首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pugh EN 《Neuron》2006,51(4):391-393
Regulators of G protein signaling (RGS) constitute a family of proteins that bind specifically to the activated alpha subunits of G proteins (Galpha-GTP), acting as GTPase activating proteins, or GAPs, for the rate of GTP hydrolysis. In this issue of Neuron, Krispel et al. resolve a long-standing puzzle in phototransduction, establishing that RGS9 "GAPping" of G(t)alpha-GTP is the molecular mechanism underlying the dominant recovery time constant of mouse rod photoreceptors and that a precise level of expression of RGS9 is required for normal photoresponse timing.  相似文献   

2.
RGS2, a Regulators of G-protein Signaling family member, regulates signaling activities of G-proteins, and RGS2 itself is controlled in part by regulation of its expression. This investigation extended previous studies of the regulation of RGS2 expression by examining the effects of stress, differentiation, and signaling activities on RGS2 mRNA level in human neuroblastoma SH-SY5Y cells. Cell stress induced by heat shock rapidly and transiently increased RGS2 mRNA levels, whereas differentiation to a neuronal phenotype reduced basal RGS2 mRNA levels by 50%. RGS2 mRNA levels were increased in differentiated cells by heat shock, carbachol, and activation of protein kinase C. After transient transfection of GFP-tagged RGS2, a predominant nuclear localization was observed by confocal microscopy. Thus, RGS2 expression is regulated by stress and differentiation, as well as by second messenger signaling, and transfected GFP-RGS2 is predominantly nuclear.  相似文献   

3.
Regulators of G-protein signaling (RGS proteins) comprise over 20 different proteins that have been classified into subfamilies on the basis of structural homology. The RZ/A family includes RGSZ2/RGS17 (the most recently discovered member of this family), GAIP/RGS19, RGSZ1/RGS20, and the RGSZ1 variant Ret-RGS. The RGS proteins are GTPase activating proteins (GAPs) that turn off G-proteins and thus negatively regulate the signaling of G-protein coupled receptors (GPCRs). In addition, some RZ/A family RGS proteins are able to modify signaling through interactions with adapter proteins (such as GIPC and GIPN). The RZ/A proteins have a simple structure that includes a conserved amino-terminal cysteine string motif, RGS box and short carboxyl-terminal, which confer GAP activity (RGS box) and the ability to undergo covalent modification and interact with other proteins (amino-terminal). This review focuses on RGS17 and its RZ/A sibling proteins and discusses the similarities and differences among these proteins in terms of their palmitoylation, phosphorylation, intracellular localization and interactions with GPCRs and adapter proteins. The specificity of these RGS protein for different Galpha proteins and receptors, and the consequences for signaling are discussed. The tissue and brain distribution, and the evolving understanding of the roles of this family of RGS proteins in receptor signaling and brain function are highlighted.  相似文献   

4.
A member of the RGS (regulators of G protein signaling) family, RGS9-2 is a critical regulator of G protein signaling pathways that control locomotion and reward signaling in the brain. RGS9-2 is specifically expressed in striatal neurons where it forms complexes with its newly discovered partner, R7BP (R7 family binding protein). Interaction with R7BP is important for the subcellular targeting of RGS9-2, which in native neurons is found in plasma membrane and its specializations, postsynaptic densities. Here we report that R7BP plays an additional important role in determining proteolytic stability of RGS9-2. We have found that co-expression with R7BP dramatically elevates the levels of RGS9-2 and its constitutive subunit, Gbeta5. Measurement of the RGS9-2 degradation kinetics in cells indicates that R7BP markedly reduces the rate of RGS9-2.Gbeta5 proteolysis. Lentivirus-mediated RNA interference knockdown of the R7BP expression in native striatal neurons results in the corresponding decrease in RGS9-2 protein levels. Analysis of the molecular determinants that mediate R7BP/RGS9-2 binding to result in proteolytic protection have identified that the binding site for R7BP in RGS proteins is formed by pairing of the DEP (Disheveled, EGL-10, Pleckstrin) domain with the R7H (R7 homology), a domain of previously unknown function that interacts with four putative alpha-helices of the R7BP core. These findings provide a mechanism for the regulation of the RGS9 protein stability in the striatal neurons.  相似文献   

