共查询到20条相似文献,搜索用时 0 毫秒
1.
Beale SI 《Plant physiology》1990,93(4):1273-1279
δ-Aminolevulinic acid (ALA), the common biosynthetic precursor of hemes, chlorophylls, and bilins, is synthesized by two distinct routes. Among phototrophic species, purple nonsulfur bacteria form ALA by condensation of glycine with succinyl-CoA, catalyzed by ALA synthase, in a reaction identical to that occurring in the mitochondria of animals, yeast, and fungi. Most or all other phototrophic species form ALA exclusively from the intact carbon skeleton of glutamic acid in a reaction sequence that begins with activation of the α-carboxyl group of glutamate by an ATP-dependent ligation to tRNAGlu, catalyzed by glutamyl-tRNA synthetase. Glutamyl-tRNA is the substrate for a pyridine nucleotide-dependent dehydrogenase reaction whose product is glutamate-1-semialdehyde or a similar reduced compound. Glutamate-1-semialdehyde is then transaminated to form ALA. Regulation of ALA formation from glutamate is exerted at the dehydrogenase step through end product feedback inhibition and induction/repression. In some species, end product inhibition of the glutamyl-tRNA synthetase step and developmental regulation of tRNAGlu level may also occur. 相似文献
2.
The marine cyanobacterium Agmenellum quadruplicatum was shown to possess an extracellular glycocalyx similar in structure to those surrounding other bacteria from a variety of natural environments. Thin sections of cells stained with ruthenium red and frozen-etched preparations of unfixed cells indicated the glycocalyx was a network of small fibrils. The glycocalyx was present during all phases of growth, and was not degraded during nutrient limitation. 相似文献
3.
Biosynthesis of 130-kilodalton mosquito larvicide in the cyanobacterium Agmenellum quadruplicatum PR-6 总被引:3,自引:0,他引:3
The 130-kilodalton mosquito larvicidal gene, cloned from Bacillus thuringiensis var. israelensis, was introduced into the cyanobacterium Agmenellum quadruplicatum PR-6 by plasmid transformation. Transformed cells synthesized 130-kilodalton delta-endotoxin protein and showed mosquito larvicidal activity. Results demonstrate a potential use of a cyanobacterium for biological control of mosquitoes. 相似文献
4.
Biosynthesis of 130-kilodalton mosquito larvicide in the cyanobacterium Agmenellum quadruplicatum PR-6. 总被引:1,自引:8,他引:1 下载免费PDF全文
The 130-kilodalton mosquito larvicidal gene, cloned from Bacillus thuringiensis var. israelensis, was introduced into the cyanobacterium Agmenellum quadruplicatum PR-6 by plasmid transformation. Transformed cells synthesized 130-kilodalton delta-endotoxin protein and showed mosquito larvicidal activity. Results demonstrate a potential use of a cyanobacterium for biological control of mosquitoes. 相似文献
5.
Chromosomal transformation in the cyanobacterium Agmenellum quadruplicatum. 总被引:3,自引:1,他引:3 下载免费PDF全文
Chromosomal transformation of Agmenellum quadruplicatum PR-6 (= Synechococcus sp. strain 7002) was characterized for phenotypic expression, for exposure time to DNA, and for dependence on DNA concentration with regard to Rifr donor DNA. Exponentially growing cells of PR-6 were competent for chromosomal transformation. Competence decreased in cells in the stationary phase of growth or in cells deprived of a nitrogen source. Dark incubation of cells before exposure to donor DNA also decreased competence. Homologous Rifr and Strr DNA and heterologous Escherichia coli W3110 DNA were used in DNA-DNA competition studies, which clearly showed that DNA binding by PR-6 was nonspecific. DNA binding and uptake by PR-6 exhibited single-hit kinetics. Single-stranded DNA failed to transform competent cells of PR-6, and DNA eclipse was not observed, suggesting that double-stranded DNA was the substrate for the binding and uptake reactions during the transformation of PR-6. A significant improvement in transformation frequency was achieved by increasing the nitrate content of the culture medium and by lowering the temperature at which cells were exposed to donor DNA from 39 degrees C (the optimal temperature for growth) to 30 degrees C. 相似文献
6.
