首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lu49888, a photoaffinity analog of verapamil, was used to identify specific binding sites for phenylalkylamines of calcium channels present in rabbit skeletal muscle microsomes. Direct binding equilibrium measurements and displacement curves of Lu49888 by its non-radioactive analog yielded an apparent single class of binding sites with Kd and Bmax values of 16.5 nM and 7.5 pmol/mg respectively. Lu49888 was specifically incorporated into three proteins of apparently 165 kDa, and 33 kDa. Incorporation into the 55-kDa protein was blocked by 10--50-fold higher concentrations of unlabeled phenylalkylamines compared to incorporation into the 165-kDa protein, suggesting that the 165-kDa and 55-kDa proteins contain a high and a low-affinity verapamil-binding site respectively. The photoaffinity-labeled proteins were solubilized by 1% digitonin or 1% Chaps in roughly equal amounts. The 165-kDa protein bound to wheat-germ-agglutinin(WGA)--Sepharose and sedimented in sucrose density gradients with the same constant as the purified dihydropyridine receptor, which has been reconstituted to a functional calcium channel. The 55-kDa membrane protein did not bind to the WGA-Sepharose column and sedimented in sucrose density gradients with a lower s value than the 165-kDa protein. The 165-kDa but not the 55-kDa membrane protein was specifically labeled by azidopine, the photoaffinity analogue of dihydropyridines. The 55-kDa protein of the purified dihydropyridine receptor was not significantly labeled by Lu49888 showing that the 55-kDa protein of the membrane is unrelated to the purified high-affinity dihydropyridine receptor.  相似文献   

2.
The dihydropyridine receptor purified from rabbit skeletal muscle contains three proteins of 165, 55 and 32 kDa. cAMP kinase and protein kinase C phosphorylate the 165-kDa and the 55-kDa proteins. At identical concentrations of each protein kinase, cAMP kinase phosphorylates the 165-kDa protein faster than the 55-kDa protein. Protein kinase C phosphorylates preferentially the 55-kDa protein. cAMP kinase incorporates up to 1.6 mol phosphate/mol protein into the 165-kDa protein and 1 mol/mol into the 55-kDa protein upon prolonged incubation. At a physiological concentration of cAMP kinase 1 mol phosphate is incorporated/mol 165-kDa protein within 10 min, suggesting a physiological role of this phosphorylation. Protein kinase C incorporates up to 1 mol phosphate/mol into the 55-kDa protein and less than 1 mol/mol into the 165-kDa protein. Tryptic phosphopeptide analysis reveals that cAMP kinase phosphorylates two distinct peptides in the 165-kDa protein, whereas protein kinase C phosphorylates a single peptide in the 165-kDa protein. cAMP kinase and protein kinase C phosphorylate three and two peptides in the 55-kDa protein, respectively. Mixtures of the tryptic phosphopeptides derived from the 165-kDa and 55-kDa proteins elute according to the composite of the two elution profiles. These results suggest that the 165-kDa protein, which contains the binding sites for each class of calcium channel blockers and the basic calcium-conducting structure, is a specific substrate for cAMP kinase. The 55-kDa protein apparently contains sites preferentially phosphorylated by protein kinase C.  相似文献   