5.
RGS (regulator of G protein signaling) proteins are GTPase-activating proteins that attenuate signaling by heterotrimeric G proteins. Whether the biological functions of RGS proteins are governed by quantitative differences in GTPase-activating protein activity toward various classes of Galpha subunits and how G protein selectivity is achieved by differences in RGS protein structure are largely unknown. Here we provide evidence indicating that the function of RGS2 is determined in part by differences in potency toward G(q) versus G(i) family members. RGS2 was 5-fold more potent than RGS4 as an inhibitor of G(q)-stimulated phosphoinositide hydrolysis in vivo. In contrast, RGS4 was 8-fold more potent than RGS2 as an inhibitor of G(i)-mediated signaling. RGS2 mutants were identified that display increased potency toward G(i) family members without affecting potency toward G(q). These mutations and the structure of RGS4-G(i)alpha(1) complexes suggest that RGS2-G(i)alpha interaction is unfavorable in part because of the geometry of the switch I binding pocket of RGS2 and a potential interaction between the alpha8-alpha9 loop of RGS2 and alphaA of G(i) class alpha subunits. The results suggest that the function of RGS2 relative to other RGS family members is governed in part by quantitative differences in activity toward different classes of Galpha subunits.  相似文献   

6.
Regulators of G protein signaling (RGS) proteins compose a highly diverse protein family best known for inhibition of G protein signaling by enhancing GTP hydrolysis by Galpha subunits. Little is known about the function of endogenous RGS proteins. In this study, we used synthetic ribozymes targeted to RGS2, RGS3, RGS5, and RGS7 to assess their function. After demonstrating the specificity of in vitro cleavage by the RGS ribozymes, rat aorta smooth muscle cells were used for transient transfection with the RGS-specific ribozymes. RGS3 and RGS5 ribozymes differentially enhanced carbachol- and angiotensin II-induced MAP kinase activity, respectively, whereas RGS2 and RGS7 ribozymes had no effect. This enhancement was pertussis toxin-insensitive. Thus RGS3 is a negative modulator of muscarinic m3 receptor signaling, and RGS5 is a negative modulator of angiotensin AT1a receptor signaling through G(q/11). Also, RGS5 ribozyme enhanced angiotensin-stimulated inositol phosphate release. These results indicate the feasibility of using the ribozyme technology to determine the functional role of endogenous RGS proteins in signaling pathways and to define novel receptor-selective roles of endogenous RGS3 and RGS5 in modulating MAP kinase responses to either carbachol or angiotensin.  相似文献   

7.
The G-protein gamma-subunit-like (GGL) domain present within a subfamily of RGS proteins binds specifically to Gbeta5. This interaction and resulting biological effect impacts the standard model of heterotrimeric G-protein signaling. It has been hypothesized that the RGS/Gbeta5 may potentially substitute for Gbetagamma in the heterotrimeric complex. Saccharomyces cerevisiae pheromone responsive mating signaling pathway is primarily driven by Gbetagamma. We evaluated GGL containing RGS9 and RGS7 for functional complementation in a RGS (sst2Delta) knockout yeast strain. The potential of Gbeta5 to augment the function of these RGS proteins was also evaluated. While Gbeta5 had no effect on RGS7, coexpression of Gbeta5 with RGS9 enhanced cell cycle arrest, suggesting that under certain conditions, RGS9 and Gbeta5 may possibly function as betagamma dimer. Furthermore, we demonstrate that Gbeta5 can complement a ste4Delta, the yeast beta-subunit, thus providing the first evidence of functional complementation of a mammalian Gbeta.  相似文献   

