6K were highly expressed in RCC tissue. We also showed that NVP inhibited cell growth and induced apoptosis and autophagy in RCC cells. The combination treatment of NVP with autophagy inhibitors enhanced the effect of NVP on suppressing 786‐0 growth and induction of apoptosis. This study proposes a novel treatment paradigm where combining PI3K/AKT/mTOR pathway inhibitors and autophagy inhibitors lead to enhanced RCC cell apoptosis. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Autophagy in human embryonic stem cells   总被引:2,自引:0,他引:2  
Autophagy (macroautophagy) is a degradative process that involves the sequestration of cytosolic material including organelles into double membrane vesicles termed autophagosomes for delivery to the lysosome. Autophagy is essential for preimplantation development of mouse embryos and cavitation of embryoid bodies. The precise roles of autophagy during early human embryonic development, remain however largely uncharacterized. Since human embryonic stem cells constitute a unique model system to study early human embryogenesis we investigated the occurrence of autophagy in human embryonic stem cells. We have, using lentiviral transduction, established multiple human embryonic stem cell lines that stably express GFP-LC3, a fluorescent marker for the autophagosome. Each cell line displays both a normal karyotype and pluripotency as indicated by the presence of cell types representative of the three germlayers in derived teratomas. GFP expression and labelling of autophagosomes is retained after differentiation. Baseline levels of autophagy detected in cultured undifferentiated hESC were increased or decreased in the presence of rapamycin and wortmannin, respectively. Interestingly, autophagy was upregulated in hESCs induced to undergo differentiation by treatment with type I TGF-beta receptor inhibitor SB431542 or removal of MEF secreted maintenance factors. In conclusion we have established hESCs capable of reporting macroautophagy and identify a novel link between autophagy and early differentiation events in hESC.  相似文献   

6.
Exosomal microRNAs (miRNAs) are suggested to reflect molecular changes occurring in their cells of origin and are potential indicators in the early detection of cancers. This study aimed to determine whether certain exosomal miRNAs from tumor tissue can be used as noninvasive biomarkers for clear cell renal cell carcinoma (ccRCC). Based on ccRCC miRNA expression profiles and the literature, we selected six miRNAs (miR-210, miR-224, miR-452, miR-155, miR-21, and miR-34a) and analyzed their expression in tissues, sera, and serum exosomes through quantitative real-time polymerase chain reaction in hypoxia-induced (with CoCl2) renal cell lines. miR-210, miR-224, miR-452, miR-155, and miR-21 were upregulated in tumor tissues compared with normal tissues. Serum miR-210 and miR-155 levels were higher in patients with ccRCC than in healthy controls (HCs). Furthermore, only exosomal miR-210 was significantly upregulated in patients with ccRCC than in HCs. Moreover, receiver operating characteristic (ROC) curve analysis revealed an area under the ROC curve of 0.8779 (95% confidence interval, 0.7987-0.9571) and a sensitivity and specificity of 82.5% and 80.0%, respectively. Moreover, exosomal miR-210 was upregulated at an advanced stage, and Fuhrman grade and metastasis decreased significantly one month after surgery. Acute hypoxia exposure activates miR-210 and release of exosomes with upregulated miR-210 in both normal and tumor RCC cell lines and interferes with vacuole membrane protein 1 mRNA expression, especially in the metastatic ccRCC cell line. In conclusion, Serum exosomal miR-210 originating from tumor tissue has potential as a novel noninvasive biomarker for the detection and prognosis of ccRCC.  相似文献   

7.
Liu YL  Yang PM  Shun CT  Wu MS  Weng JR  Chen CC 《Autophagy》2010,6(8):1057-1065
Hepatocellular carcinoma (HCC) is the fifth most common cancer and the third leading cause of cancer death worldwide. Drug treatments for HCC have been largely unsuccessful. Histone deacetylase inhibitors can reactivate tumor suppressor genes in cancer cells and serve as potential anti-cancer drugs. Two potent HDAC inhibitors OSU-HDAC42 and SAHA induced autophagy in HCC cells as revealed by transmission electron microscopy, immunofluorescence and LC3-II accumulation. We found that SAHA and OSU-HDAC42 induced autophagy through downregulation of Akt/mTOR signaling and induction of ER stress response. Inhibition of autophagy by 3-MA or Atg5 knockout reduced SAHA-induced cytotoxicity, indicating that SAHA-induced autophagy led to cell death. Our results show that the combination of autophagy inducers with SAHA might be attractive for the treatment of HCC and pharmacological targeting of autophagy provides promise for the management of cancer therapy.  相似文献   

