首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nielsen  Kai L.  Miller  Carter R.  Beck  Douglas  Lynch  Jonathan P. 《Plant and Soil》1999,206(2):181-190
Root growth and architecture are important for phosphorus acquisition due to the relative immobility of P in the soil. Fractal geometry is a potential new approach to the analysis of root architecture. Substantial genetic variation in root growth and architecture has been observed in common bean. Common bean (Phaseolus vulgaris L.) genotypes with contrasting root architecture were grown under moderate and low P conditions in a field experiment. Linear and planar fractal dimension were measured by tracing root intercepts with vertical planes. Linear fractal dimension increased over time in efficient genotypes, but remained fairly constant over time in inefficient genotypes. Planar fractal dimension increased over time for all genotypes, but was higher in efficient than inefficient genotypes at the end of the experiment. Planar fractal dimension of medium P plants was found to correlate with shoot P content indicating fractal dimension to be a possible indicator for root P uptake. The increasing fractal dimension over time indicates that fractal analysis is a sensitive measure of root branching intensity. A less destructive method for acquisition of data that allows for continuous analysis of fractal geometry and thereby screening for more P efficient genotypes in the field is suggested. This method will allow the researcher to conduct fractal analysis and still complete field trials with final yield evaluation.  相似文献   

2.
Carbon cost of root systems: an architectural approach   总被引:16,自引:2,他引:14  
Root architecture is an important component of nutrient uptake and may be sensitive to carbon allocational changes brought about by rising CO2. We describe a deformable geometric model of root growth, SimRoot, for the dynamic morphological and physiological simulation of root architectures. Using SimRoot, and measurements of root biomass deposition, respiration and exudation, carbon/phosphorus budgets were developed for three contrasting root architectures. Carbon allocation patterns and phosphorus acquisition efficiencies were estimated for Phaseolus vulgaris seedlings with either a dichotomous, herringbone, or empirically determined bean root architecture. Carbon allocation to biomass, respiration, and exudation varied significantly among architectures. Root systems also varied in the relationship between C expenditure and P acquisition, providing evidence for the importance of architecture in nutrient acquisition efficiency.  相似文献   

3.
BACKGROUND AND AIMS: Fractal analysis allows calculation of fractal dimension, fractal abundance and lacunarity. Fractal analysis of plant roots has revealed correlations of fractal dimension with age, topology or genotypic variation, while fractal abundance has been associated with root length. Lacunarity is associated with heterogeneity of distribution, and has yet to be utilized in analysis of roots. In this study, fractal analysis was applied to the study of root architecture and acquisition of diffusion-limited nutrients. The hypothesis that soil depletion and root competition are more closely correlated with a combination of fractal parameters than by any one alone was tested. MODEL: The geometric simulation model SimRoot was used to dynamically model roots of various architectures growing for up to 16 d in three soil types with contrasting nutrient mobility. Fractal parameters were calculated for whole roots, projections of roots and vertical slices of roots taken at 0, 2.5 and 5 cm from the root origin. Nutrient depletion volumes, competition volumes, and relative competition were regressed against fractal parameters and root length. KEY RESULTS: Root length was correlated with depletion volume, competition volume and relative competition at all times. In analysis of three-dimensional, projected roots and 0 cm slices, log(fractal abundance) was highly correlated with log(depletion volume) when times were pooled. Other than this, multiple regression yielded better correlations than regression with single fractal parameters. Correlations decreased with age of roots and distance of vertical slices from the root origin. Field data were also examined to see if fractal dimension, fractal abundance and lacunarity can be used to distinguish common bean genotypes in field situations. There were significant differences in fractal dimension and fractal abundance, but not in lacunarity. CONCLUSIONS: These results suggest that applying fractal analysis to research of soil exploration by root systems should include fractal abundance, and possibly lacunarity, along with fractal dimension.  相似文献   

