首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structural regulation of the access of acrylamide molecules, as quenchers, to the buried tryptophans of a protein can be modelled by a simple gate concept. Such a gate, when open, allows transient exposure of the fluorophore to the quencher molecule in solution. We have previously shown that the observed viscosity dependence of acrylamide quenching process in ribonuclease T1 (RNAse T1) is not reconcilable with the gating mechanism. However, on that occasion, we neglected the effect of changes in the activity of the quencher molecule and the possible presence of static quenching. The experimental observation of a considerable contribution by static quenching and the realization that static quenching might produce dramatic effects in steady state measurements led us to reexamine the question. It is shown that in a gating model the static component can also influence the apparent dynamic quenching. In this paper, we present derived equations for the gated quenching mechanism including possible contributions from the static component. We also carefully remeasured the acrylamide quenching of RNAase T1 as a function of increasing glycerol concentration. Computer simulations were carried out to compare the experimental data set to the generalized model. We reach the conclusion that even the new, quite complex equations fail to predict the qualitative and quantitative features of the observed quenching experiments. We arrived at the conclusion that the fluorophore is never the target of the quencher molecules in solution.  相似文献   

2.
利用H^+-ATP酶复合中的Fo的色氨酸荧光,观察了复合体中F1结合ATP或ADP时,Fo的荧光猝灭常数的变化结果表明F1结合ATP或ADP时Fo可得到不同的猝来常数,也就是Fo会产生不同的构象变化。这些结果说明了H^+ATP酶合ATP合成的过程中F1与Fo之间存在着构象之间的通信与传递。  相似文献   

3.
利用H+-ATP酶复合体(也称ATP合成酶)中的Fo的色氨酸荧光,观察了复合体中F1结合ATP或ADP(酶蛋白与底物分子比为1:1)时,Fo的荧光猝灭常数的变化(用竹红菌乙作为膜区蛋白荧光的猝灭剂)结果表明F1结合ATP或ADP时Fo可得到不同的猝灭常数(Ksv),也就是Fo会产生不同的构象变化。加入二价金属离子起动ATP水解反应结束后:ATP+H2O→ADP+Pi,这时可以在Fo观察到与ADP加Mg2+时相同猝灭常数Ksv;用荧光强度随时间进程变化的实验可观察到F1水解过程中导致Fo构象变化的动力学过程。这些结果说明了H+-ATP酶复合体ATP合成的过程中F1与Fo之间存在着构象之间的通信与传递。  相似文献   

4.
The hypocrellin B (HB) was used as a fluorescence quencher to study the basic physical characteris-tics of HB in membrane systems, including the diffusion speed of quencher from aqueous phase into membrane phase, the partition coefficient (P) of quencher between membrane and water, and the fluorescence quenching constant of protein (Ksv; Kq). The experimental results show that the quenching of fluorescence in membrane protein by HB can be determined by the principle of dynamic quenching. The experimental process of fluorescence quenching was ob-served in detail by using the ESR technique. The signal of HB" was found to arise from an electron transfer from ex-cited trytophan to HB.  相似文献   

5.
We performed an investigation of the pH-dependent quenching of the fluorescence of tryptophan residues of TEM-1 beta-lactamase from E. coli by uncharged and charged quenchers. pH-dependent Stern-Volmer constants (Ksv/pH) of tryptophan residues allowed us to determine subtle but discrete structurally and functionally important processes.  相似文献   