8.
Bodrogi I 《Magyar onkologia》2007,51(2):145-153
Sporadic renal cell carcinomas are characterized by EGFR (HER-1) and EGFR-2 (HER-2) expression, however, signal transduction inhibitors of this pathway were clinically ineffective. Clear cell renal cell cancer is hormone-, irradiation- and chemotherapy resistant with moderate sensitivity to immunotherapy. The only clinically effective class of agents in case of this tumor type was proved to be the angiosuppressive agents. In 2005 FDA approved sorafenib for the first line treatment while in 2006 sunitinib for second line treatment in the cytokine resistant medium-risk renal cell carcinoma. This was followed by the European approval of both agents for second line treatment of renal cell cancer. Sunitinib was approved for first line treatment of renal cell cancer in Europe based on a phase III trial comparing it to interferon. Temsirolimus obtained its approval for the treatment of high risk renal cell cancer patients in 2007. Last but not least, FDA approval is on the way in case of bevacizumab as well to treat renal cell cancer. Based on the data demonstrated on the ASCO'2007, various modalities have to be developed for various stages of progression of clear cell renal cell cancer.  相似文献   

9.
《Autophagy》2013,9(8):1057-1065
Hepatocellular carcinoma (HCC) is the fifth most common cancer and the third leading cause of cancer death worldwide. Drug treatments for HCC have been largely unsuccessful. Histone deacetylase inhibitors can reactivate tumor suppressor genes in cancer cells and serve as potential anti-cancer drugs. Two potent HDAC inhibitors OSU-HDAC42 and SAHA induced autophagy in HCC cells as revealed by transmission electron microscopy, immunofluorescence and LC3-II accumulation. We found that SAHA and OSU-HDAC42 induced autophagy through downregulation of Akt/mTOR signaling and induction of ER stress response. Inhibition of autophagy by 3-MA or Atg5 knockout reduced SAHA-induced cytotoxicity, indicating that SAHA-induced autophagy led to cell death. Our results show that the combination of autophagy inducers with SAHA might be attractive for the treatment of HCC and pharmacological targeting of autophagy provides promise for the management of cancer therapy.  相似文献   

10.
Naturally occurring pterostilbene (PTER) and isothiocyanate (ITC) attract great attention due to their wide range of biological properties, including anti-cancer, anti-leukemic, anti-bacterial and anti-inflammatory activities. A novel class of hybrid compound synthesized by introducing an ITC moiety on PTER backbone was evaluated for its anti-cancer efficacy in hormone-dependent breast cancer cell line (MCF-7) in vitro and Ehrlich ascitic tumor bearing mice model in vivo. The novel hybrid molecule showed significant in vitro anti-cancer activity (IC50=25±0.38) when compared to reference compound PTER (IC50=65±0.42). The conjugate molecule induced both S and G2/M phase cell cycle arrest as indicated by flow cytometry analysis. In addition, the conjugate induced cell death was characterized by changes in cell morphology, DNA fragmentation, activation of caspase-9, release of cytochrome-c into cytosol and increased Bax: Bcl-2 ratio. The conjugate also suppressed the phosphorylation of Akt and ERK. The conjugate induced cell death was significantly increased in presence of A6730 (a potent Akt1/2 kinase inhibitor) and PD98059 (a specific ERK inhibitor). Moreover, the conjugated PTER inhibited tumor growth in Ehrlich ascitic cell induced tumor bearing mice as observed by reduction in tumor volume compared to untreated animals. Collectively, the pro-apoptotic effect of conjugate is mediated through the activation of caspases, and is correlated with the blockade of the Akt and ERK signaling pathways in MCF-7 cells.  相似文献   

