首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Migration of the gap junction protein connexin 43 (Cx43) in SDS-PAGE yields 2 to 4 distinct bands, detectable in the 40-47 kDa range. Here, we show that antibodies against the carboxy-terminal domain of Cx43 recognized an additional 20-kDa product. This protein was detected in some culture cell lysates. The presence of the 20-kDa band was not prevented by the use of protease inhibitors (Complete® and phenylmethylsulfonyl fluoride (PMSF), 1-5 mM). The band was absent from cells treated with Cx43-specific RNAi, and from those derived from Cx43-deficient mice, indicating that this Cx43-immunoreactive protein is a product of the Cx43 gene. Treatment of CHO cells with cyclosporin A caused a reduction in the amount of full-length Cx43 and a concomitant increase in the amount of the 20-kDa band. Overall, our data show that a fraction of the Cx43-immunoreactive protein pool within a given cell may correspond to a C-terminal fragment of the protein.  相似文献   

3.
Bone osteoblasts and osteocytes express large amounts of connexin (Cx) 43, the component of gap junctions and hemichannels. Previous studies have shown that these channels play important roles in regulating biological functions in response to mechanical loading. Here, we characterized the distribution of mRNA and protein of Cx43 in mechanical loading model of tooth movement. The locations of bone formation and resorption have been well defined in this model, which provides unique experimental systems for better understanding of potential roles of Cx43 in bone formation and remodeling under mechanical stimulation. We found that mechanical loading increased Cx43 mRNA expression in osteoblasts and bone lining cells, but not in osteocytes, at both formation and resorption sites. Cx43 protein, however, increased in both osteoblasts and osteocytes in response to loading. Interestingly, the upregulation of Cx43 protein by loading was even more pronounced in osteocytes compared to other bone cells, with an appearance of punctate staining on the cell body and dendritic process. Cx45 was reported to be expressed in several bone cell lines, but here we did not detect the Cx45 protein in the alveolar bone cells. These results further suggest the potential involvement of Cx43-forming gap junctions and hemichannels in the process of mechanically induced bone formation and resorption.  相似文献   

4.
Connexin 33 (Cx33) is a testis-specific gap junction protein. We previously reported that Cx33 exerts dominant-negative effect on gap junction intercellular communication by sequestering Cx43 within early endosomes in Sertoli cells. However, the molecular mechanisms that drive this process are unknown. The present study analyzed: (i) the trafficking of Cx33 and Cx43 in wild-type Sertoli cells transfected with Cx33-DsRed2 and Cx43-green fluorescent protein vectors; (ii) the formation of heteromeric Cx33/Cx43 hemi-channels and their incorporation into gap junction plaques. Fluorescence lifetime imaging microscopy-fluorescence resonance energy transfer and videomicroscopy studies demonstrated that Cx33 and Cx43 associated to form heteromeric oligomers that trafficked along microtubules to the plasma membrane. However, the plaques containing Cx33 were not functional. Immunoprecipitation experiments revealed that zonula occludens-1 (ZO-1), a scaffold protein proposed to secure Cx in gap junction plaques at the cell–cell boundary, associated with Cx33 in testis extracts. In cells expressing Cx33, Cx33 and ZO-1 specifically interacted with P1 phosphorylated and P0 unphosphorylated isoforms of Cx43, and the ZO-1 membranous signal level was reduced. It is suggested that alteration of Cx43/ZO-1 association by Cx33 could be one mechanism by which Cx33 exerts its dominant-negative effect on gap junction plaque.  相似文献   

5.
连接子蛋43(connexin 43,Cx43)是骨组织中主要的间隙连接(gap junction)蛋白和半通道(hemichannel)蛋白,由Cx43形成的间隙连接及半通道实现了骨组织细胞间的直接通讯。连接子蛋白对骨组织的正常发育、骨重建过程的建立与平衡是非常重要的。目前研究指出,Cx43不仅参与了骨组织的力学响应过程,也参与了二磷酸盐、甲状旁腺激素等药物对骨重建的调节过程。该文以骨组织细胞内信号传递途径的关键分子Cx43为对象,就其目前的研究现状作一综述。  相似文献   