8.
The regulator of G protein signaling (RGS) proteins are a family of guanosine triphosphatase (GTPase)–accelerating proteins. We have discovered a novel function for RGS2 in the control of protein synthesis. RGS2 was found to bind to eIF2Bϵ (eukaryotic initiation factor 2B ϵ subunit) and inhibit the translation of messenger RNA (mRNA) into new protein. This effect was not observed for other RGS proteins tested. This novel function of RGS2 is distinct from its ability to regulate G protein–mediated signals and maps to a stretch of 37 amino acid residues within its conserved RGS domain. Moreover, RGS2 was capable of interfering with the eIF2–eIF2B GTPase cycle, which is a requisite step for the initiation of mRNA translation. Collectively, this study has identified a novel role for RGS2 in the control of protein synthesis that is independent of its established RGS domain function.  相似文献   

9.
Normal lymphoid tissue development and function depend upon directed cell migration. Providing guideposts for cell movement and positioning within lymphoid tissues, chemokines signal through cell surface receptors that couple to heterotrimeric G proteins, which are in turn subject to regulation by regulator of G protein signaling (RGS) proteins. In this study, we report that germinal center B lymphocytes and thymic epithelial cells strongly express one of the RGS family members, RGS13. Located between Rgs1 and Rgs2, Rgs13 spans 42 kb on mouse chromosome 1. Rgs13 encodes a 157-aa protein that shares 82% amino acid identity with its 159-aa human counterpart. In situ hybridization with sense and antisense probes localized Rgs13 expression to the germinal center regions of mouse spleens and Peyer's patches and to the thymus medulla. Affinity-purified RGS13 Abs detected RGS13-expressing cells in the light zone of the germinal center. RGS13 interacted with both Gialpha and Gqalpha and strongly impaired signaling through G(i)-linked signaling pathways, including signaling through the chemokine receptors CXCR4 and CXCR5. Prolonged CD40 signaling up-regulated RGS13 expression in human tonsil B lymphocytes. These results plus previous studies of RGS1 indicate the germinal center B cells use two RGS proteins, RGS1 and RGS13, to regulate their responsiveness to chemokines.  相似文献   

10.
The duration of the photoreceptor's response to a light stimulus determines the speed at which an animal adjusts to ever-changing conditions of the visual environment. One critical component which regulates the photoresponse duration on the molecular level is the complex between the ninth member of the regulators of G protein signaling family (RGS9-1) and its partner, type 5 G protein beta-subunit (Gbeta5L). RGS9-1.Gbeta5L is responsible for the activation of the GTPase activity of the photoreceptor-specific G protein, transducin. Importantly, this function of RGS9-1.Gbeta5L is regulated by its membrane anchor, R9AP, which drastically potentiates the ability of RGS9-1.Gbeta5L to activate transducin GTPase. In this study, we address the kinetic mechanism of R9AP action and find that it consists primarily of a direct increase in the RGS9-1.Gbeta5L activity. We further showed that the binding site for RGS9-1.Gbeta5L is located within the N-terminal putative trihelical domain of R9AP, and even though this domain is sufficient for binding, it takes the entire R9AP molecule to potentiate the activity of RGS9-1.Gbeta5L. The mechanism revealed in this study is different from and complements another well-established mechanism of regulation of RGS9-1.Gbeta5L by the effector enzyme, cGMP phosphodiesterase, which is based entirely on the enhancement in the affinity between RGS9-1.Gbeta5L and transducin. Together, these mechanisms ensure timely transducin inactivation in the course of the photoresponse, a requisite for normal vision.  相似文献   

11.
Regulator of G-protein signaling (RGS) proteins are a family of highly diverse, multifunctional proteins that function primarily as GTPase accelerating proteins (GAPs). RGS proteins increase the rate of GTP hydrolysis by Gα proteins and essentially regulate the duration of active signaling. Recently, we have identified two chimeric RGS proteins from soybean and reported their distinct GAP activities on individual Gα proteins. A single amino acid substitution (Alanine 357 to Valine) of RGS2 is responsible for differential GAP activity. Surprisingly, most monocot plant genomes do not encode for a RGS protein homolog. Here we discuss the soybean RGS proteins in the context of their evolution in plants, their relatedness to non-plant RGS protein homologs and the effect they might have on the heterotrimeric G-protein signaling mechanisms. We also provide experimental evidence to show that the interaction interface between plant RGS and Gα proteins is different from what is predicted based on mammalian models.  相似文献   