Summary
L-Phenylalanine is a potent inhibitor of growth in a marine species of blue-green bacteria, Agmenellum quadruplicatum. The growth inhibition is reversed by many amino acids when added to the culture medium simultaneously with L-phenylalanine. The most effective L-phenylalanine antagonists are L-tyrosine, L-alanine, L-leucine, L-methionine, L-tryptophan, and L-isoleucine. However, L-tyrosine is the only effective L-phenylalanine antagonist when growth is inhibited by L-phenylalanine for two or more hours prior to addition of an equimolar concentration of the compound tested as an antagonist. Various explanations that could account for inhibition of growth by L-phenylalanine are discussed. Inhibition of growth by L-phenylalanine is not a feature peculiar to the general physiology of blue-green bacteria. For example, the growth of Anacystis nidulans, a fresh water species, was not inhibited by L-phenylalanine, although a different pattern of metabolite sensitivity was found. 相似文献
7.
8.
Biosynthesis of delta-Aminolevulinic Acid in Chlamydomonas reinhardtii: Study of the Transamination Mechanism Using Specifically Labeled Glutamate 下载免费PDF全文
The first committed intermediate of chlorophyll biosynthesis, δ-aminolevulinic acid (ALA), is synthesized from glutamate in the plant cell. The last step of ALA synthesis is a transamination reaction which converts glutamate-1-semialdehyde (GSA) to ALA. The mechanism of the transamination was examined by using glutamate, specifically labeled with either 1-13C or 15N, as substrate for ALA synthesis. After incubating with crude enzymes extracted from Chlamydomonas reinhardtii, the distribution of labels in purified ALA molecules was examined by nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry. We found that both isotopes were present in the same ALA molecule. We interpret the results to mean that intermolecular transamination occurs during the conversion of GSA to ALA. 相似文献
9.
Selective Inhibition of Deoxyribonucleic Acid Synthesis by 2-Deoxyadenosine in the Blue-Green Bacterium Agmenellum quadruplicatum 总被引:6,自引:5,他引:1
Concentrations of deoxyadenosine which have little effect on net ribonucleic acid (RNA) synthesis or on increase in cell mass selectively inhibit deoxyribonucleic acid (DNA) synthesis in Agmenellum quadruplicatum. Exogenously supplied deoxyadenosine, at concentrations above 10 mug/ml, stimulates DNA degradation. These results are correlated with a rapid loss in viability. Over a narrow concentration range (6-15 mug/ml), deoxyadenosine impairs the division process and induces the formation of elongated cells. Low exogenous concentrations of deoxyadenosine are readily incorporated into both DNA and RNA, with the major portion as DNA. 相似文献
10.
The unicellular cyanobacterium Agmenellum quadruplicatum PR-6 grows in the presence of light on agar containing 10 microM 3-(3,4 dichlorophenyl)-1,1-dimethylurea and 1 to 30 mM glycerol. A derivative strain, PR-6G2, was tolerant of 100 mM glycerol. Photoheterotrophic growth conditions had little effect on transformation competence but did decrease the viability of single cells plated onto agar, particularly cells of the parent strain. 相似文献
11.
The Biosynthesis of delta-Aminolevulinic Acid in Higher Plants: I. Accumulation of delta-Aminolevulinic Acid in Greening Plant Tissues 下载免费PDF全文
δ-Aminolevulinic acid dehydrase activity in cucumber (Cucumis sativus L. var. Alpha green) cotyledons did not change as the tissue was allowed to green for 24 hours. δ-Aminolevulinic acid accumulated in greening cucumber cotyledons, and barley (Hordeum sativum L. var. Numar) and bean (Phaseolus vulgaris L. var. Red Kidney) leaves incubated in the presence of levulinic acid, a specific competitive inhibitor of δ-aminolevulinic acid dehydrase. The rate of δ-aminolevulinic acid accumulation in levulinic acid-treated cucumber cotyledons paralleled the rate of chlorophyll accumulation in the controls, and the quantity of δ-aminolevulinic acid accumulated compensated for the decrease in chlorophyll accumulation. When levulinic acid-treated cucumber cotyledons were returned to darkness, δ-aminolevulinic acid accumulation ceased. 相似文献
12.
Nitrogen Starvation and the Regulation of Glutamine Synthetase in Agmenellum quadruplicatum 总被引:4,自引:0,他引:4 下载免费PDF全文
The level of glutamine synthetase activity in Agmenellum quadruplicatum strain PR-6 was dependent on the nitrogen source used for growth and on the nutritional status of the cells. During exponential growth, glutamine synthetase activity was low in cells grown on ammonia, urea, or nitrate. During the transition from nitrogen replete to nitrogen starved growth, glutamine synthetase activity began to rise. With ammonia as a nitrogen source, glutamine synthetase activity as determined in whole cells increased from 1 nanomole per minute per milliliter during exponential growth to 22 nanomoles per minute per milliliter during severe nitrogen starvation. In cells grown on nitrate the increase was from 5 to 39 nanomoles per minute per milliliter, and in cells grown on urea the increase was from 4 to 31 nanomoles per minute per milliliter. 相似文献
13.
