首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Meiotic recombination between artificial repeats positioned on nonhomologous chromosomes occurs efficiently in the yeast Saccharomyces cerevisiae. Both gene conversion and crossover events have been observed, with crossovers yielding reciprocal translocations. In the current study, 5.5-kb ura3 repeats positioned on chromosomes V and XV were used to examine the effect of ectopic recombination on meiotic chromosome segregation. Ura(+) random spores were selected and gene conversion vs. crossover events were distinguished by Southern blot analysis. Approximately 15% of the crossover events between chromosomes V and XV were associated with missegregation of one of these chromosomes. The missegregation was manifest as hyperploid spores containing either both translocations plus a normal chromosome, or both normal chromosomes plus one of the translocations. In those cases where it could be analyzed, missegregation occurred at the first meiotic division. These data are discussed in terms of a model in which ectopic crossovers compete efficiently with normal allelic crossovers in directing meiotic chromosome segregation.  相似文献   

2.
Gene conversions and crossing over were analyzed along 10 intervals in a 405-kb region comprising nearly all of the left arm of chromosome VII in Saccharomyces cerevisiae. Crossover interference was detected in all intervals as measured by a reduced number of nonparental ditypes. We have evaluated interference between crossovers in adjacent intervals by methods that retain the information contained in tetrads as opposed to single segregants. Interference was seen between intervals when the distance in the region adjacent to a crossover was < approximately 35 cM (90 kb). At the met13 locus, which exhibits approximately 9% gene conversions, those gene conversions accompanied by crossing over exerted interference in exchanges in an adjacent interval, whereas met13 gene conversions without an accompanying exchange did not show interference. The pattern of exchanges along this chromosome arm can be represented by a counting model in which there are three nonexchange events between adjacent exchanges; however, maximum-likelihood analysis suggests that approximately 8-12% of the crossovers on chromosome VII arise by a separate, noninterfering mechanism.  相似文献   

3.
During meiosis, sister chromatid cohesion is required for normal levels of homologous recombination, although how cohesion regulates exchange is not understood. Null mutations in orientation disruptor (ord) ablate arm and centromeric cohesion during Drosophila meiosis and severely reduce homologous crossovers in mutant oocytes. We show that ORD protein localizes along oocyte chromosomes during the stages in which recombination occurs. Although synaptonemal complex (SC) components initially associate with synapsed homologues in ord mutants, their localization is severely disrupted during pachytene progression, and normal tripartite SC is not visible by electron microscopy. In ord germaria, meiotic double strand breaks appear and disappear with frequency and timing indistinguishable from wild type. However, Ring chromosome recovery is dramatically reduced in ord oocytes compared with wild type, which is consistent with the model that defects in meiotic cohesion remove the constraints that normally limit recombination between sisters. We conclude that ORD activity suppresses sister chromatid exchange and stimulates inter-homologue crossovers, thereby promoting homologue bias during meiotic recombination in Drosophila.  相似文献   

4.
Homologous recombination is an important mechanism for the repair of DNA damage in mitotically dividing cells. Mitotic crossovers between homologues with heterozygous alleles can produce two homozygous daughter cells (loss of heterozygosity), whereas crossovers between repeated genes on non-homologous chromosomes can result in translocations. Using a genetic system that allows selection of daughter cells that contain the reciprocal products of mitotic crossing over, we mapped crossovers and gene conversion events at a resolution of about 4 kb in a 120-kb region of chromosome V of Saccharomyces cerevisiae. The gene conversion tracts associated with mitotic crossovers are much longer (averaging about 12 kb) than the conversion tracts associated with meiotic recombination and are non-randomly distributed along the chromosome. In addition, about 40% of the conversion events have patterns of marker segregation that are most simply explained as reflecting the repair of a chromosome that was broken in G1 of the cell cycle.  相似文献   