12.
Physiological actions of regulators of G-protein signaling (RGS) proteins   总被引:5,自引:0,他引:5  
Ishii M  Kurachi Y 《Life sciences》2003,74(2-3):163-171
Regulators of G-protein signaling (RGS) proteins are a family of proteins, which accelerate GTPase-activity intrinsic to the alpha subunits of heterotrimeric G-proteins and play crucial roles in the physiological control of G-protein signaling. If RGS proteins were active unrestrictedly, they would completely suppress various G-protein-mediated cell signaling as has been shown in the over-expression experiments of various RGS proteins. Thus, physiologically the modes of RGS-action should be under some regulation. The regulation can be achieved through the control of either the protein function and/or the subcellular localization. Examples for the former are as follows: (i) Phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) inhibits RGS-action, which can be recovered by Ca(2+)/calmodulin. This underlies a voltage-dependent "relaxation" behavior of G-protein-gated K(+) channels. (ii) A modulatory protein, 14-3-3, binds to the RGS proteins phosphorylated by PKA and inhibits their actions. For the latter mechanism, additional regulatory modules, such as PDZ, PX, and G-protein gamma subunit-like (GGL) domains, identified in several RGS proteins may be responsible: (i) PDZ domain of RGS12 interacts with a G-protein-coupled chemokine receptor, CXCR2, and thus facilitates its GAP action on CXCR2-mediated G-protein signals. (ii) RGS9 forms a complex with a type of G-protein beta-subunit (Gbeta5) via its GGL domain, which facilitates the GAP function of RGS9. Both types of regulations synergistically control the mode of action of RGS proteins in the physiological conditions, which contributes to fine tunings of G-protein signalings.  相似文献   

13.
RGS4, a heterotrimeric G-protein inhibitor, localizes to plasma membrane (PM) and endosomal compartments. Here, we examined Rab-mediated control of RGS4 internalization and recycling. Wild type and constitutively active Rab5 decreased RGS4 PM levels while increasing its endosomal targeting. Rab5, however, did not appreciably affect the PM localization or function of the M1 muscarinic receptor (M1R)/Gq signaling cascade. RGS4-containing endosomes co-localized with subsets of Rab5-, transferrin receptor-, and Lamp1/Lysotracker-marked compartments suggesting RGS4 traffics through PM recycling or acidified endosome pathways. Rab7 activity promoted TGN association, whereas Rab7(dominant negative) trapped RGS4 in late endosomes. Furthermore, RGS4 was found to co-localize with an endosomal pool marked by Rab11, the protein that mediates recycling/sorting of proteins to the PM. The Cys-12 residue in RGS4 appeared important for its Rab11-mediated trafficking to the PM. Rab11(dominant negative) decreased RGS4 PM levels and increased the number of RGS4-containing endosomes. Inhibition of Rab11 activity decreased RGS4 function as an inhibitor of M1R activity without affecting localization and function of the M1R/Gq signaling complex. Thus, both Rab5 activation and Rab11 inhibition decreased RGS4 function in a manner that is independent from their effects on the localization and function of the M1R/Gq signaling complex. This is the first study to implicate Rab GTPases in the intracellular trafficking of an RGS protein. Thus, Rab GTPases may be novel molecular targets for the selective regulation of M1R-mediated signaling via their specific effects on RGS4 trafficking and function.  相似文献   

14.
RGS9-2, a member of the R7 regulators of G protein signaling (RGS) protein family of neuronal RGS, is a critical regulator of G protein signaling. In striatal neurons, RGS9-2 is tightly associated with a novel palmitoylated protein, R7BP (R7 family binding protein). Here we report that R7BP acts to target the localization of RGS9-2 to the plasma membrane. Examination of the subcellular distribution in native striatal neurons revealed that both R7BP and RGS9-2 are almost entirely associated with the neuronal membranes. In addition to the plasma membrane, a large portion of RGS9-2 was found in the neuronal specializations, the postsynaptic densities, where it forms complexes with R7BP and its constitutive partner Gbeta5. Using site-directed mutagenesis we found that the molecular determinants that specify the subcellular targeting of RGS9-2.Gbeta5.R7BP complex are contained within the 21 C-terminal amino acids of R7BP. This function of the C terminus was found to require the synergistic contributions of its two distinct elements, a polybasic motif and palmitoylated cysteines, which when combined are sufficient for directing the intracellular localization of the constituent protein. In differentiated neurons, the C-terminal targeting motif of R7BP was found to be essential for mediating its postsynaptic localization. In addition to the plasma membrane targeting elements, we identified two functional nuclear localization sequences that can mediate the import of R7BP into the nucleus upon depalmitoylation. These findings provide a mechanism for the subcellular targeting of RGS9-2 in neurons.  相似文献   