11.
Callyspongiolide is a marine macrolide known to induce caspase-independent cancer cell death. While its toxic effects have been known, the mechanism leading to cell death is yet to be identified. We report that Callyspongiolide R form at C-21 (cally2R) causes mitochondrial dysfunction by inhibiting mitochondrial complex I or II, leading to a disruption of mitochondrial membrane potential and a deprivation of cellular energy. Subsequently, we observed, using electron microscopy, a drastic formation of autophagosome and mitophagy. Supporting these data, LC3, an autophagosome marker, was shown to co-localize with LAMP2, a lysosomal protein, showing autolysosome formation. RNA sequencing results indicated the induction of hypoxia and blocking of EGF-dependent pathways, which could be caused by induction of autophagy. Furthermore, mTOR and AKT pathways preventing autophagy were repressed while AMPK was upregulated, supporting autophagosome progress. Finally, the combination of cally2R with known anti-cancer drugs, such as gefitinib, sorafenib, and rapamycin, led to synergistic cell death, implicating potential therapeutic applications of callyspongiolide for future treatments.  相似文献   

12.
《Autophagy》2013,9(10):1261-1262
Pemetrexed (ALIMTA) is a folate anti-metabolite that has been approved for the treatment of non-small cell lung cancer, and has been shown to stimulate autophagy. In the present study, we sought to further understand the role of autophagy in the response to pemetrexed and to test if combination therapy could enhance the level of toxicity through altered autophagy in tumor cells. The multikinase inhibitor sorafenib (NEXAVAR), used in the treatment of renal and hepatocellular carcinoma, suppresses tumor angiogenesis and promotes autophagy in tumor cells. We found that sorafenib interacted in a greater than additive fashion with pemetrexed to increase autophagy and to kill a diverse array of tumor cell types. Tumor cell types that displayed high levels of cell killing after combination treatment showed elevated levels of AKT, p70 S6K and/or phosphorylated mTOR, in addition to class III RTKs such as PDGFRb and VEGFR1, known in vivo targets of sorafenib. In xenograft and in syngeneic animal models of mammary carcinoma and glioblastoma, the combination of sorafenib and pemetrexed suppressed tumor growth without deleterious effects on normal tissues or animal body mass. Taken together, the data suggest that premexetred and sorafenib act synergistically to enhance tumor killing via the promotion of a toxic form of autophagy that leads to activation of the intrinsic apoptosis pathway, and predict that combination treatment represents a future therapeutic option in the treatment of solid tumors.  相似文献   

13.
The elimination of tumor cells by apoptosis is the main mechanism of action of chemotherapeutic drugs. More recently, autophagic cell death has been shown to trigger a nonapoptotic cell death program in cancer cells displaying functional defects of caspases. Fenretinide (FenR), a synthetic derivative of retinoic acid, promotes growth inhibition and induces apoptosis in a wide range of tumor cell types. The present study was designed to evaluate the ability of fenretinide to induce caspase-independent cell death and to this aim we used the human mammary carcinoma cell line MCF-7, lacking functional caspase-3 activity. We demonstrated that in these cells fenretinide is able to trigger an autophagic cell death pathway. In particular we found that fenretinide treatment resulted in the increase in Beclin 1 expression, the conversion of the soluble form of LC3 to the autophagic vesicle-associated form LC3-II and its shift from diffuse to punctate staining and finally the increase in lysosomes/autophagosomes. By contrast, caspase-3 reconstituted MCF-7 cell line showed apoptotic cell death features in response to fenretinide treatment. These data strongly suggest that fenretinide does not invariably elicit an apoptotic response but it is able to induce autophagy when apoptotic pathway is deregulated. The understanding of the molecular mechanisms involved in fenretinide action is important for the future design of therapies employing this retinoid in breast cancer treatment.  相似文献   

14.
Hypoxia (lack of oxygen) is a physiological stress often associated with solid tumors. Hypoxia correlates with poor prognosis since hypoxic regions within tumors are considered apoptosisresistant. Autophagy (cellular "self digestion") has been associated with hypoxia during cardiac ischemia and metabolic stress as a survival mechanism. However, although autophagy is best characterized as a survival response, it can also function as a mechanism of programmed cell death. Our results show that autophagic cell death is induced by hypoxia in cancer cells with intact apoptotic machinery. We have analyzed two glioma cell lines (U87, U373), two breast cancer cell lines (MDA-MB-231, ZR75) and one embryonic cell line (HEK293) for cell death response in hypoxia (<1% O(2)). Under normoxic conditions, all five cell lines undergo etoposide-induced apoptosis whereas hypoxia fails to induce these apoptotic responses. All five cell lines induce an autophagic response and undergo cell death in hypoxia. Hypoxia-induced cell death was reduced upon treatment with the autophagy inhibitor 3-methyladenine, but not with the caspase inhibitor z-VAD-fmk. By knocking down the autophagy proteins Beclin-1 or ATG5, hypoxia-induced cell death was also reduced. The pro-cell death Bcl-2 family member BNIP3 (Bcl-2/adenovirus E1B 19kDainteracting protein 3) is upregulated during hypoxia and is known to induce autophagy and cell death. We found that BNIP3 overexpression induced autophagy, while expression of BNIP3 siRNA or a dominant-negative form of BNIP3 reduced hypoxia-induced autophagy. Taken together, these results suggest that prolonged hypoxia induces autophagic cell death in apoptosis-competent cells, through a mechanism involving BNIP3.  相似文献   

