首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An analysis of a 400 ps molecular dynamics simulation of the 164 amino acid enzyme T4 lysozyme is presented. The simulation was carried out with all hydrogen atoms modeled explicitly, the inclusion of all 152 crystallographic waters and at a temperature of 300 K. Temporal analysis of the trajectory versus energy, hydrogen bond stability, r.m.s. deviation from the starting crystal structure and radius of gyration, demonstrates that the simulation was both stable and representative of the average experimental structure. Average structural properties were calculated from the enzyme trajectory and compared with the crystal structure. The mean value of the C alpha displacements of the average simulated structure from the X-ray structure was 1.1 +/- 0.1 A; differences of the backbone phi and psi angles between the average simulated structure and the crystal structure were also examined. Thermal-B factors were calculated from the simulation for heavy and backbone atoms and both were in good agreement with experimental values. Relationships between protein secondary structure elements and internal motions were studied by examining the positional fluctuations of individual helix, sheet and turn structures. The structural integrity in the secondary structure units was preserved throughout the simulation; however, the A helix did show some unusually high atomic fluctuations. The largest backbone atom r.m.s. fluctuations were found in non-secondary structure regions; similar results were observed for r.m.s. fluctuations of non-secondary structure phi and psi angles. In general, the calculated values of r.m.s. fluctuations were quite small for the secondary structure elements. In contrast, surface loops and turns exhibited much larger values, being able to sample larger regions of conformational space. The C alpha difference distance matrix and super-positioning analyses comparing the X-ray structure with the average dynamics structure suggest that a 'hinge-bending' motion occurs between the N- and C-terminal domains.  相似文献   

2.
A 120ps molecular dynamics (MD) trajectory was calculated and analyzed for a putative Pro-36-Gly mutant of the potato carboxypeptidase A (CPA) protein inhibitor (PCIm). The mutant protein's fold shows a large degree of stability, judged from its low alpha-carbon r.m.s. deviation from the X-ray structure of the wild type PCI (PCIw). The N-terminal tail of PCIm differs slightly less from the X-ray structure than it does in PCIw, while the mutant's C-terminal tail (the primary contact site with CPA) and residues 13-17 present deviations as they approach each other. Differences in fluctuation pattern exist between PCIm and PCIw in residues 2-4 (the N-terminal tail), 13-17, 22-23, 28-31 (the secondary contact site with CPA) and 37-38 (the C-terminal tail); the latter region is rigidified in PCIm. Results show that the MD method is able to sense local perturbative effects produced by amino acid substitutions in flexible regions of protein molecules. The simulation suggests that the conformation of the C-terminal tail is less favorable for interaction with the target protein in the mutant than it is in the wild type protein. The Pro-36-Gly mutant is predicted to be a less potent inhibitor.  相似文献   

3.
Molecular dynamics (MD) calculations have been performed on carboxypeptidase A and on its adducts with inhibitors, such as d-phenylalanine (dPhe) and acetate. The catalytically essential zinc ion present in the protein was explicitly included in all the simulations. The simulation was carried out over a sphere of 15 A centered on the zinc ion. The crystallographic water molecules were explicitly taken into account; then the protein was solvated with a 18 A sphere of water molecules. MD calculations were carried out for 45-60 ps. There is no large deviation from the available X-ray structures of native and the dPhe adduct for the MD structures. Average MD structures were calculated starting from the X-ray structure of the dPhe adduct, and, from a structure obtained by docking the inhibitor in the native structure. Comparison between these two structures and with that of the native protein shows that some of the key variations produced by inhibitor binding are reproduced by MD calculations. Addition of acetate induces structural changes relevant for the understanding of the interaction network in the active cavity. The structural variations induced by different inhibitors are examined. The effects of these interactions on the catalytic mechanism and on the binding of substrate are discussed.  相似文献   