3.
Five protein kinases were used to study the phosphorylation pattern of the purified skeletal muscle receptor for calcium-channel blockers (CaCB). cAMP kinase, cGMP kinase, protein kinase C, calmodulin kinase II and casein kinase II phosphorylated the 165-kDa and the 55-kDa proteins of the purified CaCB receptor. The 130/28-kDa and the 32-kDa protein of the receptor are not phosphorylated by these protein kinases. Among these protein kinases only cAMP kinase phosphorylated the 165-kDa subunit with 2-3-fold higher initial rate than the 55-kDa subunit. Casein kinase II phosphorylated the 165-kDa and the 55-kDa protein of the receptor with comparable rates. cGMP kinase, protein kinase C and calmodulin kinase II phosphorylated preferentially the 55-kDa protein. The 55-kDa protein is phosphorylated 50 times faster by cGMP kinase and protein kinase C than by calmodulin kinase II or casein kinase II and about 10 times faster by these enzymes than by cAMP kinase. Two-dimensional peptide maps of the 165-kDa subunit yielded a total of 11 phosphopeptides. Four or five peptides are phosphorylated specifically by cAMP kinase, cGMP kinase, casein kinase II and protein kinase C, whereas the other peptides are modified by several kinases. The same kinases phosphorylate 11 peptides in the 55-kDa subunit. Again, some of these peptides are modified specifically by each kinase. These results suggest that the 165-kDa and the 55-kDa subunit contain specific phosphorylation sites for cAMP kinase, cGMP kinase, casein kinase II and protein kinase C. Phosphorylation of these sites may be relevant for the in vivo function of the CaCB receptor.  相似文献   

4.
The dihydropyridine-sensitive voltage-dependent Ca2+ channel from cardiac tissue was purified 900-fold using DEAE-Sephadex A-25, concanavalin A-Sepharose, and wheat germ agglutinin-Sepharose. The purified preparation was highly enriched in a peptide of 140,000 daltons when electrophoresed on sodium dodecyl sulfate gels in the presence of 2-mercaptoethanol, or 170,000 when electrophoresed in the presence of iodoacetamide. Polyclonal antibodies raised against the purified subunits of the rabbit skeletal muscle Ca2+ channel recognized the 170-kDa protein in preparations electrophoresed under nonreducing conditions, and the large peptide of 140 kDa and smaller peptides of 29-32 kDa in preparations analyzed under reducing conditions. Monoclonal antibodies, which were raised against the native Ca2+ channel from skeletal muscle, immunoprecipitated [3H]PN 200-110 binding activity from solubilized cardiac membranes and immunoprecipitated 125I-labeled peptides (from the purified cardiac Ca2+ channel preparation) which migrated as a single species of 170 kDa under nonreducing conditions, or as 140, 32, and 29 kDa under reducing conditions. The results show that the purified cardiac Ca2+ channel, like that previously purified from skeletal muscle, consists of a major component of 170 kDa which is comprised of a 140-kDa peptide linked by disulfide bonds to smaller peptides of 32-29 kDa. Peptide maps of the 140-kDa peptide purified from cardiac and skeletal muscle preparations were strikingly similar, suggesting a high degree of homology in their primary sequence.  相似文献   

5.
We have purified putative L-type Ca2+ channels from chick heart by virtue of their associated high affinity receptors for the Ca2+ channel effectors, dihydropyridines (DHPs), and phenylalkylamines (PAAs). A peptide of 185,000-190,000 daltons was found to comigrate with the peak of DHP binding activity during purification through two successive cycles of lectin affinity chromatography and sucrose density gradient centrifugation. A previously described peptide of 140,000 daltons, whose Mr was increased to approximately 180,000 under nonreducing conditions, also copurified with the 185-kDa peptide and dihydropyridine binding activity. When cardiac membranes were photolabeled with either the dihydropyridine [3H]azidopine or the PAA [3H]azidopamil prior to purification, a single, specifically labeled component of 185,000-190,000 daltons was present in the purified fractions. The properties of this 185-kDa cardiac DHP/PAA receptor were compared to the smaller 165-kDa DHP/PAA receptor previously purified from skeletal muscle. Antibodies raised against the 165-kDa skeletal muscle DHP/PAA receptor reacted with both rabbit and chick skeletal muscle receptors, but only poorly recognized, if at all, the cardiac 185-190 kDa component. The 185-kDa peptide present in the purified fractions obtained from cardiac muscle did not undergo substantial phosphorylation by cAMP-dependent protein kinase, while the purified 165-kDa peptide from rabbit and chick skeletal muscle was a good substrate for this kinase. The results show that the DHP and PAA receptors in cardiac muscle are contained in a 185-190-kDa peptide that is significantly larger than, and structurally and immunologically different from, it skeletal muscle counterpart.  相似文献   