4.
Background and Aims Root diameter, especially apical diameter, plays an important role in root development and function. The variation in diameter between roots, and along roots, affects root structure and thus the root system’s overall foraging performance. However, the effect of diameter variation on root elongation, branching and topological connections has not been examined systematically in a population of high-order roots, nor along the roots, especially for mature plants grown in the field.Methods A method combining both excavation and analysis was applied to extract and quantify root architectural traits of adult, field-grown maize plants. The relationships between root diameter and other root architectural characteristics are analysed for two maize cultivars.Key Results The basal diameter of the lateral roots (orders 1–3) was highly variable. Basal diameter was partly determined by the diameter of the bearing segment. Basal diameter defined a potential root length, but the lengths of most roots fell far short of this. This was explained partly by differences in the pattern of diameter change along roots. Diameter tended to decrease along most roots, with the steepness of the gradient of decrease depending on basal diameter. The longest roots were those that maintained (or sometimes increased) their diameters during elongation. The branching density (cm–1) of laterals was also determined by the diameter of the bearing segment. However, the location of this bearing segment along the mother root was also involved – intermediate positions were associated with higher densities of laterals.Conclusions The method used here allows us to obtain very detailed records of the geometry and topology of a complex root system. Basal diameter and the pattern of diameter change along a root were associated with its final length. These relationships are especially useful in simulations of root elongation and branching in source–sink models.  相似文献   

5.
Above-ground plant growth is widely known in terms of structural diversity. Likewise, the below-ground growth presents a mosaic of heterogeneous structures of differing complexity. In this study, root system structures of heterogeneous plant communities were recorded as integral systems by using the trench profile method. Fractal dimensions of the root images were calculated from image files by the box-counting method. This method allows the structural complexity of such associations to be compared between plant communities, with regard to their potentials for soil resource acquisition and utilization. Distinct and partly significant differences are found (fractal dimension between 1.46±0.09 and 1.71±0.05) in the below-ground structural complexity of plant communities, belonging to different biotope types. The size of the heterogeneous plant community to be examined has an crucial influence on the fractal dimension of the root system structures. The structural heterogeneity becomes particularly evident (fractal dimensions between 1.32 and 1.77) when analysing many small units of a complex root system association. In larger plant communities, a broad variety of below-ground structures is recorded in its entirety, integrating the specific features of single sub-structures. In that way, extreme fractal dimensions are lost and the diversity decreases. Therefore, the analysis of larger units of root system associations provides a general knowledge of the complexity of root system structures for heterogeneous plant communities.  相似文献   

6.
The spatial distribution of root length density (RLD) is important because it affects water and nutrient uptake. It is difficult to obtain reliable estimates of RLD because root systems are very variable and heterogeneous. We identified systematic trends, clustering, and anisotropy as geometrical properties of root systems, and studied their consequences for the sampling and observation of roots. We determined the degree of clustering by comparing the coefficient of variation of a simulated root system with that of a Boolean model. We also present an alternative theoretical derivation of the relation between RLD and root intersection density (RID) based on the theory of random processes of fibres. We show how systematic trends, clustering and anisotropy affect the theoretical relation between RLD and RID, and the consequences this has for measurement of RID in the field. We simulated the root systems of one hundred maize crops grown for a thermal time of 600 K d, and analysed the distribution of RLD and root intersection density RID on regular grids of locations throughout the simulated root systems. Systematic trends were most important in the surface layers, decreasing with depth. Clustering and anisotropy both increased with depth. Roots at depth had a bimodal distribution of root orientation, causing changes in the ratio of RLD/RID. The close proximity of the emerging lateral roots and the parent axis caused clustering which increased the coefficient of variation.  相似文献   

7.
Row crops are often inefficient in utilizing soil resources. One reason for this appears to be inefficient rooting of the available soil volume. Five experiments were performed to study the temporal and spatial root development of cauliflower (cv. Plana). The crop was grown with 60 cm between rows, and root development was followed in minirhizotrons placed under the crop rows, 15 cm, and 30 cm from the crop rows. Soil was sampled and analyzed for nitrate content at the final harvest and once during growth. In two of the experiments N fertilizer rate was varied and in two of the other experiments two cultivars were compared (cv. Plana and Siria).The rooting depth of cauliflower was found to be linearly related to temperature sum, with a growth rate of 1.02 mm day-1 °C-1. Depending on duration of growth this leads to rooting depths at harvest of 85–115 cm. Soil analysis showed that the cauliflower was able to utilize soil nitrogen down to at least 100 cm.With Plana differences in root growth between row and interrow soil were only observed during early growth, but with Siria this difference was maintained until harvest. However, at harvest both cultivars had depleted row and interrow soil nitrate equally efficient. Nitrogen fertilizer did not affect overall root development significantly.The branching frequency of actively branching roots was increased in all soil layers from about 6 to 10 branches cm-1 by increasing N fertilizer additions from 130 to 290 kg N ha-1. Increasing N supply increased the number of actively branching roots in the topsoil and reduced it in the subsoil.The average growth rate of the roots was always highest in the newly rooted soil layers, but fell during time. At 74 days after planting very few roots were growing in the upper 60 cm of the soil whereas 70% of the root tips observed in the 80–100 cm soil layer were actively growing. Within each soil layer there was a large variation in growth rate of individual root tips.  相似文献   