6.
In the ovarian follicle, granulosa cells adjacent to the oocyte extend processes through the zona pellucida matrix, and these projections establish gap junctions both with the oocyte and with neighboring transzonal projections. The identity of connexins contributing to gap junctions between transzonal projections has not been extensively studied. Here, we examined the expression pattern of Cx37 and Cx43 in mouse zona pellucida using multiple connexin-specific antibodies. Immunofluorescence staining revealed abundant Cx37 and Cx43 puncta within the zona pellucida of both preantral and antral follicles. Cx37 persisted in the zona pellucida of mature follicles up to 5 h after an ovulatory stimulus whereas Cx43 was reduced in the zona pellucida by 3 h after an ovulatory stimulus. We suggest that in addition to its role in oocyte-granulosa cell communication, Cx37 could enable a distinct communication pathway between those granulosa cells that are in direct contact with the oocyte.  相似文献   

7.
缝隙连接蛋白在细胞膜表面聚合形成半通道,部分两两结合构成缝隙连接通道,两者与胚胎发育、肿瘤发生及某些心脑血管疾病有关。Connexin 43(Cx43)在心肌细胞和神经细胞高表达,在多种缺血性心脑疾病及缺血再灌注损伤的病理过程中具有重要作用。近来有研究发现,Cx43也存在于线粒体和细胞核,分别参与心肌保护和细胞分化。该文以心肌细胞和神经细胞为主讨论近年来Cx43在细胞死亡中的作用的研究进展。  相似文献   

8.
Connexins, the family of proteins that form vertebrate gap junctions, have key roles during development and in the adult. Previously, the physiological actions of connexins have been ascribed solely to formation of gap junction channels and thought to be mediated by the transfer of small molecules between neighboring cells. In conflict with this hypothesis here we demonstrate that Cx43 can affect cell growth independently of gap junction formation. This conclusion is based on four findings: (1) There is a lack of correlation between the action of Cx43 mutants Cx43-S255A, Cx43-S279A, and Cx43-S282A on growth and cell coupling in 3T3 A31 fibroblasts. (2) Blockade of gap junction formation, by either heptan-1-ol treatment or culturing cells at low density, had no effect on the ability of the Cx43 mutants to control growth. (3) Wildtype Cx43 inhibited growth of Neuro2a cells under conditions where gap junctions were unable to form. (4) The CT domain of Cx43, which lacks intrinsic gap junction activity, is as effective as the wildtype molecule in suppressing the growth of Neuro2a cells. These observations demonstrate that Cx43 has dual functions: first, its well-accepted role in forming a gap junction channel and, second, a direct action of the connexin protein on growth that is mediated via the cytoplasmic carboxyl domain.  相似文献   

9.
The goals of the current study were to determine whether the conductance of Cx40 and Cx40-Cx43 mixed composition junctions was regulated by platelet-derived growth factor (PDGF)-activated signaling cascades, to ascertain the minimum number of Cx43 subunits/connexon required to confer PDGF sensitivity, and to identify specific residues in Cx43 required for this regulation. Junctional and channel conductances (gjand γj, respectively) were determined for Cx40/Cx40, Cx43/Cx43, Cx40/Cx43, and Cx40-Cx43/Cx40-Cx43 mixed composition channels. PDGF had no effect on gjin Cx40/Cx40 pairs, but decreased gjin the remaining combinations by 53% (Cx43/Cx43), 48% (Cx40/Cx43), 41% (4:1 Cx40:Cx43 expression ratio) and 24% (10:1 Cx40:Cx43 expression ratio). Based on the predicted connexin composition of channels in cells expressing Cx40 and Cx43 at either 4:1 or 10:1 ratios, these decreases in gjsuggest that a single subunit of Cx43 is sufficient to confer PDGF sensitivity. The effect of PDGF on gjinvolved a decrease in both γjand Po and required serine 368 in the C-terminus. These data implicate protein kinase C as the mediator of the PDGF effect and strongly suggest that acute regulation of gap junction function by PDGF-activated signaling cascades is conferred by low levels of expression of a sensitive connexin in cells that otherwise express insensitive connexins.  相似文献   

