首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The RIO family of atypical serine protein kinases has been first characterized only recently. It consists of enzymes that contain a unique domain with a characteristic kinase sequence motif and usually some additional domains. At least two RIO proteins, Rio1 and Rio2, are present in organisms varying from Archaea to humans, with a third Rio3 subfamily present only in multicellular eukaryotes. Yeast Rio1 and Rio2 proteins have been implicated in the processing of 20 S pre-rRNA and are necessary for survival of the cells. Crystal structures of Archaeoglobus fulgidus Rio1 and Rio2 have shown that whereas the overall fold of these enzymes resembles typical protein kinases, some of the structural domains, particularly those involved in peptide substrate binding, are not present. The mode of binding of nucleotides also differs from that found in typical protein kinases. Although it has been shown that both Rio1 and Rio2 have the enzymatic activity of kinases and are capable of autophosphorylation, the biological substrates of RIO proteins and their full biological role still remain to be discovered.  相似文献   

2.
The RIO family of atypical serine/threonine kinases contains two subfamilies, Rio1 and Rio2, highly conserved from archaea to man. Both RIO proteins from Saccharomyces cerevisiae catalyze serine phosphorylation in vitro, and the presence of conserved catalytic residues is required for cell viability. The activity of Rio2 is necessary for rRNA cleavage in 40S ribosomal subunit maturation. We solved the X-ray crystal structure of Archaeoglobus fulgidus Rio2, with and without bound nucleotides, at 2.0 A resolution. The C-terminal RIO domain is indeed structurally homologous to protein kinases, although it differs from known serine kinases in ATP binding and lacks the regions important for substrate binding. Unexpectedly, the N-terminal Rio2-specific domain contains a winged helix fold, seen primarily in DNA-binding proteins. These discoveries have implications in determining the target and function of RIO proteins and define a distinct new family of protein kinases.  相似文献   

3.
Rio1 is the founding member of the RIO family of atypical serine kinases that are universally present in all organisms from archaea to mammals. Activity of Rio1 was shown to be absolutely essential in Saccharomyces cerevisiae for the processing of 18S ribosomal RNA, as well as for proper cell cycle progression and chromosome maintenance. We determined high-resolution crystal structures of Archaeoglobus fulgidus Rio1 in the presence and absence of bound nucleotides. Crystallization of Rio1 in the presence of ATP or ADP and manganese ions demonstrated major conformational changes in the active site, compared with the uncomplexed protein. Comparisons of the structure of Rio1 with the previously determined structure of the Rio2 kinase defined the minimal RIO domain and the distinct features of the RIO subfamilies. We report here that Ser108 represents the sole autophosphorylation site of A. fulgidus Rio1 and have therefore established its putative peptide substrate. In addition, we show that a mutant enzyme that cannot be autophosphorylated can still phosphorylate an inactive form of Rio1, as well as a number of typical kinase substrates.  相似文献   

4.
The RIO kinases are essential protein factors required for the synthesis of new ribosomes in eukaryotes. Conserved in archaeal organisms as well, RIO kinases are among the most ancient of protein kinases. Their exact molecular mechanisms are under investigation and progress of this research would be significantly improved with the availability of suitable molecular probes that selectively block RIO kinases. RIO kinases contain a canonical eukaryotic protein kinase fold, but also display several unusual structural features that potentially create opportunity for the design of selective inhibitors. In an attempt to identify structural leads to target the RIO kinases, a series of pyridine caffeic acid benzyl amides (CABA) were tested for their ability to inhibit the autophosphorylation activity of Archeaoglobus fulgidus Rio1 (AfRio1). Screening of a small library of CABA molecules resulted in the identification of four compounds that measurably inhibited AfRio1 activity. Additional biochemical characterization of binding and inhibition activity of these compounds demonstrated an ATP competitive inhibition mode, and allowed identification of the functional groups that result in the highest binding affinity. In addition, docking of the compound to the structure of Rio1 and determination of the X-ray crystal structure of a model compound (WP1086) containing the desired functional groups allowed detailed analysis of the interactions between these compounds and the enzyme. Furthermore, the X-ray crystal structure demonstrated that these compounds stabilize an inactive form of the enzyme. Taken together, these results provide an important step in identification of a scaffold for the design of selective molecular probes to study molecular mechanisms of Rio1 kinases in vitro and in vivo. In addition, it provides a rationale for the future design of potent inhibitors with drug-like properties targeting an inactive form of the enzyme. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).  相似文献   