8.
尕海湿地不同密度条件下垂穗披碱草根系分形结构   总被引:2,自引:2,他引:2  
李雪萍  赵成章  任悦  张晶  雷蕾 《生态学报》2018,38(4):1176-1182
根系分形结构影响根系的分布格局,是植物根系与胁迫生境相互适应的结果。采用全根挖掘和Win-RHIZO根系分析仪相结合的方法,按照垂穗披碱草种群密度设置Ⅰ(500—700株/m~2)、Ⅱ(300—500株/m~2)、Ⅲ(100—300株/m~2)3个密度梯度,研究了尕海湿地不同密度条件下垂穗披碱草(Elymus nutans)的根系分形结构。结果表明:随着垂穗披碱草种群密度的降低,湿地群落的高度、盖度、地上生物量及根系分形维数呈逐渐减小趋势,地下生物量与分形丰度逐渐增大;垂穗披碱草根系分形维数与分形丰度在高密度(Ⅰ)样地和低密度(Ⅲ)样地均呈极显著负相关关系(P0.01),在中密度(Ⅱ)样地呈显著负相关关系(P0.05),垂穗披碱草根系分形维数和分形丰度存在着"此消彼长"的权衡关系。在高密度湿地群落垂穗披碱草倾向于密集型根系构型构建模式,在低密度湿地群落选择扩散型的根系生长模式,体现了密度制约下高寒湿地植物种群应对资源多重竞争的生态适应机制。  相似文献   

9.
10.
Based on fractal and pipe model assumptions, a static three-dimensional model of the Gliricidia sepium root system was developed, in order to provide a basis for the prediction of root branching, size and mass in an alley cropping system. The model was built from observations about the topology, branching rules, link length and diameter, and root orientation, provided by in situ and extracted root systems. Evaluation tests were carried out at the plant level and at the field level. These tests principally concerned coefficients α and q –- the proportionality factor α between total cross-sectional area of a root before and after branching, and allocation parameter q that defines the partitioning of biomass between the new links after a branching event –- that could be considered as key variables of this fractal approach. Although independent of root diameter, these coefficients showed a certain variability that may affect the precision of the predictions. When calibrated, however, the model provided suitable predictions of root dry matter, total root length and root diameter at the plant level. At the field level, the simulation of 2D root maps was accurate for root distribution patterns, but the number of simulated root dots was underestimated in the surface layers. Hence recommendations were made to improve the model with regard to α and q. This static approach appeared to be well suited to study the root system of adult trees. Compared with explicit models, the main advantage of the fractal approach is its plasticity and ease of use. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
The involvement of ethylene in root architectural responses to phosphorus availability was investigated in common bean ( Phaseolus vulgaris L.) plants grown with sufficient and deficient phosphorus. Although phosphorus deficiency reduced root mass and lateral root number, main root length was unchanged by phosphorus treatment. This resulted in decreased lateral root density in phosphorus-deficient plants. The possible involvement of ethylene in growth responses to phosphorus deficiency was investigated by inhibiting endogenous ethylene production with amino-ethoxyvinylglycine (AVG) and aerating the root system with various concentrations of ethylene. Phosphorus deficiency doubled the root-to-shoot ratio, an effect which was suppressed by AVG and partially restored by exogenous ethylene. AVG increased lateral root density in phosphorus- deficient plants but reduced it in phosphorus-sufficient plants. These responses could be reversed by exogenous ethylene, suggesting ethylene involvement in the regulation of main root extension and lateral root spacing. Phosphorus-deficient roots produced twice as much ethylene per g dry matter as phosphorus-sufficient roots. Enhanced ethylene production and altered ethylene sensitivity in phosphorus-deficient plants may be responsible for root responses to phosphorus deficiency.  相似文献   