Ribonucleotide (cytidine 5'-diphosphate) reductase activity can be detected in situ in cells of the blue-green alga Agmenellum quadruplicatum, strain PR-6, after the cells are made permeable by treatment with ether. The Agmenellum reductase resembles the enzyme from Escherichia coli. 相似文献
14.
Beale SI 《Plant physiology》1971,48(3):316-319
The regulation of chlorophyll synthesis in Chlorella was examined at the level of the formation and metabolism of δ-aminolevulinic acid. δ-Aminolevulinic acid synthetase activity could not be detected in broken cell preparations, and exogenously supplied δ-aminolevulinic acid was taken up only in the presence of dimethylsulfoxide, with a corresponding production of porphobilinogen. 相似文献
15.
Characterization of the RNA Required for Biosynthesis of delta-Aminolevulinic Acid from Glutamate : Purification by Anticodon-Based Affinity Chromatography and Determination That the UUC Glutamate Anticodon Is a General Requirement for Function in ALA Biosynthesis 下载免费PDF全文
The heme and chlorophyll precursor δ-aminolevulinic acid acid (ALA) is formed in plants and algae from glutamate in a process that requires at least three enzyme components plus a low molecular weight RNA which co-purifies with the tRNA fraction during DEAE-cellulose column chromatography. RNA that is effective in the in vitro ALA biosynthetic system was extracted from several plant and algal species that form ALA via this route. In all cases, the effective RNA contained the UUC glutamate anticodon, as determined by its specific retention on an affinity resin containing an affine ligand directed against this anticodon. Construction of the affinity resin was based on the fact that the UUC glutamate anticodon is complementary to the GAA phenylalanine anticodon. By covalently linking the 3′ terminus of yeast tRNAPhe(GAA) to hydrazine-activated polyacrylamide gel beads, a resin carrying an affine ligand specific for the anticodon of tRNAGlu(UUC) was obtained. Column chromatography of plant and algal RNA extracts over this resin yielded a fraction that was highly enriched in the ability to stimulate ALA formation from glutamate when added to enzyme extracts of the unicellular green alga Chlorella vulgaris. Enhancement of ALA formation per A260 unit added was as much as 50 times greater with the affinity-purified RNA than with the RNA before affinity purification. The affinity column selectively retained RNA which supported ALA formation upon chromatography of RNA extracts from species of the diverse algal groups Chlorophyta (Chlorella Vulgaris), Euglenophyta (Euglena gracilis), Rhodophyta (Cyanidium caldarium), and Cyanophyta (Synechocystis sp. PCC 6803), and a higher plant (spinach). Other glutamate-accepting tRNAs that were not retained by the affinity column were ineffective in supporting ALA formation. These results indicate that possession of the UUC glutamate anticodon is a general requirement for RNA to participate in the conversion of glutamate to ALA in plants and algae. 相似文献
16.
When levulinic acid was added to a growing culture of the cyanobacterium (blue-green alga) Agmenellum quadruplicatum PR-6, delta-aminoelevulinic acid accumulated in the medium and chlorophyll a synthesis and cell growth were inhibited, but there was a small amount of c-phycocyanin synthesis. The amount of delta-aminolevulinic acid produced in the treated culture did not fully account for the amount of pigment synthesized in the untreated control. Levulinic acid and either sodium nitrate or ammonium chloride were added to nitrogen-starved cultures of PR-6, and delta-aminolevulinic acid production and chlorophyll a and c-phycocyanin content were monitored. When ammonium chloride was added as a nitrogen source after nitrogen starvation, the cells recovered more rapidly than when sodium nitrate was added as a nitrogen source. In cultures recovering from nitrogen starvation, synthesis of c-phycocyanin occurred before synthesis of chlorophyll a. 相似文献
17.