4.
The solution structure of interleukin-1 beta determined by nuclear magnetic resonance spectroscopy is compared to three independently solved X-ray structures at 2 A resolution. It is shown that the solution and X-ray structures are very similar, both locally and globally. The atomic root-mean-square (r.m.s.) difference between the solution and X-ray structures is approximately 0.9 A for backbone atoms, approximately 1.5 A for all atoms and approximately 1 A for all atoms of internal residues. The largest differences are confined to some of the loops and turns connecting beta-strands. The atomic r.m.s. distribution of the 32 calculated solution structures about their mean co-ordinate positions (approximately 0.4 A for backbone atoms, approximately 0.8 A for all atoms and approximately 0.5 A for all atoms of internal residues) is approximately the same as the atomic r.m.s. differences between the three X-ray structures, indicating that the positional errors in the atomic co-ordinates determined by the two methods are similar.  相似文献   

5.
A comparison of the solution nuclear magnetic resonance (n.m.r.) structures of squash trypsin inhibitor from seeds of the squash Cucurbita maxima with the X-ray structure of a trypsin complex of the inhibitor shows that the n.m.r. and X-ray structures are similar in terms of the global folding and secondary structure. The average atomic root-mean-square difference between the 36 n.m.r. structures on the one hand and the X-ray structure is 0.96 A for the backbone atoms and 1.95 A for all heavy atoms. The n.m.r. and X-ray structures exhibit extremely similar conformations of the primary proteinase binding loop. Despite the overall similarity, there are small differences between the mean computed structure and the X-ray structure. The n.m.r. structures have slightly different positions of the segments from residues 16 to 18, and 24 and 25. The n.m.r. results show that the inclusion of stereospecific assignments and precise distance constraints results in a significant improvement in the definition of the n.m.r. structure, making possible a detailed analysis of the local conformations in the protein.  相似文献   

6.
In recent years methods for deriving spatial molecular structure from atom-atom distance information have gained in importance due to the emergence of two-dimensional nuclear magnetic resonance (n.m.r) techniques, which make it possible to obtain such distance information for polypeptides, small proteins, sugars, and DNA fragments in solution. Distance geometry (DG) and restrained molecular dynamics (MD) refinement are applied to a cyclic polypeptide, the immunosuppressive drug cyclosporin A, and the results are compared. Two different procedures, DG followed by restrained MD, and straightforward restrained MD starting from the X-ray structure, both lead to a unique conformation that satisfies the 58 experimentally determined distance constraints. The results nicely show the relative merits of DG and restrained MD techniques for determining spatial molecular structure from distance information.  相似文献   

7.
A 200 ps MD trajectory of wild type PCI and a 120 ps one for the Pro36Gly putative mutant are studied and compared with the structure of PCI in its complex with carboxypeptidase A (CPA). It is first established that the structures of PCI from X-ray and from MD simulation are essentially equal. Thereafter, data from the PCI-CPA and average MD structures together with available biochemical information are used to identify possible structural factors that may determine the inhibitory power of PCI. These structural determinants are used to analyze the mutant structure. The fold of the mutant protein shows a large degree of stability. The N-terminal tail in PCIm differs from the X-ray structure as it does in PCIw, while the mutant's C-terminal tail (which is the primary binding site with CPA) and residues 13–17 present deviations. Differences in fluctuation patterns exist between PCIm and PCIw in residues 2–4 (the N-terminal tail), 13–17, 22–23, 28–81 (the secondary contact site with CPA), and 37–38 (the C-terminal tail); the latter region is rigidified in PCIm. Results show that the MD method is able to sense long-range as well as local perturbative effects produced by amino-acid substitutions in flexible regions of this protein. The simulations suggest that the conformation of the C-terminal tail is less favorable for interaction with the target protein in the mutant than it is in the wild type protein. The Pro-36-Gly mutant is predicted to be a less potent inhibitor.Abbreviations CPA carboxypeptidase A - MD molecular dynamics - NIS non-inertial solvent - PCI potato carboxypeptidase A inhibitor - PCIm mutated inhibitor - PCIw wild inhibitor  相似文献   