6.
Tryptophan (Trp) fluorescence quenching of phytochrome has been studied using anionic, cationic and neutral quenchers, I-, Cs+ and acrylamide, respectively, in an effort to understand the molecular differences between the Pr and Pfr forms. The data have been analyzed using both Stern-Volmer and modified Stern-Volmer kinetic treatments. The anionic quencher, I-, was proven to be an ineffective quencher with Stern-Volmer constants, Ksv, of 0.60 and 0.63 M-1, respectively, for the Pr and Pfr forms of phytochrome. The cationic quencher, Cs+, showed about a 2-fold difference in the Ksv of Pr and Pfr, indicating a significant change in the fluorescent Trp environments during the Pr to Pfr phototransformation. However, only 25-37% of the fluorescent Trp residues were accessible to the cationic quencher. Most of the fluorescent Trp residues were accessible to acrylamide, but the quenching by acrylamide was indistinguishable for the Pr and Pfr forms. An additional quenching by acrylamide after a saturated quenching with Cs+ showed more than 40% increase in the Ksv of Pfr over Pr. These observations, along with the finding of two distinct components in the Trp fluorescence lifetime, indicate the existence of Trp residues in at least two different sets of environments in the phytochrome protein. The two components of the fluorescence had lifetimes of 1.1 ns (major) and 4.7 ns (minor) for Pr and 0.9 ns (major) and 4.6 ns (minor) for Pfr. Fluorescence quenching was found to be both static and dynamic as the Stern-Volmer constants for the steady-state fluorescence quenching were higher than for the dynamic fluorescence quenching. Based on the quenching results, in combination with the location of Trp residues in the primary structure, we conclude that the Pr to Pfr phototransformation involves a significant conformation change in the phytochrome molecule, preferentially in the 74 kDa chromophore-bearing domain.  相似文献   

7.
Quenching of the tryptophan fluorescence of pig serum HDL3 and LDL2 lipoproteins by iodide and succinimide has been used to estimate the accessibility of the fluorophores to the solvent and, by inference, the location of the protein in the macromolecular complexes. At least 80% of the protein is thought to be located at or near the surface in both lipoproteins but its accessibility is hindered especially in LDL2. A difference in surface topography in the two lipoproteins is suggested with the protein in LDL2 more buried in lipid and further away from the charged phospholipid polar groups than in HDL3. A refined treatment of the quenching data has been developed to take account of the heterogeneity of quenching sites found in the lipoproteins.  相似文献   

8.
The mechanism of quenching to tryptophan fluorescence was studied for a number of proteins and membranes of sarcoplasmic reticulum. The inductive-resonance energy transfer from tryptophanyls to pyrene was shown to be absent though all the necessary and sufficient F?rster's conditions were met. The quenching proceeds by a dynamic mechanism. The quenching efficiency characterises the sterical accessibility of tryptophanyls for pyrene. The simultaneously observed rise of luminescence of the quencher is trivial. It was concluded that measuring intermolecular distances and defining protein conformational states using F?rster's theory is wrong in case of the tryptophany-pyrene pair.  相似文献   

9.
GAP-43 and Go are peripheral membrane proteins enriched in neuronal growth cone. GAP-43 was highly purified from bovine cerebral cortex and myristoylated Goαwas highly purified from Escherichia coli cotransformed with pQE60 (Goα) and pBB131 (NMT). GAP-43 stimulated GTPγS binding to Goαand the stimulation effect was dependent on concentration of GAP-43. Protein-protein binding experiments using CaM-Sepharose affinity media revealed that Goa·GDP bound GAP-43 directly to form intermolecular complex. This interaction induced conformational change of Goα. In the presence of GAP-43, fluorescence spectrum of Goa·GDP blue shifted 4 nm; fluorescence intensity increased 35.3% and apparent quenching constant (Ksv) increased from (1.1± 0.22)×105 to (4.1±0.43)×105 (M-1). However, no obvious changes of fluorescence spectra of Goα·GTPγS were observed in the absence or presence of GAP-43. Our results indicated that GAP-43 induced conformational change of Goα·GDP so as to accelerate GDP release and subsequent GTPγS binding, which activates G proteins to trigger signal transduction and amplification. These results provided insights into understanding the function of G proteins in coupling between receptors and effectors and the key role of GDP/GTP exchange mode in GTPase cycle.  相似文献   