6.
The cardiac receptor for calcium channel blockers was purified from bovine microsomal membranes which contained 235 +/- 33 fmol nimodipine-binding sites/mg protein (mean +/- SEM of nine preparations). To identify the receptor during the purification 20% of its binding sites were prelabeled with (+)[3H]PN200-110. The receptor was solubilized with 0.6% digitonin and was purified to a specific density of 157 pmol/mg using a combination of ion-exchange, wheat-germ-agglutinin-Sepharose chromatography and sucrose density gradient centrifugation. In the last sucrose gradient bound (+)[3H]PN200-110 comigrated with a 195-kDa protein. ( +/-)[3H]Azidopine and [3H]ludopamil, the photoaffinity ligands for the dihydropyridine and phenylalkylamine-binding site of the calcium channel, were incorporated specifically into the 195-kDa protein. These data indicate that the bovine cardiac receptor for calcium channel blockers is a 195-kDa protein. Its molecular mass suggests that the bovine cardiac receptor differs considerably from the rabbit skeletal muscle receptor protein for calcium channel blockers.  相似文献   

7.
Dihydropyridine-sensitive Ca2+ channels exist in many different types of cells and are believed to be regulated by various protein phosphorylation and dephosphorylation reactions. The present study concerns the phosphorylation of a putative component of dihydropyridine-sensitive Ca2+ channels by the calcium and phospholipid-dependent protein kinase, protein kinase C. A skeletal muscle peptide of 165 kDa, which is known to contain receptors for dihydropyridines, phenylalkylamines, and other Ca2+ channel effectors, was found to be an efficient substrate for protein kinase C when the peptide was phosphorylated in its membrane-bound state. Protein kinase C incorporated 1.5-2.0 mol of phosphate/mol of peptide within 2 min into the 165-kDa peptide in incubations carried out at 37 degrees C. In contrast to the membrane-bound peptide, the purified 165-kDa peptide in detergent solution was phosphorylated to a markedly less extent than its membrane-bound counterpart; less than 0.1 mol of phosphate/mol of peptide was incorporated. Preincubation of the membranes with several types of drugs known to be Ca2+ channel activators or inhibitors had no specific effects on the rate and/or extent of phosphorylation of the 165-kDa peptide by protein kinase C. The phosphorylation of the membrane-bound 165-kDa peptide by protein kinase C was compared to that catalyzed by cAMP-dependent protein kinase and was found to be not additive. Prior phosphorylation of the 165-kDa peptide by cAMP-dependent protein kinase prevented subsequent phosphorylation of the peptide by protein kinase C. Phosphoamino acid analysis indicated that protein kinase C phosphorylated the 165-kDa peptide at both serine and threonine residues. Phosphopeptide mapping experiments showed that protein kinase C phosphorylated one unique site in the 165-kDa peptide, and, in addition, other sites that were phosphorylated by either cAMP-dependent protein kinase or a multifunctional Ca2+/calmodulin-dependent protein kinase. The results suggest that the 165-kDa dihydropyridine/phenylalkylamine receptor could serve as a physiological substrate of protein kinase C in intact cells. It is therefore possible that the regulation of dihydropyridine-sensitive Ca2+ channels by activators of protein kinase C may occur at the level of this peptide.  相似文献   