8.
Molecular dynamics (MD) simulation methods were applied to the study of the structural and dynamic fluctuation properties of the potato carboxypeptidase A inhibitor protein (PCI) immersed in a bath of 1259 water molecules. A trajectory of 200 ps was generated at constant temperature and pressure. The crystallographic structure of PCI, as found in its complex with bovine carboxy-peptidase A (CPA), was used to seed the MD simulation. Analyses show that the structure of the PCI core is fairly rigid and stable in itself, and that little deformation is caused by the protein-protein interactions found in the PCI-CPA complex. The N-terminal tail fluctuates to approach the core structure and appears as a relatively disordered region. In contrast, the conformations of the C-terminal tail, which is involved in the inhibitory mechanism, fluctuates in the neighborhood of the X-ray structure in orientations which facilitate CPA binding. Comparison with the structural entries for PCI in water obtained from both 2D-NMR experiments and X-ray data shows that important features of the MD structural results fluctuates between the initial crystal values and those obtained from the NMR solution structure. This fluctuation is not uniform; minor regions move away from the X-ray conformation while they do not approach the NMR conformation. The results reported suggest that the trajectory is long enough to show a behavior that is consistent with the conformational space available to the protein in solution.Abbreviations CPA Carboxypeptidase - DG Distance Geometry - NMR Nuclear Magnetic Resonance - NIS Non Inertial Solvent - MD Molecular Dynamics - PBC Periodic Boundary Conditions - PCI Potato Carboxypeptidase Inhibitor - RMSD Root Mean Square Deviation - a.m.u. Atomic mass units Correspondence to: O. Tapia  相似文献   

9.
The internuclear distances of the cyclic thymopoietin derivative c[D-Val-Tyr-Arg-Lys-Glu] have been determined using two-dimensional nuclear Overhauser n.m.r. spectroscopy. These distances are used as constraints for a restrained Molecular Dynamics (MD) simulation. The two starting structures used for the calculations consist of a beta and gamma turn for model 1 and two gamma turns for model 2. The rms difference in atomic positions of the two conformations is 0.242 nm. They converge during the restrained MD simulation to the same final structure. The positional rms difference of the time averaged (5-14 ps) conformations is 0.011 nm. The hydrogen bond pattern is similar to that of model 1, but in addition we find three more gamma turns. The vicinal NH-C alpha H couplings agree well with those calculated from the time averaged structures.  相似文献   

10.
A low resolution solution structure of the cytokine interleukin-1 beta, a 153 residue protein of molecular weight 17,400, has been determined on the basis of 446 nuclear Overhauser effect (NOE) derived approximate interproton distance restraints involving solely NH, C alpha H and C beta H protons, supplemented by 90 distance restraints for 45 hydrogen bonds, and 79 phi torsion angle restraints. With the exception of 27 C alpha H-C alpha H NOEs, all the NOEs were assigned from a three-dimensional 1H-1H NOE 15N-1H heteronuclear multiple quantum coherence (HMQC) spectrum. The torsion angle restraints were obtained from accurate 3JHN alpha coupling constants measured from a HMQC-J spectrum, while the hydrogen bonds were derived from a qualitative analysis of the NOE, coupling constant and amide exchange data. A total of 20 simulated annealing (SA) structures was computed using the hybrid distance geometry-dynamical simulated annealing method. The solution structure of IL-1 beta comprises 12 beta-strands arranged in three pseudo-symmetrical topological units (each consisting of 5 anti-parallel beta-strands), joined by turns, short loops and long loops. The core of the structure, which is made up of the 12 beta-strands, together with the turns joining strands I and II, strands VIII and IX and strands X and XI, is well determined with a backbone atomic root-mean-square (r.m.s.) distribution about the mean co-ordinate positions of 1.2(+/- 0.1) A. The loop conformations, on the other hand, are poorly determined by the current data. A comparison of the core of the low resolution solution structure of IL-1 beta with that of the X-ray structure indicates that they are similar, with a backbone atomic r.m.s. difference of only 1.5 A between the co-ordinates of the restrained minimized mean of the SA structures and the X-ray structure.  相似文献   