10.
Voltage-gated sodium channels (Nav) are responsible for initiation and propagation of nerve, skeletal muscle, and cardiac action potentials. Nav are composed of a pore-forming alpha subunit and often one to several modulating beta subunits. Previous work showed that terminal sialic acid residues attached to alpha subunits affect channel gating. Here we show that the fully sialylated beta1 subunit induces a uniform, hyperpolarizing shift in steady state and kinetic gating of the cardiac and two neuronal alpha subunit isoforms. Under conditions of reduced sialylation, the beta1-induced gating effect was eliminated. Consistent with this, mutation of beta1 N-glycosylation sites abolished all effects of beta1 on channel gating. Data also suggest an interaction between the cis effect of alpha sialic acids and the trans effect of beta1 sialic acids on channel gating. Thus, beta1 sialic acids had no effect gating on the of the heavily glycosylated skeletal muscle alpha subunit. However, when glycosylation of the skeletal muscle alpha subunit was reduced through chimeragenesis such that alpha sialic acids did not impact gating, beta1 sialic acids caused a significant hyperpolarizing shift in channel gating. Together, the data indicate that beta1 N-linked sialic acids can modulate Nav gating through an apparent saturating electrostatic mechanism. A model is proposed in which a spectrum of differentially sialylated Nav can directly modulate channel gating, thereby impacting cardiac, skeletal muscle, and neuronal excitability.  相似文献   

11.
The fluorescence of a membrane-bound tryptophan derivative (tryptophan octyl ester, TOE) has been examined as a model for tryptophan fluorescence from proteins in membrane environments. The depth-dependent fluorescence quenching of TOE by brominated lipids was found to proceed via a dynamic mechanism with vertical fluctuations playing a central role in the process. The activation energy for the quenching was estimated to be 1.3 kcal/mole. The data were analyzed using the distribution analysis (DA) method, which extends the conventional parallax method to account more realistically for the transbilayer distributions of both probe and quencher and for possible variations in the probe's accessibility. DA provides a better fit than the parallax method to data collected with TOE in membranes formed of lipids brominated at either the 4,5, the 6,7, the 9,10, or the 11,12 positions of the sn-2 acyl chain. DA yields information on the fluorophore's most probable depth in the membrane, its conformational heterogeneity, and its accessibility to the lipid phase. Previously reported data on cytochrome b5 and melittin were reanalyzed together with data obtained with TOE. This new analysis demonstrates conformational heterogeneity in melittin and provides estimates of the freedom of motion and exposure to the lipid phase of membrane-embedded tryptophans of cytochrome b5.  相似文献   

12.
The rate of quenching of the fluorescence of pyridoxal 5'-phosphate in the active site of the beta 2 subunit of tryptophan synthase from Escherichia coli was measured to estimate the accessibility of the coenzyme to the small molecules iodide and acrylamide. The alpha subunit and the substrate L-serine substantially reduced the quenching rate. For iodide, the order of decreasing quenching was: Schiff's base of N alpha-acetyl-lysine with pyridoxal 5'-phosphate greater than holo beta 2 subunit greater than holo alpha 2 beta 2 complex approximately equal to holo beta 2 subunit + L-serine greater than holo alpha 2 beta 2 complex + L-serine. The coenzyme in the beta 2 subunit is apparently freely accessible to both iodide and acrylamide (kappa approximately equal to 2 X 10(9) M-1 s-1), but the alpha subunit and L-serine decrease the rate by factors of 2-5. Quenching of the fluorescence of the single tryptophan residue of the beta 2 subunit revealed that the apo and holo forms exist in different states, whereas the alpha subunit stabilizes a third conformation. As the alpha subunit binds to the beta 2 subunit, the tryptophan residue, which is within 2.2 nm of the active site of the beta 2 subunit, probably rotates with respect to the plane of the ring of the coenzyme, such that fluorescence energy transfer from tryptophan to pyridoxal phosphate is greatly reduced. The alpha subunit strongly protects the active-site ligand indole propanol phosphate from quenching with acrylamide, consistent with the active site being deep in a cleft in the protein. Iodide induces dissociation of the holo alpha 2 beta 2 complex [E. W. Miles & M. Moriguchi (1977) J. Biol. Chem. 252, 6594-6599]. The effect of iodide on the fluorescence properties of holo alpha 2 beta 2 complex allows us to estimate an upper limit for the dissociation constant for the alpha 2 beta 2 complex of 10(-8) M, in the absence of iodide.  相似文献   