8.
The Src homology (SH)2 domain-containing protein-tyrosine phosphatase SHP-1 is tyrosine phosphorylated in platelets in response to the glycoprotein VI (GPVI)-selective agonist collagen-related peptide (CRP), collagen, and thrombin. Two major unidentified tyrosine-phosphorylated bands of 28 and 32 kDa and a minor band of 130 kDa coprecipitate with SHP-1 in response to all three agonists. Additionally, tyrosine-phosphorylated proteins of 50-55 and 70 kDa specifically associate with SHP-1 following stimulation by CRP and collagen. The tyrosine kinases Lyn, which exists as a 53 and 56-kDa doublet, and Syk were identified as major components of these bands, respectively. Kinase assays on SHP-1 immunoprecipitates performed in the presence of the Src family kinase inhibitor PP1 confirmed the presence of a Src kinase in CRP- but not thrombin-stimulated cells. Lyn, Syk, and SLP-76, along with tyrosine-phosphorylated 28-, 32-, and 130-kDa proteins, bound selectively to a glutathione S-transferase protein encoding the SH2 domains of SHP-1, suggesting that this is the major site of interaction. Platelets isolated from motheaten viable mice (mev/mev) revealed the presence of a heavily tyrosine-phosphorylated 26-kDa protein that was not found in wild-type platelets. CRP-stimulated mev/mev platelets manifested hypophosphorylation of Syk and Lyn and reduced P-selectin expression relative to controls. These observations provide evidence of a functional role for SHP-1 in platelet activation by GPVI.  相似文献   

9.
Partially purified fractions of dihydropyridine and phenylalkylamine receptors associated with voltage-dependent calcium channels in rabbit skeletal muscle were found to contain two glycopeptides of similar molecular weight. A peptide of approximately 165 kDa was photoaffinity labelled with an arylazido-phenylalkylamine Ca channel inhibitor and also was phosphorylated with cAMP-dependent protein kinase. Another peptide of 170 kDa could be distinguished from the 165 kDa peptide by peptide mapping and differences in electrophoretic mobility. The results suggest that the 165 kDa peptide contains the sites responsible for regulation of calcium channel activity by calcium channel inhibitors as well as by neurotransmitters that regulate its activity in a cAMP-dependent manner.  相似文献   

10.
Five major polypeptides are found in immunoaffinity-purified calf thymus DNA polymerase-DNA primase complex: 185, 160, 68, 55, and 48 kDa. Individual polypeptides purified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis were used to produce antibodies in rabbits to aid in identifying the relationships between these polypeptides by immunoblotting and enzyme neutralization procedures. Immunoblot analyses showed that the 160-kDa peptide is derived from the 185-kDa peptide and the 48-kDa peptide is derived from the 68-kDa peptide while antibodies to the 55-kDa peptide do not cross-react with other peptides found in the complex. Direct enzyme neutralization studies demonstrated that antibodies to 185- and 160-kDa peptides inhibit DNA polymerase activity in the complex, confirming earlier suggestions that these peptides are the catalytic peptides for DNA polymerase. DNA primase activity in the complex is inhibited by antibodies to 68-, 55-, and 48-kDa peptides and to a lesser extent by antibodies to the 160-kDa peptide. Free DNA primase isolated from the complex was estimated to have a native molecular weight of about 110,000. The 55- and 48-kDa peptides are found to be associated with the free primase activity. Rabbit antibodies to both 55- and 48-kDa peptides are inhibitory to this primase activity. From these results we suggest that the native calf thymus DNA polymerase-DNA primase complex contains only three unique peptides with the 185-kDa peptide as the catalytic peptide of DNA polymerase and the 55- and 68-kDa peptides constituting the primase peptides. A model illustrating the roles of these peptides in initiation and replication of DNA is presented.  相似文献   