11.
A comparison of the solution n.m.r. structures of barley serine protease inhibitor 2 (BSPI-2) with the X-ray structures of both subtilisin complexed and native BSPI-2 is presented. It is shown that the n.m.r. and X-ray structures are very similar in terms of overall shape, size, polypeptide fold and secondary structure. The average atomic rms difference between the 11 restrained dynamics structures on the one hand and the two X-ray structures on the other is 1.9 +/- 0.2 A for the backbone atoms and 3.0 +/- 0.3 A for all atoms. The corresponding values for the restrained energy minimized mean dynamics structure are 1.5 and 2.4 A, respectively.  相似文献   

12.
The applicability of restrained molecular dynamics for the determination of three-dimensional protein structures on the basis of short interproton distances (less than 4 A) that can be realistically determined from nuclear magnetic resonance measurements in solution is assessed. The model system used is the 1.2 A resolution crystal structure of the 46 residue protein crambin, from which a set of 240 approximate distance restraints, divided into three ranges (2.5 +/- 0.5, 3.0+0.5(-1.0) and 4 +/- 1 A), is derived. This interproton distance set comprises 159 short-range ([i-j] less than or equal to 5) and 56 ([i-j] greater than 5) long-range inter-residue distances and 25 intra-residue distances. Restrained molecular dynamics are carried out using a number of different protocols starting from two initial structures: a completely extended beta-strand; and an extended structure with two alpha-helices in the same positions as in the crystal structure (residues 7 to 19, and 23 to 30) and all other residues in the form of extended beta-strands. The root-mean-square (r.m.s.) atomic differences between these two initial structures and the crystal structure are 43 A and 23 A, respectively. It is shown that, provided protocols are used that permit the secondary structure elements to form at least partially prior to folding into a tertiary structure, convergence to the correct final structure, both globally and locally, is achieved. The r.m.s. atomic differences between the converged restrained dynamics structures and the crystal structure range from 1.5 to 2.2 A for the backbone atoms and from 2.0 to 2.8 A for all atoms. The r.m.s. atomic difference between the X-ray structure and the structure obtained by first averaging the co-ordinates of the converged restrained dynamics structures is even smaller: 1.0 A for the backbone atoms and 1.6 A for all atoms. These results provide a measure with which to judge future experimental results on proteins whose crystal structures are unknown. In addition, from an examination of the dynamics trajectories, it is shown that the convergence pathways followed by the various simulations are different.  相似文献   

13.
Pang YP 《Proteins》2001,45(3):183-189
I report herein two 2.0 ns (1.0 fs time step) MD simulations of two zinc complexes bridged by a hydroxide in phosphotriesterase (PTE) employing the nonbonded method and the cationic dummy atom method that uses virtual atoms to impose orientational requirement for zinc ligands. The cationic dummy atom method was able to simulate the four-ligand coordination of the two zinc complexes in PTE. The distance (3.39 +/- 0.07A) between two nearby zinc ions in the time-average structure of PTE derived from the MD simulation using the cationic dummy atoms matched that in the X-ray structure (3.31 +/- 0.001A). Unequivocally, the time-average structure of PTE was able to fit into the experimentally determined difference electron density map of the corresponding X-ray structure. The results demonstrate the practicality of the cationic dummy atom method for MD simulations of zinc proteins bound with multiple zinc ions. In contrast, a 2.0 ns (1.0 fs time step) MD simulation using the nonbonded method revealed a striking difference in the active site between the X-ray structure and the time-average structure that was unable to fit into the density map of PTE. The results suggest that caution should be used in the MD simulations using the nonbonded method.  相似文献   