13.
Using steady-state fluorescence and nanosecond time-resolved fluorescence techniques, the Ca 2 -ATPase conformational changes induced by ganglioside GM3 were studied with different quenchers. The results showed that GM3 could significantly increase the lifetime of intrinsic fluorescence of Ca2 -ATPase reconstituted into proteoliposomes, and could also weaken the intrinsic fluorescence quenching by KI or hypocrellin B, HB. Further-more, by using quenching kinetic analysis of the time-resolved fluorescence, in the presence of GM3, the quenching constant (Ksv) and quenching efficiency were significantly lowered. The obtained results suggest that the oligosaccha-ride chain and the ceramide moieties of the GM3 molecule could interact with its counterparts of the Ca2 -ATPase re-spectively, thus change the conformation of the hydrophobic domain of the enzyme, making the tryptophan residues in different regions shift towards the hydrophilic-hydrophobic interface, and hence shorten the distance between the hy  相似文献   

14.
Stimulated emission depletion (STED) microscopy is a prominent approach of super‐resolution optical microscopy, which allows cellular imaging with so far unprecedented unlimited spatial resolution. The introduction of time‐gated detection in STED microscopy significantly reduces the (instantaneous) intensity required to obtain sub‐diffraction spatial resolution. If the time‐gating is combined with a STED beam operating in continuous wave (CW), a cheap and low labour demand implementation is obtained, the so called gated CW‐STED microscope. However, time‐gating also reduces the fluorescence signal which forms the image. Thereby, background sources such as fluorescence emission excited by the STED laser (anti‐Stokes fluorescence) can reduce the effective resolution of the system. We propose a straightforward method for subtraction of anti‐Stokes background. The method hinges on the uncorrelated nature of the anti‐Stokes emission background with respect to the wanted fluorescence signal. The specific importance of the method towards the combination of two‐photon‐excitation with gated CW‐STED microscopy is demonstrated. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
The fluorescent properties of the complexes of apoMb-PPIX and dimethyl-PPIX were studied in a wide range of pH and ionic strength. The quenching of fluorescence of PPIX in the complex by I- is shown to be of dynamic type Increasing of the Stern--Volmer constant was observed in the acidic region of pH. From the sections of space-filled model of Mb the static accessibility of porphine macrocyte was calculated. It is proposed that the revealed peculiarities of the myoglobin structure allow to interprete the data on the quenching of fluorescence of PPIX by iodid ion.  相似文献   

16.
Diphenylhexatriene transverse distribution has been studied in normal and diabetic erythrocyte membrane ghosts using fluorescence polarization and fluorescence quenching methods. Acrylamide quenched the fluorescence of diphenylhexatriene according to a dynamic mechanism in agreement with Stern-Volmer equation. Nonlinear least-squares analysis based on quenching results has shown greater accessibility of fluorophore to quencher molecules in diabetic ghosts (37.2 +/- 3.2% in normal vs. 67.5 +/- 6.4% in diabetic membranes). Steady-state fluorescence anisotropy measurements evidenced the lowered membrane lipid fluidity in diabetics (anisotropy values: 0.166 +/- 0.011 in normal subjects vs. 0.193 +/- 0.018 in diabetics). A model mechanism is proposed which attributes the lowered capacity of lipid bilayer in diabetes to the increased ordering and more compact structure of membrane phospholipids. The implications of the results for the resolving of steady-state anisotropy data are discussed.  相似文献   

17.
The fluorescence behaviour of human orosomucoid was investigated. The intrinsic fluorescence was more accessible to acrylamide than to the slightly larger succinimide, indicating limited accessibility to part of the tryptophan population. Although I- showed almost no quenching, that of Cs+ was enhanced, and suggested a region of negative charge proximal to an emitting tryptophan residue. Removal of more than 90% of sialic acid from the glycan chains led to no change in the Cs+, I-, succinimide or acrylamide quenching, indicating that the negatively charged region originates with the protein core. Quenching as a function of pH and temperature supported this view. The binding of chlorpromazine monitored by fluorescence quenching, in the presence and in the absence of the small quenching probes (above), led to a model of its binding domain on orosomucoid that includes two tryptophan residues relatively shielded from the bulk solvent, with the third tryptophan residue being on the periphery of the domain, or affected allotopically and near the negatively charged field.  相似文献   