5.
By means of profile-matching procedures, conservation of functionally important residues, and fold-recognition techniques, we show that two distinct families of lipopolysaccharide kinases encoded in the genomes of Gram-negative bacteria are related to each other and to two distinct classes of proteins, namely eukaryotic protein kinases and right open reading frame (RIO1). Members of one of the lipopolysaccharide kinase families are identified only in pathogenic bacteria. Phosphorylation by these enzymes is relevant in the construction of outer membrane, immune response, and pathogenic virulence. The class of proteins called RIO1, also related to eukaryotic protein kinases and previously known to occur only in archaea and eukaryotes, are now identified in eubacteria as well. It has been suggested here that RIO1 proteins are intermediately related to lipopolysaccharide kinases and eukaryotic protein kinases implying an evolutionary relationship between the three classes of proteins.  相似文献   

6.
Rio1p was identified as a protein serine kinase founding a novel subfamily. It is highly conserved from Archaea to man and only distantly related to previously established protein kinase families. Nevertheless, analysis of multiple protein sequence alignments shows that those amino acid residues that are important for either structure or catalytic activity in conventional protein kinases are also conserved in members of the Rio1p family at the respective positions (corresponding to domains I-XI of protein kinases). Recombinant Rio1p from Escherichia coli and tagged Rio1p from yeast has kinase activity in vitro, and mutation of amino acid residues that are conserved and indispensable for catalytic activity (i.e. ATP-binding motif, catalytic centre) abrogates activity. RIO1 is essential in yeast and plays a role in cell cycle progression. After sporulation of RIO1/rio1 diploids, RIO1-disrupted progeny cease growth after one to three cell divisions and arrest as either large unbudded or large-budded cells. Cells deprived of Rio1p are enlarged and arrest either in G1 or in mitosis mainly with the DNA at the bud neck and short spindles (a phenotype also seen in cells carrying a weak allele), suggesting that Rio1p activity is required for at least at two steps during the cell division cycle: for entrance into S phase and for exit from mitosis. The weak RIO1 allele leads to increased plasmid loss.  相似文献   

7.
Members of the right open reading frame (RIO) atypical kinase family are present in all three domains of life. In eukaryotes, three subfamilies have been identified: RIO1, RIO2, and RIO3. Studies have shown that the yeast and human RIO1 and RIO2 kinases are essential for the biogenesis of small ribosomal subunits. Thus far, RIO3 has been found only in multicellular eukaryotes. In this study, we systematically identified members of the RIO gene family in 37 species representing the major evolutionary lineages in Viridiplantae. A total of 84 RIO genes were identified; among them, 41 were classified as RIO1 and 43 as RIO2. However, no RIO3 gene was found in any of the species examined. Phylogenetic trees constructed for plant RIO1 and RIO2 proteins were generally congruent with the species phylogeny. Subcellular localization analyses showed that the plant RIO proteins were localized mainly in the nucleus and/or cytoplasm. Expression profile analysis of rice, maize, and Arabidopsis RIO genes in different tissues revealed similar expression patterns between RIO1 and RIO2 genes, and their expression levels were high in certain tissues. In addition, the expressions of plant RIO genes were regulated by two drugs: mycophenolic acid and actinomycin D. Function prediction using genome-wide coexpression analysis revealed that most plant RIO genes may be involved in ribosome biogenesis. Our results will be useful for the evolutionary analysis of the ancient RIO kinase family and provide a basis for further functional characterization of RIO genes in plants.  相似文献   