15.
Pemetrexed (ALIMTA) is a folate anti-metabolite that has been approved for the treatment of non-small cell lung cancer, and has been shown to stimulate autophagy. In the present study, we sought to further understand the role of autophagy in the response to pemetrexed and to test if combination therapy could enhance the level of toxicity through altered autophagy in tumor cells. The multikinase inhibitor sorafenib (NEXAVAR), used in the treatment of renal and hepatocellular carcinoma, suppresses tumor angiogenesis and promotes autophagy in tumor cells. We found that sorafenib interacted in a greater than additive fashion with pemetrexed to increase autophagy and to kill a diverse array of tumor cell types. Tumor cell types that displayed high levels of cell killing after combination treatment showed elevated levels of AKT, p70 S6K and/or phosphorylated mTOR, in addition to class III RTKs such as PDGFRb and VEGFR1, known in vivo targets of sorafenib. In xenograft and in syngeneic animal models of mammary carcinoma and glioblastoma, the combination of sorafenib and pemetrexed suppressed tumor growth without deleterious effects on normal tissues or animal body mass. Taken together, the data suggest that premexetred and sorafenib act synergistically to enhance tumor killing via the promotion of a toxic form of autophagy that leads to activation of the intrinsic apoptosis pathway, and predict that combination treatment represents a future therapeutic option in the treatment of solid tumors.  相似文献   

16.
Betulinic acid (BetA) is a plant-derived pentacyclic triterpenoid that exerts potent anti-cancer effects in vitro and in vivo. It was shown to induce apoptosis via a direct effect on mitochondria. This is largely independent of proapoptotic BAK and BAX, but can be inhibited by cyclosporin A (CsA), an inhibitor of the permeability transition (PT) pore. Here we show that blocking apoptosis with general caspase inhibitors did not prevent cell death, indicating that alternative, caspase-independent cell death pathways were activated. BetA did not induce necroptosis, but we observed a strong induction of autophagy in several cancer cell lines. Autophagy was functional as shown by enhanced flux and degradation of long-lived proteins. BetA-induced autophagy could be blocked, just like apoptosis, with CsA, suggesting that autophagy is activated as a response to the mitochondrial damage inflicted by BetA. As both a survival and cell death role have been attributed to autophagy, autophagy-deficient tumor cells and mouse embryo fibroblasts were analyzed to determine the role of autophagy in BetA-induced cell death. This clearly established BetA-induced autophagy as a survival mechanism and indicates that BetA utilizes an as yet-undefined mechanism to kill cancer cells.  相似文献   

17.
Adenoid cystic carcinoma (ACC) is one of the most common malignancies of the major and minor salivary glands. However, the molecular mechanism underlying the aggressive growth of human salivary ACC remains unclear. In the present study, we showed that survivin, which belongs to the family of inhibitors of apoptosis, is closely related to the high expression of CDK4 and cyclin D1 in human ACC specimens. By employing the small-molecule drug YM155, we found that the inhibition of survivin in ACC cells caused significant cell death and induced autophagy. Chloroquine, an autophagy inhibitor, prevented cell death induced by YM155, suggesting YM155-induced autophagy contributed to the cell death effects in ACC cells. More importantly, evidence obtained from a xenograft model using ACC-2 cells proved the occurrence of YM155-induced autophagy and cell death in vivo was correlated with the suppression of Erk1/2 and S6 activation as well as increased TFEB nuclear translocation. Taken together, our results indicate YM155 is a novel inducer of autophagy-dependent cell death and possesses therapeutic potential in ACC.  相似文献   