5.
To examine the relationship between genetic and physical chromosome maps, we constructed a diploid strain of the yeast Saccharomyces cerevisiae heterozygous for 12 restriction site mutations within a 23-kilobase (5-centimorgan) interval of chromosome III. Crossovers were not uniformly distributed along the chromosome, one interval containing significantly more and one interval significantly fewer crossovers than expected. One-third of these crossovers occurred within 6 kilobases of the centromere. Approximately half of the exchanges were associated with gene conversion events. The minimum length of gene conversion tracts varied from 4 base pairs to more than 12 kilobases, and these tracts were nonuniformly distributed along the chromosome. We conclude that the chromosomal sequence or structure has a dramatic effect on meiotic recombination.  相似文献   

6.
Hoffmann ER  Borts RH 《Genetics》2005,169(3):1305-1310
Genetic analysis of recombination in Saccharomyces cerevisiae has revealed products with structures not predicted by the double-strand break repair model of meiotic recombination. A particular type of recombinant containing trans heteroduplex DNA has been observed at two loci. Trans events were originally identified only in tetrads in which the non-Mendelian segregations were not associated with a crossover. Because of this, these events were proposed to have arisen from the unwinding of double Holliday junctions. Previous studies used palindromes, refractory to mismatch repair, as genetic markers whereas we have used a complementary approach of deleting mismatch repair proteins to identify heteroduplex DNA. We found that the markers occurred in trans and were associated with crossovers. In both mlh1Delta and msh2Delta strains, the frequency of trans events associated with a crossover exceeded that predicted from the random association of crossovers with noncrossover trans events. We propose two different models to account for trans events associated with crossovers and discuss the relevance to wild-type DSB repair.  相似文献   

7.
To test two models of chiasma allocation and the distribution of crossing-over in chromosomes, genetic mapping was performed in normal, deletion and deficiency chromosome arms 1BL of wheat, Triticum aestivum L. Shortening of the chromosome arm, either by a deletion of the proximal half of the arm or by a deficiency of the terminal quarter of the arm's length, significantly reduced the frequency of multiple crossovers but did not affect the distribution of the distal, presumably the first, crossover in the arm. In the deficiency chromosome, the recombination rate in the terminal segment was much higher than that in the same segment of the complete arm. This suggests that recombination frequency is not an inherent characteristic of a segment but depends on the segment's position on the centromere-telomere axis. These observations support the classical model of chiasma distribution along the chromosome based on the point of pairing initiation, chromosome length and the positive chiasma interference. The study also demonstrates that the distribution and frequency of recombination in a chromosome segment can be manipulated. Therefore, even the segments with very low recombination frequencies could be saturated with large numbers of crossover events to produce high-density genetic maps.  相似文献   

8.
Riley MI  Manney TR 《Genetics》1978,89(4):667-684
Meiotic segregation of several genes has been studied in tetraploid strains that are trisomic for chromosome III. The segregation data were compared to a computer simulation that assumes trivalent pairing of homologues involved in exchanges, followed by nonpreferential segregation. Trivalent pairing was characterized by higher frequencies of exchange as compared to bivalent pairing, and by the presence of spores resulting from at least double crossovers involving all three homologues. Trivalent segregation was characterized by a unique recombinant class. The strong interference normally exhibited in diploid meiotic recombination was not evident from the frequency of double crossovers in these strains.  相似文献   

9.
In a previous study, we analyzed meiotic recombination events that occurred in the 22-kb region (LEU2 to CEN3) of chromosome III of Saccharomyces cerevisiae. We found one region with an enhanced level of crossovers (a hotspot) and one region with a depressed level of crossovers. In this study, we show that about one-third of the crossovers that occur between LEU2 and CEN3 are initiated in a 1.3-kb region located approximately 6 kb from the centromere. Both crossovers and gene conversion events are initiated at this site. Events initiated at this position can be resolved as crossovers in regions located either centromere-distally or centromere-proximally from the initiation site.  相似文献   