8.
During eukaryotic ribosome biogenesis, members of the conserved atypical serine/threonine protein kinase family, the RIO kinases (Rio1, Rio2 and Rio3) function in small ribosomal subunit biogenesis. Structural analysis of Rio2 indicated a role as a conformation-sensing ATPase rather than a kinase to regulate its dynamic association with the pre-40S subunit. However, it remained elusive at which step and by which mechanism the other RIO kinase members act. Here, we have determined the crystal structure of the human Rio1–ATP–Mg2+ complex carrying a phosphoaspartate in the active site indicative of ATPase activity. Structure-based mutations in yeast showed that Rio1''s catalytic activity regulates its pre-40S association. Furthermore, we provide evidence that Rio1 associates with a very late pre-40S via its conserved C-terminal domain. Moreover, a rio1 dominant-negative mutant defective in ATP hydrolysis induced trapping of late biogenesis factors in pre-ribosomal particles, which turned out not to be pre-40S but 80S-like ribosomes. Thus, the RIO kinase fold generates a versatile ATPase enzyme, which in the case of Rio1 is activated following the Rio2 step to regulate one of the final 40S maturation events, at which time the 60S subunit is recruited for final quality control check.  相似文献   

9.
RIO1 and Rio-related proteins display little similarity of primary sequence with conventional protein kinases. Based on secondary structure alignments, we show that it contains the domain structure (subdomains I-XI) and conserved secondary structure elements found in conventional protein kinases. We show that recombinant wild-type Rio1p isolated from Escherichia coli displays kinase activity which depends on autophosphorylation and magnesium or manganese as ATP-activating ions. An initial biochemical characterization of Rio1p is presented.  相似文献   

10.
The highly conserved, atypical RIO serine protein kinases are found in all organisms, from archaea to man. In yeast, the kinase activity of Rio2 is necessary for the final processing step of maturing the 18S ribosomal rRNA. We have previously shown that the Rio2 protein from Archaeoglobus fulgidus contains both a small kinase domain and an N-terminal winged helix domain. Previously solved structures using crystals soaked in nucleotides and Mg2+ or Mn2+ showed bound nucleotide but no ordered metal ions, leading us to the conclusion that they did not represent an active conformation of the enzyme. To determine the functional form of Rio2, we crystallized it after incubation with ATP or ADP and Mn2+. Co-crystal structures of Rio2-ATP-Mn and Rio2-ADP-Mn were solved at 1.84 and 1.75 angstroms resolution, respectively. The gamma-phosphate of ATP is firmly positioned in a manner clearly distinct from its location in canonical serine kinases. Comparison of the Rio2-ATP-Mn complex with the Rio2 structure with no added nucleotides and with the ADP complex indicates that a flexible portion of the Rio2 molecule becomes ordered through direct interaction between His126 and the gamma-phosphate oxygen of ATP. Phosphopeptide mapping of the autophosphorylation site of Rio2 identified Ser128, within the flexible loop and directly adjacent to the part that becomes ordered in response to ATP, as the target. These results give us further information about the nature of the active site of Rio2 kinase and suggest a mechanism of regulation of its enzymatic activity.  相似文献   

11.
Using co-immunoprecipitation combined with MS analysis, we identified the alpha' subunit of casein kinase 2 (CK2) as an interaction partner of the atypical Rio1 protein kinase in yeast. Co-purification of Rio1p with CK2 from Deltacka1 or Deltacka2 mutant extracts shows that Rio1p preferentially interacts with Cka2p in vitro. The C-terminal domain of Rio1p is essential and sufficient for this interaction. Six C-terminally located clustered serines were identified as the only CK2 sites present in Rio1p. Replacement of all six serine residues by aspartate, mimicking constitutive phosphorylation, stimulates Rio1p kinase activity about twofold in vitro compared with wild-type or the corresponding (S > A)(6) mutant proteins. Both mutant alleles (S > A)(6) or (S > D)(6) complement in vivo, however, growth of the RIO1 (S > A)(6) mutant is greatly retarded and shows a cell-cycle phenotype, whereas the behaviour of the RIO1 (S > D)(6) mutant is indistinguishable from wild-type. This suggests that phosphorylation by protein kinase CK2 leads to moderate activation of Rio1p in vivo and promotes cell proliferation. Physiological studies indicate that phosphorylation by CK2 renders the Rio1 protein kinase susceptible to proteolytic degradation at the G(1)/S transition in the cell-division cycle, whereas the non-phosphorylated version is resistant.  相似文献   