10.
The goals of the current study were to determine whether the conductance of Cx40 and Cx40-Cx43 mixed composition junctions was regulated by platelet-derived growth factor (PDGF)-activated signaling cascades, to ascertain the minimum number of Cx43 subunits/connexon required to confer PDGF sensitivity, and to identify specific residues in Cx43 required for this regulation. Junctional and channel conductances (gj and γj, respectively) were determined for Cx40/Cx40, Cx43/Cx43, Cx40/Cx43, and Cx40-Cx43/Cx40-Cx43 mixed composition channels. PDGF had no effect on gj in Cx40/Cx40 pairs, but decreased gj in the remaining combinations by 53% (Cx43/Cx43), 48% (Cx40/Cx43), 41% (4:1 Cx40:Cx43 expression ratio) and 24% (10:1 Cx40:Cx43 expression ratio). Based on the predicted connexin composition of channels in cells expressing Cx40 and Cx43 at either 4:1 or 10:1 ratios, these decreases in gj suggest that a single subunit of Cx43 is sufficient to confer PDGF sensitivity. The effect of PDGF on gj involved a decrease in both γj and Po and required serine 368 in the C-terminus. These data implicate protein kinase C as the mediator of the PDGF effect and strongly suggest that acute regulation of gap junction function by PDGF-activated signaling cascades is conferred by low levels of expression of a sensitive connexin in cells that otherwise express insensitive connexins.  相似文献   

11.
Abnormalities in cardiac gap junction expression have been postulated to contribute to arrhythmias and ventricular dysfunction. We investigated the role of cardiac gap junctions by generating a heart-specific conditional knock-out (CKO) of connexin43 (Cx43), the major cardiac gap junction protein. While the Cx43 CKO mice have normal heart structure and contractile function, they die suddenly from spontaneous ventricular arrhythmias. Because abnormalities in gap junction expression in the diseased heart can be focal, we also generated chimeric mice formed from Cx43-null embryonic stem (ES) cells and wildtype recipient blastocysts. Heterogeneous Cx43 expression in the chimeric mice resulted in conduction defects and depressed contractile function. These novel genetic murine models of Cx43 loss of function in the adult mouse heart define gap junctional abnormalities as a key molecular feature of the arrhythmogenic substrate and an important factor in heart dysfunction.  相似文献   

12.
Connexin43 (Cx43) forms gap junction channels but also serves as a signaling center by binding to proteins via its C‐terminus. We have previously demonstrated that transfection of Cx43 leads to significantly reduced proliferation of placental tumor cells through upregulating and binding of the growth regulator CCN3 (NOV) at the C‐terminus of Cx43. Here, we combined fluorescence resonance energy transfer (FRET), co‐immunoprecipitation and proliferation and expression assays to characterize the interaction complex of Cx43 and CCN3. FRET measurements confirmed the interaction of CCN3 with wild‐type Cx43 (amino acids 1‐382) and with mutants of Cx43 truncated at the C‐terminus resulting in Cx43 proteins of amino acids 1‐374, 1‐273, 1‐264, 1‐257 in 293T cells. These results matched the co‐immunoprecipitation data. Interestingly, although FRET revealed distinct efficiencies in interaction of Cx43 with CCN3 for all deletion constructs only wild‐type Cx43 and one deletion construct (1‐374) led to increased CCN3 expression. Only these interactions which were associated with increased CCN3 expression resulted in a reduced cell proliferation. Our study provides evidence that only defined binding properties between Cx43 and CCN3 leading to an upregulation of CCN3 are needed for signaling. Furthermore, the data obtained by FRET analysis allowed us to model the 3D structure of the C‐terminus of Cx43 interacting with CCN3. J. Cell. Biochem. 110: 129–140, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
BACKGROUND: Elevated homocysteine levels during embryonic development can result in neural tube and cardiovascular defects. The mechanisms that underlie the toxic effect of homocysteine are largely unknown. METHODS: We cultured mouse neural tube explants to study the effects of homocysteine on the migratory behavior of neural crest cells and on the levels of the gap junction protein Connexin43 (C x 43) and the actin- and C x 43-interacting protein ZO-1. RESULTS: Homocysteine exposure resulted in a significantly augmented maximal migration distance (MMD). The level of C x 43 immunolabeling was 2 times higher in the cytoplasm and cell protrusions of neural crest cells in homocysteine-treated cultures than in control cultures. Furthermore, colocalization of C x 43 and ZO-1 was increased in neural crest cell protrusions by this treatment. CONCLUSION: Increased C x 43 levels were previously shown to result in abnormal embryonic development. Our data raises the hypothesis that the embryotoxic effects of homocysteine may be mediated in part by its effects on C x 43 expression level and gap junction function in neural crest cells.  相似文献   