10.
In Drosophila females, the majority of recombination events do not become crossovers and those that do occur are nonrandomly distributed. Furthermore, a group of Drosophila mutants specifically reduce crossing over, suggesting that crossovers depend on different gene products than noncrossovers. In mei-218 mutants, crossing over is reduced by approximately 90% while noncrossovers and the initiation of recombination remain unchanged. Importantly, the residual crossovers have a more random distribution than wild-type. It has been proposed that mei-218 has a role in establishing the crossover distribution by determining which recombination sites become crossovers. Surprisingly, a diverse group of genes, including those required for double strand break (DSB) formation or repair, have an effect on crossover distribution. Not all of these mutants, however, have a crossover-specific defect like mei-218 and it is not understood why some crossover-defective mutants alter the distribution of crossovers. Intragenic recombination experiments suggest that mei-218 is required for a molecular transition of the recombination intermediate late in the DSB repair pathway. We propose that the changes in crossover distribution in some crossover-defective mutants are a secondary consequence of the crossover reductions. This may be the activation of a regulatory system that ensures at least one crossover per chromosome, and which compensates for an absence of crossovers by attempting to generate them at random locations.  相似文献   

11.
Crossing-over between homologous chromosomes facilitates proper disjunction of chromosomes during meiosis I. In many organisms, gene functions that are essential to crossing-over also facilitate the intimate chromosome pairing called "synapsis." Many organisms--including budding yeast, humans, zebrafish, Drosophila, and Arabidopsis--regulate the distribution of crossovers, so that, most of the time, each chromosome bundle gets at least one crossover while the mean number of crossovers per chromosome remains modest. This regulation is obtained through crossover interference. Recent evidence suggests that the organisms that use recombination functions to achieve synapsis have two classes of crossovers, only one of which is subject to interference. We statistically test this two-pathway hypothesis in the CEPH data and find evidence to support the two-pathway hypothesis in humans.  相似文献   

12.
Falque M  Mercier R  Mézard C  de Vienne D  Martin OC 《Genetics》2007,176(3):1453-1467
Crossover interference in meiosis is often modeled via stationary renewal processes. Here we consider a new model to incorporate the known biological feature of "obligate chiasma" whereby in most organisms each bivalent almost always has at least one crossover. The initial crossover is modeled as uniformly distributed along the chromosome, and starting from its position, subsequent crossovers are placed with forward and backward stationary renewal processes using a chi-square distribution of intercrossover distances. We used our model as well as the standard chi-square model to simulate the patterns of crossover densities along bivalents or chromatids for those having zero, one, two, or three or more crossovers; indeed, such patterns depend on the number of crossovers. With both models, simulated patterns compare very well to those found experimentally in mice, both for MLH1 foci on bivalents and for crossovers on genetic maps. However, our model provides a better fit to experimental data as compared to the standard chi-square model, particularly regarding the distribution of numbers of crossovers per chromosome. Finally, our model predicts an enhancement of the recombination rate near the extremities, which, however, explains only a part of the pattern observed in mouse.  相似文献   

13.
Meiotic Recombination on Artificial Chromosomes in Yeast   总被引:5,自引:0,他引:5       下载免费PDF全文
We have examined the meiotic recombination characteristics of artificial chromosomes in Saccharomyces cerevisiae. Our experiments were carried out using minichromosome derivatives of yeast chromosome III and yeast artificial chromosomes composed primarily of bacteriophage lambda DNA. Tetrad analysis revealed that the artificial chromosomes exhibit very low levels of meiotic recombination. However, when a 12.5-kbp fragment from yeast chromosome VIII was inserted into the right arm of the artificial chromosome, recombination within that arm mimicked the recombination characteristics of the fragment in its natural context including the ability of crossovers to ensure meiotic disjunction. Both crossing over and gene conversion (within the ARG4 gene contained within the fragment) were measured in the experiments. Similarly, a 55-kbp region from chromosome III carried on a minichromosome showed crossover behavior indistinguishable from that seen when it is carried on chromosome III. We discuss the notion that, in yeast, meiotic recombination behavior is determined locally by small chromosomal regions that function free of the influence of the chromosome as a whole.  相似文献   