12.
Mitogen-activated protein (MAP) kinase cascades were originally identified as protein phosphorylation systems that control the division and the growth of yeast and animal cells. Such cascades consist of MAP kinases, MAP-kinase kinases, and MAP-kinase-kinase kinases. In addition, these organisms have been also shown to have structurally related but functionally different MAP kinase cascades, which are involved in various cellular processes such as a response to osmotic stress and apoptosis. Plants also have been shown to have a number of members of each kinase family. Although physiological and genetic functions of most plant members have yet to be established, some of members have been shown to be responsible for the cellular transmission of signals generated by wounding or a mechanical stress, which predicts that MAP kinase cascades may function in a variety of physiological processes in the plant cells. In the present review, we summarize recent progresses of researches on plant members of each kinase family as well as those of analyses of the cascades in other organisms.  相似文献   

13.
14.
The ribosomal stalk composed of acidic P1/P2 proteins and protein P0 is involved directly in the interaction of the elongation factors and mRNAs with the ribosome during protein synthesis. All P proteins are found to be phosphorylated in eucaryotic organisms. In Saccharomyces cerevisiae five different cAMP-independent protein kinases phosphorylating P proteins have been identified and characterized. In contrast to many other protein kinases, relatively little is known about inhibitors of these enzymes. A new protein inhibitor of protein kinases has been purified and characterized. It is a small (18.5 kDa) and acidic (pI = 4.2) protein with high inhibitory potency for PK60S and CK 2. The inhibitor is competitive with respect to protein substrates with Ki values in the range of approximately 6.5 microM for PK60S and approximately 22 microM for CK 2.  相似文献   

15.
Numerous nonribosomal trans-acting factors involved in pre-rRNA processing have been characterized, but few of them are specifically required for the last cytoplasmic steps of 18S rRNA maturation. We have recently demonstrated that Rrp10p/Rio1p is such a factor. By BLAST analysis, we identified the product of a previously uncharacterized essential gene, YNL207W/RIO2, called Rio2p, that shares 43% sequence similarity with Rrp10p/Rio1p. Rio2p homologues were identified throughout the Archaea and metazoan species. We show that Rio2p is a cytoplasmic-nuclear protein and that its depletion blocks 18S rRNA production, leading to 20S pre-rRNA accumulation. In situ hybridization reveals that in Rio2p-depleted cells, 20S pre-rRNA localizes in the cytoplasm, demonstrating that its accumulation is not due to an export defect. We also show that both Rio1p and Rio2p accumulate in the nucleus of crm1-1 cells at the nonpermissive temperature. Nuclear as well as cytoplasmic Rio2p and Rio1p cosediment with pre-40S particles. These results strongly suggest that Rio2p and Rrp10p/Rio1p are shuttling proteins which associate with pre-40S particles in the nucleus and they are not necessary for export of the pre-40S complexes but are absolutely required for the cytoplasmic maturation of 20S pre-rRNA at site D, leading to mature 40S ribosomal subunits.  相似文献   

16.
RIO proteins form a conserved family of atypical protein kinases. Humans possess three distinct RIO kinases-hRio1, hRio2, and hRio3, of which only hRio2 has been characterized with respect to its role in ribosomal biogenesis. Here we show that both hRio1 and hRio3, like hRio2, are associated with precursors of 40S ribosomal subunits in human cells. Furthermore, we demonstrate that depletion of hRio1 by RNA interference affects the last step of 18S rRNA maturation and causes defects in the recycling of several trans-acting factors (hEnp1, hRio2, hLtv1, hDim2/PNO1, and hNob1) from pre-40S subunits in the cytoplasm. Although the effects of hRio1 and hRio2 depletion are similar, we show that the two kinases are not fully interchangeable. Moreover, rescue experiments with a kinase-dead mutant of hRio1 revealed that the kinase activity of hRio1 is essential for the recycling of the endonuclease hNob1 and its binding partner hDim2 from cytoplasmic pre-40S. Kinase-dead hRio1 is trapped on pre-40S particles containing hDim2 and hNob1 but devoid of hEnp1, hLtv1, and hRio2. These data reveal a role of hRio1 in the final stages of cytoplasmic pre-40S maturation.  相似文献   