14.
In human testis, gap junctions containing connexin(Cx)43 are located within the seminiferous epithelium between Sertoli cells and between Sertoli and germ cells. Cx43 is known to play a role in the differentiation and proliferation of these cell types. It can further be associated with human seminoma development. The dog has been proposed as a model for studies of the male reproductive system, because of the frequent occurrence of testicular neoplasms. Thus, we investigated Cx43-mRNA and -protein expression in testes of normal prepubertal dogs, adult dogs, and in canine testicular tumors. Sertoli cells in prepubertal cords express Cx43 mRNA, but do synthesize only less Cx43 protein. Within the seminiferous tubules, Cx43 mRNA was detected in Sertoli cells, spermatogonia, and spermatocytes. Cx43 protein was mainly present in the basal compartment. In canine testicular tumors Cx43 mRNA was detectable in both seminoma and neoplastic Sertoli cells, whereas Cx43 protein was only found in neoplastic Sertoli cells. Our data indicate that Cx43 is regulated differentially in testicular tumors and that alterations of Cx43 expression may be involved in the pathogenesis of canine testicular malignancies. This study represents the first morphological work on the spatiotemporal expression pattern of Cx43 in normal and neoplastic canine testis.  相似文献   

15.
In the heart, the intercellular geometry of myocyte coupling by Connexin43-gap junctions (Cx43-gjs) is a determinant of normal and abnormal patterns of propagation of electrical excitation. ZO-1 has been suggested to play a role in determining the pattern of intercellular coupling between myocytes. We therefore investigated the co-distribution of Cx43 with ZO-1 in ventricular myocytes of the adult rat using quantitative immunoconfocal microscopy. Our data indicates that low-moderate levels of co-immunolocalization occur between Cx43 and ZO-1 in normal ventricular myocardium. However, rapid and significant increases in relative co-localization occur between Cx43 and ZO-1 following dissociation of myocytes from ventricular myocardium-a treatment inducing internalization of Cx43-gjs. This increased relative co-localization may represent an increase in Cx43-ZO-1 interaction, suggesting a role for ZO-1 in the remodeling of myocardial Cx43-gjs. A more comprehensive study, including immuno-precipitation and immunoelectron microscopy analyses has been carried out (Barker et al. Circ. Res., in press, 2002 and as presented to the 2001 International GJ Conference). This study further assesses the biological relevance of the increased association between ZO-1 and Cx43 accompanying internalization of Cx43-gjs.  相似文献   

16.
In the heart, the intercellular geometry of myocyte coupling by Connexin43-gap junctions (Cx43-gjs) is a determinant of normal and abnormal patterns of propagation of electrical excitation. ZO-1 has been suggested to play a role in determining the pattern of intercellular coupling between myocytes. We therefore investigated the co-distribution of Cx43 with ZO-1 in ventricular myocytes of the adult rat using quantitative immunoconfocal microscopy. Our data indicates that low-moderate levels of co-immunolocalization occur between Cx43 and ZO-1 in normal ventricular myocardium. However, rapid and significant increases in relative co-localization occur between Cx43 and ZO-1 following dissociation of myocytes from ventricular myocardium-a treatment inducing internalization of Cx43-gjs. This increased relative co-localization may represent an increase in Cx43-ZO-1 interaction, suggesting a role for ZO-1 in the remodeling of myocardial Cx43-gjs. A more comprehensive study, including immuno-precipitation and immunoelectron microscopy analyses has been carried out (Barker et al. Circ. Res., in press, 2002 and as presented to the 2001 International GJ Conference). This study further assesses the biological relevance of the increased association between ZO-1 and Cx43 accompanying internalization of Cx43-gjs.  相似文献   