Under photoautotrophic growth conditions, the marine cyanobacterium Agmenellum quadruplicatum PR-6 metabolized phenanthrene to form trans-9,10-dihydroxy-9,10-dihydrophenanthrene (phenanthrene trans-9,10-dihydrodiol) and 1-methoxyphenanthrene as the major ethyl acetate-extractable metabolites. Small amounts of phenanthrols were also formed. The metabolites were purified by high-pressure liquid chromatography and identified from their UV, infrared, mass, and proton magnetic resonance spectral properties. A. quadruplicatum PR-6 formed phenanthrene trans-9,10-dihydrodiol with a 22% enantiomeric excess of the (-)-9S,10S-enantiomer. Incorporation experiments with 18O2 showed that one atom of oxygen from O2 was incorporated into the dihydrodiol. Toxicity studies, using an algal lawn bioassay, indicated that 9-phenanthrol and 9,10-phenanthrenequinone inhibit the growth of A. quadruplicatum PR-6. 相似文献
18.
Metabolism of phenanthrene by the marine cyanobacterium Agmenellum quadruplicatum PR-6. 总被引:6,自引:0,他引:6
M L Narro C E Cerniglia C Van Baalen D T Gibson 《Applied and environmental microbiology》1992,58(4):1351-1359
Under photoautotrophic growth conditions, the marine cyanobacterium Agmenellum quadruplicatum PR-6 metabolized phenanthrene to form trans-9,10-dihydroxy-9,10-dihydrophenanthrene (phenanthrene trans-9,10-dihydrodiol) and 1-methoxyphenanthrene as the major ethyl acetate-extractable metabolites. Small amounts of phenanthrols were also formed. The metabolites were purified by high-pressure liquid chromatography and identified from their UV, infrared, mass, and proton magnetic resonance spectral properties. A. quadruplicatum PR-6 formed phenanthrene trans-9,10-dihydrodiol with a 22% enantiomeric excess of the (-)-9S,10S-enantiomer. Incorporation experiments with 18O2 showed that one atom of oxygen from O2 was incorporated into the dihydrodiol. Toxicity studies, using an algal lawn bioassay, indicated that 9-phenanthrol and 9,10-phenanthrenequinone inhibit the growth of A. quadruplicatum PR-6. 相似文献
19.
delta-Aminolevulinic Acid Biosynthesis from Glutamatein Euglena gracilis: Photocontrol of Enzyme Levels in a Chlorophyll-Free Mutant 下载免费PDF全文
Wild-type Euglena gracillis cells synthesize the key chlorophyll precursor, δ-aminolevulinic acid (ALA), from glutamate in their plastids. The synthesis requires transfer RNAGlu (tRNAGlu) and the three enzymes, glutamyl-tRNA synthetase, glutamyl-tRNA reductase, and glutamate-1-semialdehyde aminotransferase. Non-greening mutant Euglena strain W14ZNaIL does not synthesize ALA from glutamate and is devoid of the required tRNAGlu. Other cellular tRNAGlus present in the mutant cells were capable of being charged with glutamate, but the resulting glutamyl-tRNAs did not support ALA synthesis. Surprisingly, the mutant cells contain all three of the enzymes, and their cell extracts can convert glutamate to ALA when supplemented with tRNAGlu obtained from wild-type cells. Activity levels of the three enzymes were measured in extracts of cells grown under a number of light conditions. All three activities were diminished in extracts of cells grown in complete darkness, and full induction of activity required 72 hours of growth in the light. A light intensity of 4 microeinsteins per square meter per second was sufficient for full induction. Blue light was as effective as white light, but red light was ineffective, in inducing extractable enzyme activity above that of cells grown in complete darkness, indicating that the light control operates via the nonchloroplast blue light receptor in the mutant cells. Of the three enzyme activities, the one that is most acutely affected by light is glutamate-1-semialdehyde aminotransferase, as has been previously shown for wild-type Euglena cells. These results indicate that the enzymes required for ALA synthesis from glutamate are present in an active form in the nongreening mutant cells, even though they cannot participate in ALA formation in these cells because of the absence of the required tRNAGlu, and that the activity of all three enzymes is regulated by light. Because the absence of plastid tRNAGlu precludes the synthesis of proteins within the plastids, the three enzymes must be synthesized in the cytoplasm and their genes encoded in the nucleus in Euglena. 相似文献
20.
A new type of high-temperature conditional cell division mutant has been isolated in Agmenellum quadruplicatum strain BG1 in which the process of cell division is uncoupled from that of growth at 39 C. This mutant produces abnormally small cells under conditions of nutrient limitation and forms multinucleoid filaments under normal growth conditions. 相似文献