14.
Multiple molecular dynamics (MD) simulations of crambin with different initial atomic velocities are used to sample conformations in the vicinity of the native structure. Individual trajectories of length up to 5 ns sample only a fraction of the conformational distribution generated by ten independent 120 ps trajectories at 300 K. The backbone atom conformational space distribution is analyzed using principal components analysis (PCA). Four different major conformational regions are found. In general, a trajectory samples only one region and few transitions between the regions are observed. Consequently, the averages of structural and dynamic properties over the ten trajectories differ significantly from those obtained from individual trajectories. The nature of the conformational sampling has important consequences for the utilization of MD simulations for a wide range of problems, such as comparisons with X-ray or NMR data. The overall average structure is significantly closer to the X-ray structure than any of the individual trajectory average structures. The high frequency (less than 10 ps) atomic fluctuations from the ten trajectories tend to be similar, but the lower frequency (100 ps) motions are different. To improve conformational sampling in molecular dynamics simulations of proteins, as in nucleic acids, multiple trajectories with different initial conditions should be used rather than a single long trajectory.  相似文献   

15.
Modeling the intact form of the alpha 1-proteinase inhibitor   总被引:1,自引:0,他引:1  
The structure of the intact form of the serpin alpha 1-proteinase inhibitor has been modeled based on the assumption that the central strand s4A of the six-stranded beta-sheet A of the cleaved inhibitor is not incorporated into the sheet of intact alpha 1-proteinase inhibitor. This strand was removed from its position in the center of the sheet by suitable rotations about the backbone dihedrals of Lys343 using molecular graphics. The resulting structure was then annealed using molecular dynamics (MD) while applying progressive distance restraints to the reactive peptide bond (Met358-Ser359) for 50 ps. During this time, the disrupted beta-sheet reformed to create a five-stranded beta-sheet with strands 3 and 5 in a parallel arrangement. This change and accompanying structural rearrangements are largely confirmed by the X-ray structure of plakalbumin, whose structure reflects the overall structure of intact serpins. The successful modeling experiment demonstrates the utility of MD for making gross structural predictions based on related structures. The binding loop of the intact form is modeled to allow docking with serine proteinases, in particular thrombin, which most highly constrains the possible conformations of the binding loop.  相似文献   

16.
Human cytochrome P450 (CYP) 2B6 activates the anticancer prodrug cyclophosphamide (CPA) by 4-hydroxylation. In contrast, the same enzyme catalyzes N-deethylation of a structural isomer, the prodrug ifosfamide (IFA), thus causing severe adverse drug effects. To model the molecular interactions leading to a switch in regioselectivity, the structure of CYP2B6 was modeled based on the structure of rabbit CYP2C5. We modeled the missing 22-residue loop in CYP2C5 between helices F and G (the F-G loop), which is not resolved in the X-ray structure, by molecular dynamics (MD) simulations using a simulated annealing protocol. The modeled conformation of the loop was validated by unconstrained MD simulations of the complete enzymes (CYP2C5 and CYP2B6) in water for 70 and 120 ps, respectively. The simulations were stable and led to a backbone r.m.s. deviation of 1.7 A between the two CYPs.The shape of the substrate binding site of CYP2B6 was further analyzed. It consists of three well-defined hydrophobic binding pockets adjacent to the catalytic heme. Size, shape and hydrophobicity of these pockets were compared to the shapes of the two structurally isomeric substrates. In their preferred orientation in the binding site, both substrates fill all three binding pockets without repulsive interactions. The distance to the heme iron is short enough for 4-hydroxylation and N-deethylation to occur for CPA and IFA, respectively. However, if the substrates are docked in the non-preferred orientation (such that 4-hydroxylation and N-deethylation would occur for IFA and CPA, respectively), one pocket is left empty, and clashes were observed between the substrates and the enzyme.  相似文献   

17.
Relationships between structure and function for retinol binding protein (RBP) are elucidated with help of a 2.0 A resolution X-ray structure of the holo-protein and an average molecular dynamics (MD) structure of the apo-form. Comparisons between MD simulations of both the apo- and holo-forms with the X-ray holo-structure show conformational changes in apo-RBP that may be functionally significant. The average three dimensional structure obtained for apo-RBP is compared to the related protein apo-beta-lactoglobulin. Available biochemical information is consistent with structure/function relationships derived here.  相似文献   