15.
G蛋白信号调节因子的结构分类和功能   总被引:2,自引:0,他引:2  
Du YS  Huang BR 《生理科学进展》2005,36(3):215-219
G蛋白信号调节因子是能够直接与激活的Gα亚基结合,显著刺激Gα亚基上的GTP酶活性,加速GTP水解,从而灭活或终止G蛋白信号的一组分子大小各异的多功能蛋白质家族。它们都共同拥有一个130个氨基酸的保守的RGS结构域,其功能是结合激活的Gα亚基,负调节G蛋白信号。许多RGS蛋白还拥有非RGS结构域,能够结合其它信号蛋白,从而整合和调节G蛋白信号之间以及G蛋白和其它信号系统之间的关系。  相似文献   

16.
Han J  Mark MD  Li X  Xie M  Waka S  Rettig J  Herlitze S 《Neuron》2006,51(5):575-586
RGS2, one of the small members of the regulator of G protein signaling (RGS) family, is highly expressed in brain and regulates G(i/o) as well as G(q)-coupled receptor pathways. RGS2 modulates anxiety, aggression, and blood pressure in mice, suggesting that RGS2 regulates synaptic circuits underlying animal physiology and behavior. How RGS2 in brain influences synaptic activity is unknown. We therefore analyzed the synaptic function of RGS2 in hippocampal neurons by comparing electrophysiological recordings from RGS2 knockout and wild-type mice. Our study provides a general mechanism of the action of the RGS family containing RGS2 by demonstrating that RGS2 increases synaptic vesicle release by downregulating the G(i/o)-mediated presynaptic Ca(2+) channel inhibition and therefore provides an explanation of how regulation of RGS2 expression can modulate the function of neuronal circuits underlying behavior.  相似文献   

17.
Together with G protein-coupled receptor (GPCR) kinases (GRKs) and β-arrestins, RGS proteins are the major family of molecules that control the signaling of GPCRs. The expression pattern of one of these RGS family members, RGS9-2, coincides with that of the dopamine D(3) receptor (D(3)R) in the brain, and in vivo studies have shown that RGS9-2 regulates the signaling of D2-like receptors. In this study, β-arrestin2 was found to be required for scaffolding of the intricate interactions among the dishevelled-EGL10-pleckstrin (DEP) domain of RGS9-2, Gβ5, R7-binding protein (R7BP), and D(3)R. The DEP domain of RGS9-2, under the permission of β-arrestin2, inhibited the signaling of D(3)R in collaboration with Gβ5. β-Arrestin2 competed with R7BP and Gβ5 so that RGS9-2 is placed in the cytosolic region in an open conformation which is able to inhibit the signaling of GPCRs. The affinity of the receptor protein for β-arrestin2 was a critical factor that determined the selectivity of RGS9-2 for the receptor it regulates. These results show that β-arrestins function not only as mediators of receptor-G protein uncoupling and initiators of receptor endocytosis but also as scaffolding proteins that control and coordinate the inhibitory effects of RGS proteins on the signaling of certain GPCRs.  相似文献   