18.
Cancer develops when molecular pathways that control the fine balance between proliferation, differentiation, autophagy and cell death undergo genetic deregulation. The prospects for further substantial advances in the management of colorectal cancer reside in a systematic genetic and functional dissection of these pathways in tumor cells. In an effort to evaluate the impact of p38 signaling on colorectal cancer cell fate, we treated HT29, Caco2, Hct116, LS174T and SW480 cell lines with the inhibitor SB202190 specific for p38alpha/beta kinases. We report that p38alpha is required for colorectal cancer cell homeostasis as the inhibition of its kinase function by pharmacological blockade or genetic inactivation causes cell cycle arrest, autophagy and cell death in a cell type-specific manner. Deficiency of p38alpha activity induces a tissue-restricted upregulation of the GABARAP gene, an essential component of autophagic vacuoles and autophagosomes, whereas simultaneous inhibition of autophagy significantly increases cell death by triggering apoptosis. These data identify p38alpha as a central mediator of colorectal cancer cell homeostasis and establish a rationale for the evaluation of the pharmacological manipulation of the p38alpha pathway in the treatment of colorectal cancer.  相似文献   

19.
Zou M  Lu N  Hu C  Liu W  Sun Y  Wang X  You Q  Gu C  Xi T  Guo Q 《Cellular signalling》2012,24(8):1722-1732
Autophagy is a tightly-regulated catabolic process that involves the degradation of intracellular components via lysosomes. Although the pivotal role of autophagy in cell growth, development, and homeostasis has been well understood, its function in cancer prevention and intervention remains to be delineated. The aim of this study was to investigate the function and mechanism of autophagy induced by oroxylin A, a natural mono-flavonoid extracted from Scutellariae radix. We found for the first time that oroxylin A induced Beclin 1-mediated autophagy in human hepatocellular carcinoma HepG2 cells. Time-lapse video microscopy and western blotting studies showed that treatment of cells with 80 μM oroxylin A resulted in the conversion of water soluble MAP-LC3 (LC3-I) to the lipidated and autophagosome-associated form (LC3-II) after 12hours; then autophagosome-lysosome fusion and lysosome degradation after 24 hours was required in oroxylin A-mediated cell death. This induction was associated with the suppressing of PI3K-PTEN-Akt-mTOR signaling pathway by oroxylin A. Our results also showed that autophagy took place before noticeable apoptosis can be observed. It was further demonstrated that oroxylin A-triggered autophagy contributed to cell death using over-expression of autophagy-related gene (Atg5 and Atg7) and inhibition of autophagy by siBeclin 1 and 3-methyladenine (3-MA). In vivo study, oroxylin A inhibited xenograft tumor growth and induced obvious autophagy in tumors. Taken together, we conclude that oroxylin A exhibits autophagy-mediated antitumor activity in a dose and time-dependent manner in vivo and in vitro. These findings define and support a novel function of autophagy in promoting death of hepatocellular carcinoma cells.  相似文献   

20.
Primary glioblastoma multiforme is the most malignant form of astrocytic tumor with an average survival of approximately 12–14 months. The combination of novel Akt inhibitors with anti-cancer therapeutics has achieved improved anti-tumor efficiency. In the current study, we examined the synergistic anti-cancer ability of Akt inhibitor perifosine in combination with short-chain ceramide (C6) against glioblastoma cells (U87MG and U251MG), and studied the underlying mechanisms. We found that perifosine, which blocked Akt/mammalian target of rapamycin activation, only induced moderate cell death and few cell apoptosis in cultured glioblastoma cells. On the other hand, perifosine administration induced significant protective autophagy, which inhibited cell apoptosis induction. Inhibition of autophagy by 3-methyaldenine or by autophagy-related gene-5 RNA interference significantly enhanced perifosine-induced apoptosis and cytotoxicity. We found that the short chain cell-permeable ceramide (C6) significantly enhanced cytotoxic effects of perifosine in cultured glioblastoma cells. For mechanism study, we observed that ceramide (C6) inhibited autophagy induction to restore cell apoptosis and perifosine sensitivity. In conclusion, our study suggests that autophagy inhibition by ceramide (C6) restores perifosine-induced apoptosis and cytotoxicity in glioblastoma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号