11.
Elastin binds to a multifunctional 67-kilodalton peripheral membrane protein   总被引:11,自引:0,他引:11  
Elastin binding proteins from plasma membranes of elastin-producing cells were isolated by affinity chromatography on immobilized elastin peptides. Three proteins of 67, 61, and 55 kDa were released from the elastin resin by guanidine/detergent, soluble elastin peptides, synthetic peptide VGVAPG, or galactoside sugars, but not by synthetic RGD-containing peptide or sugars not related to galactose. All three proteins incorporated radiolabel upon extracellular iodination and contained [3H]leucine following metabolic labeling, confirming that each is a synthetic product of the cell. The 67-kDa protein could be released from the cell surface with lactose-containing buffers, whereas solubilization of the 61- and 55-kDa components required the presence of detergent. Although all three proteins were retained on elastin affinity columns, the 61- and 55-kDa components were retained only in the presence of 67-kDa protein, suggesting that the 67-kDa protein binds elastin and the 61- and 55-kDa proteins bind to the 67-kDa protein. We propose that the 67-, 61-, and 55-kDa proteins constitute an elastin-receptor complex that forms a transmembrane link between the extracellular matrix and the intracellular compartment.  相似文献   

12.
Sarcolemmal vesicles were prepared from bovine cardiac muscle by differential and discontinuous sucrose density gradient centrifugation. Na+/K+-ATPase was purified 33-fold to a specific activity of 53 +/- 0.5 (12) mumol Pi X mg-1 X h-1, binding sites for strophantin 20-fold to a density of 56.3 +/- 5.3 (14) pmol/mg and that for the calcium antagonist nitrendipine 5.5-fold to a density of 0.72 +/- 0.07 (6) pmol/mg. The specific activity of the Na+/Ca2+ exchanger was 61.1 +/- 3.7 (6) nmol/mg. The vesicles had an intravesicular volume of 20 +/- 4 (4) microliter/mg and 56.9 +/- 6 (4)% of the vesicles were right-side-out oriented. Several peptides of the purified membranes were phosphorylated in the presence of Mg . ATP and EGTA. Most of the radioactive phosphate was incorporated into a peptide with an apparent molecular mass of 22 kDa. Denaturation of the membranes at 100 degrees C changed the mobility of this peptide to 15 kDa and 11 kDa. This peptide could not be distinguished from a sarcoplasmic reticulum peptide of similar molecular mass. The phosphorylation of the sarcolemmal peptide was stimulated by Ca2+/calmodulin, cAMP and the catalytic subunit of cAMP-dependent protein kinase. A comparison of the phosphorylation of sarcolemmal membranes with that of sarcoplasmic reticulum showed that Ca2+/calmodulin stimulated in each membrane, the phosphorylation of the 22-kDa peptide and a 44-kDa peptide, and in the sarcoplasmic reticulum the phosphorylation of an additional peptide of 55-kDa. Ca2+/calmodulin-dependent phosphorylation of a 55-kDa peptide could not be demonstrated in sarcolemma, regardless if sarcolemmal membranes were incubated together with sarcoplasmic reticulum or if the phosphorylation was carried out in the presence of purified cardiac myosin light chain kinase or phosphorylase kinase. 'Depolarization' induced Ca2+ uptake which was measured according to Bartschat, D.K., Cyr, D.L. and Lindenmayer, G.E. [(1980) J. Biol. Chem. 255, 10044-10047] was 5 nmol/mg protein. This uptake was not enhanced after preincubation of the vesicles with Mg . ATP or Mg . ATP and cAMP-dependent protein kinase. The value of 5 nmol/mg protein is in agreement with the theoretical amount of Ca2+ which can be accumulated by the bovine cardiac sarcolemma in the absence of a driving force other than the Ca2+ gradient. The potassium-stimulated Ca2+ uptake was not blocked by the organic Ca2+ channel blockers. Prolonged incubation of Mg . ATP with sarcolemmal vesicles in the presence of various ATPase inhibitors led to the hydrolysis of ATP. The liberated phosphate precipitated with Ca2+ in the presence of LaCl3. These precipitates amounted to an apparent Ca2+ uptake ranging from 50 to over 1000 nmol/mg. The results suggest that potassium-stimulated Ca2+ uptake of bovine cardiac sarcolemmal vesicles is not enhanced in the presence of ATP or by phosphorylation of a 22-kDa peptide.  相似文献   