18.
The crystallographic dimer of the C-terminal fragment (CTF) of the L7/L12 ribosomal protein has been subjected to molecular dynamics (MD) simulations. A 90 picosecond (ps) trajectory for the protein dimer, 19 water molecules and two counter ions has been calculated at constant temperature. Effects of intermolecular interactions on the structure and dynamics have been studied. The exact crystallographic symmetry is lost and the atomic fluctuations differ from one monomer to the other. The average MD structure is more stable than the X-ray one, as judged by accessible surface area and energy calculations. Crystal (non-dimeric) interactions have been simulated in another 40 ps trajectory by using harmonic restraints to represent intermolecular hydrogen bonds. The conformational changes with respect ot the X-ray structure are then virtually suppressed.The unrestrained dimer trajectory has been scanned for cooperative motions involving secondary structure elements. The intrinsic collective motions of the monomer are transmitted via intermolecular contacts to the dimer structure.The existence of a stable dimeric form of CTF, resembling the crystallographic one, has been documented. At the cost of fairly small energy expenditure the dimer has considerable conformational flexibility. This flexibility may endow the dimer with some functional potential as an energy transducer.  相似文献   

19.
Molecular dynamics (MD) simulations on the complexes of glucoamylase II (471) from Aspergillus awamori var. X100 with two powerful inhibitors, 1-deoxynojirimycin and (+)-lentiginosine, have been performed, in order to build a model for these complexes in solution and to clarify the structure-activity relationship. MD calculations were carried out for 105 ps, over a 15 Å sphere centered on the inhibitors. A 8 Å residue-based cut-off was used, and the calculations were performed with explicit inclusion of solvent molecules. The MD structure of the complex 1-deoxynojirimycin-glucoamylase shows only minor deviations from the available X-ray structure. The MD structure of the complex of (+)-lentiginosine-glucoamylase, obtained by docking the inhibitor into the active site, suggests us a suitable orientation for the molecule into the enzyme cavity, which can rationalize the high inhibition activity found for (+)-lentiginosine towards amyloglucosidase from A. niger.  相似文献   

20.
The structure of the 1:1 nogalamycin:d(ATGCAT)2 complex has been determined in solution from high-resolution NMR data and restrained molecular dynamics (rMD) simulations using an explicit solvation model. The antibiotic intercalates at the 5'-TpG step with the nogalose lying along the minor groove towards the centre of the duplex. Many drug-DNA nuclear Overhauser enhancements (NOEs) in the minor groove are indicative of hydrophobic interactions over the TGCA sequence. Steric occlusion prevents a second nogalamycin molecule from binding at the symmetry-related 5'-CpA site, leading to the conclusion that the observed binding orientation in this complex is the preferred orientation free of the complication of end-effects (drug molecules occupy terminal intercalation sites in all X-ray structures) or steric interactions between drug molecules (other NMR structures have two drug molecules bound in close proximity), as previously suggested. Fluctuations in key structural parameters such as rise, helical twist, slide, shift, buckle and sugar pucker have been examined from an analysis of the final 500 ps of a 1 ns rMD simulation, and reveal that many sequence-dependent structural features previously identified by comparison of different X-ray structures lie within the range of dynamic fluctuations observed in the MD simulations. Water density calculations on MD simulation data reveal a time-averaged pattern of hydration in both the major and minor groove, in good agreement with the extensive hydration observed in two related X-ray structures in which nogalamycin is bound at terminal 5'-TpG sites. However, the pattern of hydration determined from the sign and magnitude of NOE and ROE cross-peaks to water identified in 2D NOESY and ROESY experiments identifies only a few "bound" water molecules with long residence times. These solvate the charged bicycloaminoglucose sugar ring, suggesting an important role for water molecules in mediating drug-DNA electrostatic interactions within the major groove. The high density of water molecules found in the minor groove in X-ray structures and MD simulations is found to be associated with only weakly bound solvent in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号