12.
SimRoot: Modelling and visualization of root systems   总被引:14,自引:1,他引:13  
SimRoot, a geometric simulation model of plant root systems, is described. This model employs a data structure titled the Extensible Tree, which is well suited to the type of data required to model root systems. As implemented on Silicon Graphics workstations, the data structure and visualization code provides for continuous viewing of the simulated root system during growth. SimRoot differs from existing models in the explicit treatment of spatial heterogeneity of physiological processes in the root system, and by inclusion of a kinematic treatment of root axes. Examples are provided of the utility of the model in estimating the fractal geometry of simulated root systems in 1, 2, and 3 dimensional space. We envision continued development of the model to incorporate competition from neighboring root systems, linkage with crop simulation models to simulate root-shoot interactions, explicit treatment of soil heterogeneity, and plasticity of root responses to soil factors such as presence of mycorrhizal associations.  相似文献   

13.
Branch geometry in Cornus kousa (Cornaceae): computer simulations   总被引:2,自引:0,他引:2  
Computer simulations similar to actual trees were constructed using simple branching rules. Branch orientation with respect to the direction of gravity was a fundamental consideration. In Cornus kousa BUERG. ex HANCE, several types of branches develop from winter buds, varying from orthotropic shoots to plagiotropic ones. Based on actual observations and measurements of branching structures with a wide range of orientations, we made a flexible geometrical model consisting of five forking branches that varied in outgrowth depending on the direction of the shoot with respect to gravity. Repetition of the branching by computer generated a realistic tree pattern, which was close to the shape of a young C. kousa tree. Reproductive shoots seem to be under a branching rule that was a modification of vegetative branching, although the reproductive branch size was considerably smaller than the vegetative one, and reproductive branching was bifurcated instead of five-forked. We conclude that all branchings in orthotropic and plagiotropic shoots in the vegetative phase and shoots in the reproductive phase are formed under the same branching rule, but each has different parameter values.  相似文献   

14.

Background and Aims

Root architectural phenes enhancing topsoil foraging are important for phosphorus acquisition. In this study, the utility of a novel phene is described, basal root whorl number (BRWN), that has significant effects on topsoil foraging in common bean (Phaseolus vulgaris).

Methods

Whorls are defined as distinct tiers of basal roots that emerge in a tetrarch fashion along the base of the hypocotyl. Wild and domesticated bean taxa as well as two recombinant inbred line (RIL) populations were screened for BRWN and basal root number (BRN). A set of six RILs contrasting for BRWN was evaluated for performance under low phosphorus availability in the greenhouse and in the field. In the greenhouse, plants were grown in a sand–soil media with low or high phosphorus availability. In the field, plants were grown in an Oxisol in Mozambique under low and moderate phosphorus availability.

Key Results

Wild bean accessions tended to have a BRWN of one or two, whereas cultivated accessions had BRWN reaching four and sometimes five. BRWN and BRN did not vary with phosphorus availability, i.e. BRWN was not a plastic trait in these genotypes. Greater BRWN was beneficial for phosphorus acquisition in low phosphorus soil. Genotypes with three whorls had almost twice the shoot biomass, greater root length and greater leaf area than related genotypes with two whorls. In low phosphorus soil, shoot phosphorus content was strongly correlated with BRWN (R2 = 0·64 in the greenhouse and R2 = 0·88 in the field). Genotypes with three whorls had shallower root systems with a greater range of basal root growth angles (from 10 to 45 ° from horizontal) than genotypes with two whorls (angles ranged from 60 to 85 ° from horizontal).

Conclusions

The results indicate that BRWN is associated with increased phosphorus acquisition and that this trait may have value for selection of genotypes with better performance in low phosphorus soils.  相似文献   

15.
16.
BACKGROUND AND AIMS: Development and architecture of plant roots are regulated by phytohormones. Cytokinin (CK), synthesized in the root cap, promotes cytokinesis, vascular cambium sensitivity, vascular differentiation and root apical dominance. Auxin (indole-3-acetic acid, IAA), produced in young shoot organs, promotes root development and induces vascular differentiation. Both IAA and CK regulate root gravitropism. The aims of this study were to analyse the hormonal mechanisms that induce the root's primary vascular system, explain how differentiating-protoxylem vessels promote lateral root initiation, propose the concept of CK-dependent root apical dominance, and visualize the CK and IAA regulation of root gravitropiosm. KEY ISSUES: The hormonal analysis and proposed mechanisms yield new insights and extend previous concepts: how the radial pattern of the root protoxylem vs. protophloem strands is induced by alternating polar streams of high IAA vs. low IAA concentrations, respectively; how differentiating-protoxylem vessel elements stimulate lateral root initiation by auxin-ethylene-auxin signalling; and how root apical dominance is regulated by the root-cap-synthesized CK, which gives priority to the primary root in competition with its own lateral roots. CONCLUSIONS: CK and IAA are key hormones that regulate root development, its vascular differentiation and root gravitropism; these two hormones, together with ethylene, regulate lateral root initiation.  相似文献   