18.
Analysis of fluorescence quenching of ribosome-bound virginiamycin S   总被引:1,自引:0,他引:1  
The two virginiamycin components VM and VS interact synergistically with bacterial ribosomes in vitro and in vivo. Ribosome affinity for virginiamycin S increases about 10-fold upon incubation with virginiamycin M. This effect has been previously traced by spectrofluorimetric measurement based on the enhancement of virginiamycin S fluorescence upon its binding to the 50 S ribosomal subunit. In the present work the action of two virginiamycin S fluorescence quenchers, acrylamide and iodide, has been explored to gather information about the accessibility of ribosome-bound virginiamycin S and the variation of the accessibility level in the presence of virginiamycin M. Both acrylamide (non-ionized quencher) and iodide (ionized quencher) proved powerful quenchers of free virginiamycin S solutions. Since a comparable effect was obtained on 3- hydroxypicolinamide , the latter was indicated as the part of the molecule involved in the fluorescence effect. Fluorescence quenching by either agent was of the dynamic, i.e. collisional, type. Such an inference was based on the fact that these quenchers merely modified the emission spectrum (not the absorption spectrum), the bimolecular rate constant for the quenching process decreased linearly with the viscosity of the medium (static-type quenching is viscosity-independent), and that linear Stern-Volmer plots were obtained. The quenching ability of both agents underwent a sharp decrease in the presence of ribosomes; however, the Stern-Volmer equation was followed only in the case of acrylamide, whereas Lehrer 's relationship had to be applied in the case of iodide. When ribosomes were incubated with virginiamycin M, the fluorescence quenching ability of acrylamide and iodide was significantly reduced. Conclusions are as follows: a) the 3- hydroxypicolinyl residue of virginiamycin S is buried within an open well on the ribosome surface and is likely to be involved in the interaction with the binding site; b) the accessibility to the well is partly controlled by electrostatic forces; c) interaction of ribosomes with virginiamycin M entails a conformational change whereby the access to the well is reduced. These findings provide a molecular explanation for the previously observed increase of the association constant of virginiamycin S to ribosomes incubated with virginiamycin M which was found to be due to the decrease of the dissociation rate constant (the association rate constant remains practically the same).  相似文献   

19.
Cyclic nucleotide–gated channels are composed of a core transmembrane domain, structurally homologous to the voltage-gated K+ channels, and a cytoplasmic ligand-binding domain. These two modules are joined by ∼90 conserved amino acids, the C-linker, whose precise role in the mechanism of channel activation by cyclic nucleotides is poorly understood. We examined cyclic nucleotide–gated channels from bovine photoreceptors and Caenorhabditis elegans sensory neurons that show marked differences in cyclic nucleotide efficacy and sensitivity. By constructing chimeras from these two channels, we identified a region of 30 amino acids in the C-linker (the L2 region) as an important determinant of activation properties. An increase in both the efficacy of gating and apparent affinity for cGMP and cAMP can be conferred onto the photoreceptor channel by the replacement of its L2 region with that of the C. elegans channel. Three residues within this region largely account for this effect. Despite the profound effect of the C-linker region on ligand gating, the identity of the C-linker does not affect the spontaneous, ligand-independent open probability. Based on a cyclic allosteric model of activation, we propose that the C-linker couples the opening reaction in the transmembrane core region to the enhancement of the affinity of the open channel for agonist, which underlies ligand gating.  相似文献   

20.
The Sec61 translocon of the endoplasmic reticulum membrane forms an aqueous pore that is gated by the lumenal Hsp70 chaperone BiP. We have explored the molecular mechanisms governing BiP-mediated gating activity, including the coupling between gating and the BiP ATPase cycle, and the involvement of the substrate-binding and J domain-binding regions of BiP. Translocon gating was assayed by measuring the collisional quenching of fluorescent probes incorporated into nascent chains of translocation intermediates engaged with microsomes containing various BiP mutants and BiP substrate. Our results indicate that BiP must assume the ADP-bound conformation to seal the translocon, and that the reopening of the pore requires an ATP binding-induced conformational change. Further, pore closure requires functional interactions between both the substrate-binding region and the J domain-binding region of BiP and membrane proteins. The mechanism by which BiP mediates translocon pore closure and opening is therefore similar to that in which Hsp70 chaperones associate with and dissociate from substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号