14.
Because fresh initiations of synapsis must occur for homologous synapsis of internal heterozygously inverted chromosome segments, attention has been directed at homologous synapsis and crossing over in overlapping paracentric inversions in the long arm of chromosome 1 of maize. In an earlier study with a relatively short inversion (where double crossovers within the inversion were rare), a recombination nodule (RN) was generally found at pachytene in reverse paired (homologously synapsed) inverted regions. Crossover frequency within the inversion, which could be independently estimated from analysis of bridge and fragment frequency at anaphase I and II, closely corresponded to crossover frequency estimated from observed RN frequency in pachytene inversion loops. These findings were consistent with the interpretation that establishment of homologous synapsis in this case is generally coupled to crossing over. This coupling suggests that there is very early commitment to the form of resolution of recombination intermediates that results in reciprocal recombination events instead of conversion only or other noncrossover events. This study examines another, larger paracentric inversion in the long arm of chromosome 1 that completely overlaps the first inversion. It is sufficiently longer than the first inversion that double crossover events are found within it with substantial frequency and interference considerations are feasible. This study confers additional insight into the interrelationships of synapsis and crossing over and the probable sequence in which the various involved processes usually occur. It raises the strong possibility that crossovers can be initiated during the alignment phase that precedes synapsis.  相似文献   

15.
Joyce EF  McKim KS 《Genetics》2009,181(1):39-51
During meiosis, programmed DNA double-strand breaks (DSBs) are repaired to create at least one crossover per chromosome arm. Crossovers mature into chiasmata, which hold and orient the homologous chromosomes on the meiotic spindle to ensure proper segregation at meiosis I. This process is usually monitored by one or more checkpoints that ensure that DSBs are repaired prior to the meiotic divisions. We show here that mutations in Drosophila genes required to process DSBs into crossovers delay two important steps in meiotic progression: a chromatin-remodeling process associated with DSB formation and the final steps of oocyte selection. Consistent with the hypothesis that a checkpoint has been activated, the delays in meiotic progression are suppressed by a mutation in the Drosophila homolog of pch2. The PCH2-dependent delays also require proteins thought to regulate the number and distribution of crossovers, suggesting that this checkpoint monitors events leading to crossover formation. Surprisingly, two lines of evidence suggest that the PCH2-dependent checkpoint does not reflect the accumulation of unprocessed recombination intermediates: the delays in meiotic progression do not depend on DSB formation or on mei-41, the Drosophila ATR homolog, which is required for the checkpoint response to unrepaired DSBs. We propose that the sites and/or conditions required to promote crossovers are established independently of DSB formation early in meiotic prophase. Furthermore, the PCH2-dependent checkpoint is activated by these events and pachytene progression is delayed until the DSB repair complexes required to generate crossovers are assembled. Interestingly, PCH2-dependent delays in prophase may allow additional crossovers to form.  相似文献   

16.
Loss of heterozygosity (LOH) at tumor suppressor loci is a major contributor to cancer initiation and progression. Both deletions and mitotic recombination can lead to LOH. Certain chromosomal loci known as common fragile sites are susceptible to DNA lesions under replication stress, and replication stress is prevalent in early stage tumor cells. There is extensive evidence for deletions stimulated by common fragile sites in tumors, but the role of fragile sites in stimulating mitotic recombination that causes LOH is unknown. Here, we have used the yeast model system to study the relationship between fragile site instability and mitotic recombination that results in LOH. A naturally occurring fragile site, FS2, exists on the right arm of yeast chromosome III, and we have analyzed LOH on this chromosome. We report that the frequency of spontaneous mitotic BIR events resulting in LOH on the right arm of yeast chromosome III is higher than expected, and that replication stress by low levels of polymerase alpha increases mitotic recombination 12-fold. Using single-nucleotide polymorphisms between the two chromosome III homologs, we mapped the locations of recombination events and determined that FS2 is a strong hotspot for both mitotic reciprocal crossovers and break-induced replication events under conditions of replication stress.  相似文献   

17.
A huge amount of data seem to confirm the adaptive value of inversions in Drosophila. The inhibition of recombination in heterokaryotypes mediated by inversions seems fundamental in maintaining their adaptive role. This study shows that recombination is highly suppressed in Drosophila subobscura because of chromosomal inversions, not only inside the inversions but also outside them. It seems that the region outside the inversion where recombination is inhibited is asymmetrical and independent of the inversion length. Despite the difficulty of crossovers taking place near inversion breakpoints, the only two recombination events detected inside inversions were located close to the breakpoint. Thus, selection could be largely responsible for the recombination reduction maintaining sets of adaptive alleles inside the inverted region. Heterokaryotype descendants were always in higher frequency than inbred or outbred homokaryotypes, regardless of the geographical origin of the chromosome, suggesting that chromosomes carrying the same arrangement, although with a different set of alleles for neutral markers, could be submitted to the same selection processes.  相似文献   