13.
C M O'Callahan  M M Hosey 《Biochemistry》1988,27(16):6071-6077
Evidence from electrophysiological and ion flux studies has established that dihydropyridine-sensitive calcium channels are subject to regulation by neurotransmitter-mediated phosphorylation and dephosphorylation reactions. In the present study, we have further characterized the phosphorylation by cAMP-dependent protein kinase and a multifunctional Ca/calmodulin-dependent protein kinase of the membrane-associated form of the 165-kDa polypeptide identified as the skeletal muscle dihydropyridine receptor. The initial rates of phosphorylation of the 165-kDa peptide by both protein kinases were found to be relatively good compared to the rates of phosphorylation of established substrates of the enzymes. Phosphorylation of the 165-kDa peptide by both protein kinases was additive. Prior phosphorylation by either one of the kinases alone did not preclude phosphorylation by the second kinase. The cAMP-dependent protein kinase phosphorylated the 165-kDa peptide preferentially at serine residues, although a small amount of phosphothreonine was also formed. In contrast, after phosphorylation of the 165-kDa peptide by the Ca/calmodulin-dependent protein kinase, slightly more phosphothreonine than phosphoserine was recovered. Phosphopeptide mapping indicated that the two kinases phosphorylated the peptide at distinct as well as similar sites. Notably, one major site phosphorylated by the cAMP-dependent protein kinase was not phosphorylated by the Ca/calmodulin-dependent protein kinase, while other sites were phosphorylated to a high degree by the Ca/calmodulin-dependent protein kinase, but to a much lesser degree by the cAMP-dependent protein kinase. The results show that the 165-kDa dihydropyridine receptor from skeletal muscle can be multiply phosphorylated at distinct sites by the cAMP- and Ca/calmodulin-dependent protein kinases. As the 165-kDa peptide may be the major functional unit of the dihydropyridine-sensitive Ca channel, the results suggest that the phosphorylation-dependent modulation of Ca channel activity by neurotransmitters may involve phosphorylation of the 165-kDa peptide at multiple sites.  相似文献   

14.
A monoclonal antibody designated as MAC-L1 immunoprecipitated [3H]PN200-110-labeled calcium channels of chick cardiac and skeletal muscle. On specific immunoprecipitation of 125I-labeled proteins, two large polypeptides (Mr 197,000 and 139,000 for heart, and 172,000 and 135,000 for skeletal muscle, under reducing conditions) were identified as the major components of these channels. Both polypeptides were found to exist together as a complex in 1% digitonin, but to become separated from each other in 1% Triton X-100. The 197 and 172 kDa peptides of cardiac and skeletal muscles, respectively, were photolabeled with [3H]azidopine. Under nonreducing conditions, the 139 kDa polypeptide of heart and the 135 kDa polypeptide of skeletal muscle took on larger molecular weights of 192,000 and 190,000, respectively. The 139 kDa but not the 197 kDa component of the heart was capable of binding to wheat germ agglutinin-Sepharose. Among the polypeptides specifically precipitated by MAC-L1, a 165 kDa peptide of skeletal muscle was phosphorylated by cAMP-dependent protein kinase. In contrast, a minor 99 kDa polypeptide, but not the major 197 kDa polypeptide, of the heart was phosphorylated by this kinase. These results suggest that the dihydropyridine-sensitive cardiac calcium channel has alpha 1 and alpha 2 subunits that are homologous but not identical to those of the skeletal muscle calcium channel.  相似文献   