17.
Root traits vary enormously among plant species but we have little understanding of how this variation affects their functioning. Of central interest is how root traits are related to plant resource acquisition strategies from soil. We examined root traits of 33 woody species from northeastern US forests that form two of the most common types of mutualisms with fungi, arbuscular mycorrhizas (AM) and ectomycorrhizas (EM). We examined root trait distribution with respect to plant phylogeny, quantifying the phylogenetic signal (K statistic) in fine root morphology and architecture, and used phylogenetically independent contrasts (PICs) to test whether taxa forming different mycorrhizal associations had different root traits. We found a pattern of species forming roots with thinner diameters as species diversified across time. Given moderate phylogenetic signals (= 0.44–0.68), we used PICs to examine traits variation among taxa forming AM or EM, revealing that hosts of AM were associated with lower branching intensity (rPIC = −0.77) and thicker root diameter (rPIC = −0.41). Because EM evolved relatively more recently and intermittently across plant phylogenies, significant differences in root traits and colonization between plants forming AM and EM imply linkages between the evolution of these biotic interactions and root traits and suggest a history of selection pressures, with trade-offs for supporting different types of associations. Finally, across plant hosts of both EM and AM, species with thinner root diameters and longer specific root length (SRL) had less colonization (rPIC = 0.85, −0.87), suggesting constraints on colonization linked to the evolution of root morphology.  相似文献   

18.
To evaluate the effect of different naturally occurring irradiation conditions on the sensitivity of bean (Phaseolus vulgaris cv. Label) to increased UV-B levels, plants were grown under six different light treatments. In the control series (at ambient levels of UV-B), UV-B and visible light were decreased in parallel, resulting in three different total irradiation treatments with the same UV-B/PAR ratio. A second series with a 15% increase in UV-B irradiation at each PAR level was used to investigate the effect of UV-B under the varying total irradiance levels. The different total irradiance levels resulted in large differences in total dry weight, specific leaf weight, photosynthesis-light response and pigment concentrations. Nevertheless, the 15% increase in UV-B resulted in equal reductions in total dry weight (from 24.5 to 34.3%) and effective photosynthesis for all light levels. The accumulation of protective pigments in the primary bean leaves was strongly correlated to the total irradiance level (200% increase from the lowest to the highest light level), but was not influenced by increasing UV-B levels. As the UV-B/PAR ratio outside increases with decreasing total irradiance (when induced by cloud cover) this implies that low radiation levels are potentially dangerous to some plants, even though the UV-B levels may seem negligible.  相似文献   

19.
To understand the physiology of fine-root functions in relation to soil organic sources, the heterogeneity of individual root functions within a fine-root system requires investigation. Here the heterogeneous dynamics within fine-root systems are reported. The fine roots of Chamaecyparis obtusa were sampled using a sequential ingrowth core method over 2 yr. After color categorization, roots were classified into protoxylem groups from anatomical observations. The root lengths with diarch and triarch groups fluctuated seasonally, whereas the tetrarch root length increased. The percentage of secondary root mortality to total mortality increased with increasing amounts of protoxylem. The carbon : nitrogen ratio indicated that the decomposability of primary roots might be greater than that of secondary roots. The position of diarch roots was mostly apical, whereas tetrarch roots tended to be distributed in basal positions within the root architecture. We demonstrate the heterogeneous dynamics within a fine-root system of C. obtusa. Fine-root heterogeneity should affect soil C dynamics. This heterogeneity is determined by the branching position within the root architecture.  相似文献   

20.
In non-acclimated bean plants heat shock induced oxidative damage (increase of free radical concentration and drop of bound thiols, indicating aggregation of proteins) which was regulated by the enhanced activities of peroxidase and superoxide dismutase, as well as by the accumulation of polyphenols and especially of polyamines. In the plants acclimated to high temperature no oxidative damage occurred following heat shock. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号