17.
Pleckstrin homology domains of tec family protein kinases.   总被引:2,自引:0,他引:2  
Pleckstrin homology (PH) domains have been shown to be involved in different interactions, including binding to inositol compounds, protein kinase C isoforms, and heterotrimeric G proteins. In some cases, the most important function of PH domains is transient localisation of proteins to membranes, where they can interact with their partners. Tec family protein tyrosine kinases contain a PH domain. In Btk, also PH domain mutations lead into an immunodeficiency, X-linked agammaglobulinemia (XLA). A new disease-causing mutation was identified in the PH domain. The structures for the PH domains of Bmx, Itk, and Tec were modelled based on Btk structure. The domains seem to have similar scaffolding and electrostatic polarisation but to have some differences in the binding regions. The models provide new insight into the specificity, function, and regulation of Tec family kinases.  相似文献   

18.
Numerous non-ribosomal trans-acting factors involved in pre-ribosomal RNA processing have been characterized, but none of them is specifically required for the last cytoplasmic steps of 18S rRNA maturation. Here we demonstrate that Rio1p/Rrp10p is such a factor. Previous studies showed that the RIO1 gene is essential for cell viability and conserved from archaebacteria to man. We isolated a RIO1 mutant in a screen for mutations synthetically lethal with a mutant allele of GAR1, an essential gene required for 18S rRNA production and rRNA pseudouridylation. We show that RIO1 encodes a cytoplasmic non-ribosomal protein, and that depletion of Rio1p blocks 18S rRNA production leading to 20S pre-rRNA accumulation. In situ hybridization reveals that, in Rio1p depleted cells, 20S pre-rRNA localizes in the cytoplasm, demonstrating that its accumulation is not due to an export defect. This strongly suggests that Rio1p is involved in the cytoplasmic cleavage of 20S pre-rRNA at site D, producing mature 18S rRNA. Thus, Rio1p has been renamed Rrp10p (ribosomal RNA processing #10). Rio1p/Rrp10p is the first non-ribosomal factor characterized specifically required for 20S pre-rRNA processing.  相似文献   

19.
SR proteins constitute a family of splicing factors that play key roles in both constitutive and regulated splicing in metazoan organisms. The proteins are extensively phosphorylated, and kinases capable of phosphorylating them have been identified. However, little is known about how these kinases function, for example, whether they target specific SR proteins or whether the kinases themselves are regulated. Here we describe properties of one such kinase, Clk/Sty, the founding member of the Clk/Sty family of dual-specificity kinases. Clk/Sty is autophosphorylated on both Ser/Thr and Thr residues, and using both direct kinase assays and SR protein-dependent splicing assays, we have analyzed the effects of each type of modification. We find not only that the pattern of phosphorylation on a specific SR protein substrate, ASF/SF2, is modulated by autophosphorylation but also that the ability of Clk/Sty to recognize different SR proteins is influenced by the extent and nature of autophosphorylation. Strikingly, phosphorylation of ASF/SF2 is sensitive to changes in Tyr, but not Ser/Thr, autophosphorylation while that of SC35 displays the opposite pattern. In contrast, phosphorylation of a third SR protein, SRp40, is unaffected by autophosphorylation. We also present biochemical data indicating that as expected for a factor directly involved in splicing control (but in contrast to recent reports), Clk/Sty is found in the nucleus of several different cell types.  相似文献   

20.
Serine/threonine protein kinases of the Ste20p/PAK family are highly conserved from yeast to man. These protein kinases have been implicated in the signaling from heterotrimeric G proteins to mitogen-activated protein (MAP) kinase cascades and to cytoskeletal components such as myosin-I. In the yeast Saccharomyces cerevisiae, Ste20p is involved in transmitting the mating-pheromone signal from the betagamma-subunits of a heterotrimeric G protein to a downstream MAP kinase cascade. We have previously shown that binding of the G-protein beta-subunit (Gbeta) to a short binding site in the non-catalytic carboxy-terminal region of Ste20p is essential fortransmitting the pheromone signal. In this study, we searched protein sequence databases for sequences that are similar to the Gbeta binding site in Ste20p. We identified a sequence motif with the consensus sequence S S L phi P L I/V x phi phi beta (x: any residue; phi: A, I, L, S, or T; beta: basic residues) that is solely present in members of Ste20p/PAK family protein kinases. We propose that this sequence motif, which we have designated GBB (Gbeta binding) motif, is specifically responsible for binding of Gbeta to Ste20p/PAK protein kinases in response to activation of heterotrimeric G protein coupled receptors. Thus, the GBB motif is a novel type of signaling domain that serves to link protein kinases of the Ste20p/PAK family to G protein coupled receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号