15.
The tritiated arylazido phenylalkylamine (-)-5-[(3-azidophenethyl)[N-methyl-3H]methylamino]-2-(3,4, 5-trimethoxyphenyl)-2-isopropylvaleronitrile was synthesized and used to photoaffinity label the phenylalkylamine receptor of the membrane-bound and purified calcium channel from guinea-pig skeletal muscle transverse-tubule membranes. The photoaffinity ligand binds reversibly to partially purified membranes with a Kd of 2.0 +/- 0.5 nM and a Bmax of 17.0 +/- 0.9 pmol/mg protein. Binding is stereospecifically regulated by all three classes of organic calcium channel drugs. A 155 kDa band was specifically photolabelled in transverse-tubule particulate and purified calcium channel preparations after ultraviolet irradiation. Additional minor labelled polypeptides (92, 60 and 33 kDa) were only observed in membranes. The heterogeneous 155 kDa region of the purified channel was resolved into two distinct silver-stained polypeptides after reduction (i.e. 155 and 135 kDa). Only the 155 kDa polypeptide carries the photoaffinity label and it is concluded that the 135 kDa polypeptide (which migrates as a 165 kDa band under alkylating conditions) is not a high-affinity drug receptor carrying subunit of the skeletal muscle transverse-tubule L-type calcium channel.  相似文献   

16.
G Mocz  J Farias  I R Gibbons 《Biochemistry》1991,30(29):7225-7231
The stability of different regions of the beta heavy chain of dynein has been investigated by examining the perturbing effects of methanol, temperature, salt, and nucleotide on the pattern of tryptic digestion. In standard low-salt medium, tryptic proteolysis cleaves the beta heavy chain into three principal polypeptides of 130, 215, and 110 kDa, with the 215-kDa central peptide containing the ATP binding site as well as the vanadate and iron photocleavage sites (Mocz, G., Tang, W.-J. Y., & Gibbons, I. R. (1988) J. Cell Biol. 106, 1607-1614). The 130-kDa peptide is the most stable, and its susceptibility to trypsin appears unaffected by methanol concentrations up to 25% or temperatures up to 45 degrees C, although a 5-kDa region at one end is lost in the presence of salt (greater than 20 mM NaCl). The 215-kDa tryptic peptide contains two regions of different stability: its 123-kDa portion adjoining the 130-kDa peptide is destabilized by mild heat (37 degrees C) or by 25% methanol and becomes digested away to leave the more stable region of 92 kDa that is located toward the 110-kDa peptide and retains the V1 photocleavage site and most of the ATP binding site. The 110-kDa peptide is the least stable and at 37 degrees C, or in the presence of low concentrations of methanol or salt, it rapidly digested to small peptides. The presence of ATP during digestion of the beta heavy chain retards the formation of the 130- and 215-kDa peptides and also protects the 215-kDa peptide from further digestion at 37 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
In mixed membrane vesicles prepared from human platelets, the presence of two distinct calcium pump enzymes (molecular mass 100 and 97 kDa) was demonstrated by 32P autoradiography, immunoblotting, and thapsigargin inhibition. Both the 100- and 97-kDa membrane proteins showed calcium-dependent phosphoenzyme formation and reacted with a polyclonal anti-sarcoplasmic reticulum calcium pump antiserum, while only the 100-kDa protein reacted with the antiserum specific for the sarco-endoplasmic reticulum-type calcium transport ATPase 2b isoform. Thapsigargin, inhibiting active calcium transport in platelet membrane vesicles, predominantly blocked the phosphoenzyme formation of the 100-kDa isoform and of the tryptic calcium pump fragments of 55 and 35 kDa, while lanthanum specifically increased the phosphoenzyme formation of the 97-kDa enzyme and of the tryptic fragment of 80 kDa. These results indicate the presence of the sarco-endoplasmic reticulum-type calcium transport ATPase 2b isoform and of a yet unidentified, 97-kDa calcium pump protein in human platelet membranes.  相似文献   