18.
Saturation mapping of a gene-rich recombination hot spot region in wheat   总被引:27,自引:0,他引:27  
Faris JD  Haen KM  Gill BS 《Genetics》2000,154(2):823-835
Physical mapping of wheat chromosomes has revealed small chromosome segments of high gene density and frequent recombination interspersed with relatively large regions of low gene density and infrequent recombination. We constructed a detailed genetic and physical map of one highly recombinant region on the long arm of chromosome 5B. This distally located region accounts for 4% of the physical size of the long arm and at least 30% of the recombination along the entire chromosome. Multiple crossovers occurred within this region, and the degree of recombination is at least 11-fold greater than the genomic average. Characteristics of the region such as gene order and frequency of recombination appear to be conserved throughout the evolution of the Triticeae. The region is more prone to chromosome breakage by gametocidal gene action than gene-poor regions, and evidence for genomic instability was implied by loss of gene collinearity for six loci among the homeologous regions. These data suggest that a unique level of chromatin organization exists within gene-rich recombination hot spots. The many agronomically important genes in this region should be accessible by positional cloning.  相似文献   

19.
Wide hybrids have been used in generating genetic maps of many plant species. In this study, genetic and physical mapping was performed on ph1b-induced recombinants of rye chromosome 2R in wheat (Triticum aestivum L.). All recombinants were single breakpoint translocations. Recombination 2RS-2BS was absent from the terminal and the pericentric regions and was distributed randomly along an intercalary segment covering approximately 65% of the arm's length. Such a distribution probably resulted from structural differences at the telomeres of 2RS and wheat 2BS arm that disrupted telomeric initiation of pairing. Recombination 2RL-2BL was confined to the terminal 25% of the arm's length. A genetic map of homoeologous recombination 2R-2B was generated using relative recombination frequencies and aligned with maps of chromosomes 2B and 2R based on homologous recombination. The alignment of the short arms showed a shift of homoeologous recombination toward the centromere. On the long arms, the distribution of homoeologous recombination was the same as that of homologous recombination in the distal halves of the maps, but the absence of multiple crossovers in homoeologous recombination eliminated the proximal half of the map. The results confirm that homoeologous recombination in wheat is based on single exchanges per arm, indicate that the distribution of these single homoeologous exchanges is similar to the distribution of the first (distal) crossovers in homologues, and suggest that successive crossovers in an arm generate specific portions of genetic maps. A difference in the distribution of recombination between the short and long arms indicates that the distal crossover localization in wheat is not dictated by a restricted distribution of DNA sequences capable of recombination but by the pattern of pairing initiation, and that can be affected by structural differences. Restriction of homoeologous recombination to single crossovers in the distal part of the genetic map complicates chromosome engineering efforts targeting genes in the proximal map regions.  相似文献   

20.
Stimulation of Meiotic Recombination in Yeast by an Ars Element   总被引:3,自引:0,他引:3       下载免费PDF全文
In a previous study, meiotic recombination events were monitored in the 22-kb LEU2 to CEN3 region of chromosome III of Saccharomyces cerevisiae. One region (the hotspot) was shown to have an enhanced level of both gene conversion events and reciprocal crossovers, whereas a second region (the coldspot) was shown to have a depressed level of both types of recombination events. In this study we have analyzed the effects of a replication origin, ARS307, located about 2 kb centromere proximal to the hotspot region, on the distribution of meiotic recombination events. We find that a deletion of this origin results in a reduction of both gene conversions and reciprocal crossovers in the hotspot region, and that a 200-bp fragment of this ARS element can stimulate both types of recombination events when relocated to the coldspot region. Although the magnitude of stimulation of these events is similar in both orientations, whether the ARS is functional or not, the distribution of events is dependent upon the orientation of the element.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号