18.
A critical challenge of structural genomics is to extract functional information from protein structures. We present an example of how this may be accomplished using the Evolutionary Trace (ET) method in the context of the regulators of G protein signaling (RGS) family. We have previously applied ET to the RGS family and identified a novel, evolutionarily privileged site on the RGS domain as important for regulating RGS activity. Here we confirm through targeted mutagenesis of RGS7 that these ET-identified residues are critical for RGS domain regulation and are likely to function as global determinants of RGS function. We also discuss how the recent structure of the complex of RGS9, Gt/i1alpha-GDP-AlF4- and the effector subunit PDEgamma confirms their contact with the effector-G protein interface, forming a structural pathway that communicates from the effector-contacting surface of the G protein and RGS catalytic core domain to the catalytic interface between Galpha and RGS. These results demonstrate the effectiveness of ET for identifying binding sites and efficiently focusing mutational studies on their key residues, thereby linking raw sequence and structure data to functional information.  相似文献   

19.
Regulator of G-protein signaling (RGS) proteins are potent inhibitors of heterotrimeric G-protein signaling. RGS4 attenuates G-protein activity in several tissues. Previous work demonstrated that cysteine palmitoylation on residues in the amino-terminal (Cys-2 and Cys-12) and core domains (Cys-95) of RGS4 is important for protein stability, plasma membrane targeting, and GTPase activating function. To date Cys-2 has been the priority target for RGS4 regulation by palmitoylation based on its putative role in stabilizing the RGS4 protein. Here, we investigate differences in the contribution of Cys-2 and Cys-12 to the intracellular localization and function of RGS4. Inhibition of RGS4 palmitoylation with 2-bromopalmitate dramatically reduced its localization to the plasma membrane. Similarly, mutation of the RGS4 amphipathic helix (L23D) prevented membrane localization and its G(q) inhibitory function. Together, these data suggest that both RGS4 palmitoylation and the amphipathic helix domain are required for optimal plasma membrane targeting and function of RGS4. Mutation of Cys-12 decreased RGS4 membrane targeting to a similar extent as 2-bromopalmitate, resulting in complete loss of its G(q) inhibitory function. Mutation of Cys-2 did not impair plasma membrane targeting but did partially impair its function as a G(q) inhibitor. Comparison of the endosomal distribution pattern of wild type and mutant RGS4 proteins with TGN38 indicated that palmitoylation of these two cysteines contributes differentially to the intracellular trafficking of RGS4. These data show for the first time that Cys-2 and Cys-12 play markedly different roles in the regulation of RGS4 membrane localization, intracellular trafficking, and G(q) inhibitory function via mechanisms that are unrelated to RGS4 protein stabilization.  相似文献   

20.
Regulation of G protein-mediated signal transduction by RGS proteins   总被引:2,自引:0,他引:2  
Kozasa T 《Life sciences》2001,68(19-20):2309-2317
RGS proteins form a new family of regulatory proteins of G protein signaling. They contain homologous core domains (RGS domains) of about 120 amino acids. RGS domains interact with activated Galpha subunits. Several RGS proteins have been shown biochemically to act as GTPase activating proteins (GAPs) for their interacting Galpha subunits. Other than RGS domains, RGS proteins differ significantly in size, amino acid sequences, and tissue distribution. In addition, many RGS proteins have other protein-protein interaction motifs involved in cell signaling. We have shown that p115RhoGEF, a newly identified GEF(guanine nucleotide exchange factor) for RhoGTPase, has a RGS domain at its N-terminal region and this domain acts as a specific GAP for Galpha12 and Galpha13. Furthermore, binding of activated Galpha13 to this RGS domain stimulated GEF activity of p115RhoGEF. Activated Galpha12 inhibited Galpha13-stimulated GEF activity. Thus p115RhoGEF is a direct link between heterotrimeric G protein and RhoGTPase and it functions as an effector for Galpha12 and Galpha13 in addition to acting as their GAP. We also found that RGS domain at N-terminal regions of G protein receptor kinase 2 (GRK2) specifically interacts with Galphaq/11 and inhibits Galphaq-mediated activation of PLC-beta, apparently through sequestration of activated Galphaq. However, unlike other RGS proteins, this RGS domain did not show significant GAP activity to Galphaq. These results indicate that RGS proteins have far more diverse functions than acting simply as GAPs and the characterization of function of each RGS protein is crucial to understand the G protein signaling network in cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号