17.
18.
Hemodynamic forces play a critical role in atherogenesis, as evidenced by the focal pattern of development of atherosclerotic lesions. Whereas disturbed flow in the branches and curved regions of large arteries is proatherogenic, laminar flow in the straight parts of vessels is atheroprotective. In addition, hypertension and age-related changes in arterial stiffness are important risk factors of the disease. Hemodynamic forces induce various changes in the structure and function of vascular endothelium, many of which reflect alterations in gene expression. Endothelial cells are linked by gap junctions, which facilitate the propagation of electrical and chemical signals along the vascular wall. Using an in vitro perfusion system, we investigated the effects of pulsed unidirectional and oscillatory flows in combination with different levels of hydrostatic pressure and circumferential stretch on the expression of Cx43 in endothelial cells. Our results show that shear stress and circumferential stretch, but not pressure, modulate the expression of Cx43. In view of the distribution of this protein along the vascular tree, our findings provide new insights into the role of mechanical forces on gap junctional communication in regions prone to the development of atherosclerosis.  相似文献   

19.
We analyzed the expression of connexin(Cx)43 in proliferating and differentiating C2C12cells and in myoblasts obtained from newborn mice. Cx43 was present in both cell types and under both conditions. The functional role of gap junctional communication (GJC) during terminal differentiation was evaluated in C2C12myoblasts in the presence or absence of the gap junction blocker 18β-glycyrrhetinic acid (β-GA). Differentiation was temporally analyzed through myogenin expression, activity of creatine kinase (CK), and yield of multinucleated cells. In cells treated with β-GA, the CK activity and myotube formation were reversibly blocked. While in control cultures positive myogenin expression was seen in cell clusters, in β-GA treated cultures the myogenin immunoreactivity was detected in few, preferentially sparse cells. The role of Cx43 during terminal differentiation was evaluated in cultures of myoblasts obtained from Cx43Cre-ER(T)/fltransgenic mice. Inducible deletion of Cx43 was obtained upon activation of Cre-ER(T) via 4-OH-tamoxifen applications. Cx43 deletion led to a drastic decrease in myogenin expression at 24 h of differentiation as compared to myoblasts from control mice. Our results indicate that Cx43-containing gap junctions are required for normal skeletal muscle terminal differentiation. These channels might provide a pathway for the intercellular transfer of signals involved in myogenesis.  相似文献   

20.
Connexin-43(Cx43)-based gap junctional communication is transiently inhibited by certain G protein-coupled receptor agonists, including lysophosphatidic acid, endothelin and thrombin. Our previous studies have implicated the c-Src protein tyrosine kinase in mediating closure of Cx43 based gap junctions. Pervanadate, an inhibitor of protein tyrosine phosphatases, mimics activated Src in inhibiting Cx43 gap junctional communication, apparently by promoting tyrosine phosphorylation of the Cx43 C-terminal tail. However, the identity of the protein tyrosine phosphatase(s) that may normally prevent Src-induced gap junction closure is unknown. Receptor-like protein tyrosine phosphatases that mediate homotypic cell-cell interaction are attractive candidates. Here we show that receptor protein tyrosine phosphatase μ (RPTPμ) interacts with Cx43 in diverse cell systems. We find that the first catalytic domain of RPTPμ binds to Cx43. Our results support a model in which RPTPμ, or a closely related protein tyrosine phosphatase, interacts with the regulatory C-terminal tail of Cx43 to prevent Src-mediated closure of Cx43 gap junctional channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号