18.
Previous purification studies of the 1,4-dihydropyridine receptor associated with the calcium channel of rabbit skeletal muscle had shown that it is composed of a large glycoprotein of Mr 140,000-145,000 associated with a smaller component of Mr 32,000-34,000. Specific antisera have now been prepared against the larger component (anti-140 serum) and the smaller one (anti-32 serum). The specificity of these two antisera has been analyzed by immunoblot assays with microsomal preparations of rabbit skeletal muscle. Under disulfide-reducing conditions the anti-140 serum specifically labeled a polypeptide of Mr 140,000 while the anti-32 serum labeled three polypeptides of Mr 32,000, 29,000, and 26,000. Under nonreducing conditions both the anti-140 and the anti-32 sera specifically recognized a single large polypeptide of Mr 170,000. The same type of approach showed that the dihydropyridine receptor in cardiac and smooth muscles had a polypeptide composition similar to that found in skeletal muscle with a large polypeptide of Mr 170,000-176,000 made of two different chains of about Mr 140,000 and 34,000-32,000 associated by disulfide bridges.  相似文献   

19.
The major outer membrane protein of Legionella pneumophila exhibits an apparent molecular mass of 100 kDa. Previous studies revealed the oligomer to be composed of 28- and 31-kDa subunits; the latter subunit is covalently bound to peptidoglycan. These proteins exhibit cross-reactivity with polyclonal anti-31-kDa protein serum. In this study, we present evidence to confirm that the 31-kDa subunit is a 28-kDa subunit containing a bound fragment of peptidoglycan. Peptide maps of purified proteins were generated following cyanogen bromide cleavage or proteolysis with staphylococcal V8 protease. A comparison of the banding patterns resulting from sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed a common pattern. Selected peptide fragments were sequenced on a gas phase microsequencer, and the sequence was compared with the sequence obtained for the 28-kDa protein. While the amino terminus of the 31-kDa protein was blocked, peptide fragments generated by cyanogen bromide treatment exhibited a sequence identical to that of the amino terminus of the 28-kDa protein, but beginning at amino acid four (glycine), which is preceded by methionine at the third position. This sequence, (Gly-Thr-Met)-Gly-Pro-Val-Trp-Thr-Pro-Gly-Asn ... , confirms that these proteins have a common amino terminus. An oligonucleotide synthesized from the codons of the common N-terminal amino acid sequence was used to establish by Southern and Northern (RNA) blot analyses that a single gene coded for both proteins. With regard to the putative porin structure, we have identified two major bands at 70 kDa and at approximately 120 kDa by nonreducing SDS-PAGE. The former may represent the typical trimeric motif, while the latter may represent either a double trimer or an aggregate. Analysis of these two forms by two-dimensional SDS-PAGE (first dimensions, nonreducing; second dimensions, reducing) established that both were composed of 31- and 28-kDa subunits cross-linked via interchain disulfide bonds. These studies confirm that the novel L. pneumophila major outer protein is covalently bound to peptidoglycan via a modified 28-kDa subunit (31-kDa anchor protein) and cross-linked to other 28-kDa subunits via interchain disulfide bonds.  相似文献   

20.
An actin polymerization-inhibiting protein, occurring in crude preparations of vinculin from chicken gizzard, has been found to be heterogeneous. The molecular masses of the polymerization-inhibiting peptides have been reported to range from 20 kDa to 80 kDa [Schr?er, E. & Wegner, A (1985) Eur. J. Biochem. 153, 515-520]. In this paper, a 21-kDa peptide was isolated from the bulk of the other peptides by gel chromatography. The 21-kDa peptide was identified as a polymerization-inhibiting peptide by its ability to retard nucleated actin polymerization and to bind polymeric actin when it was blotted onto nitrocellulose. Antiserum raised to the 21-kDa peptide was found to react with almost all peptides of the blotted heterogeneous polymerization-inhibiting protein. The same peptides which reacted with antiserum cosedimented with polymeric actin. The major peptides of the blotted polymerization-inhibiting protein bound polymeric actin. The largest peptide which reacted with antiserum and cosedimented with polymeric actin had a molecular mass of 85 kDa. The results suggest that the preparation of polymerization-inhibiting protein contains mainly polymerization-inhibiting peptides and only some contaminants, and that all the polymerization-inhibiting peptides are proteolytic fragments stemming from a common precursor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号