首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, we demonstrated that the mammalian type-I GnRH receptor (GnRHR) has a high preference for the phospholipase C/protein kinase C (PLC/PKC)-linked signaling pathway, whereas non-mammalian bullfrog (bf) GnRHRs couple to both adenylate cyclase/protein kinase A (AC/PKA)- and PLC/PKC-linked signaling pathways. In the pre-sent study, using AC/PKA-specific reporter (cAMP-responsive element-luciferase) and PLC/PKC-specific reporter (serum-responsive element-luciferase) systems, we attempted to identify the motif responsible for this difference. A deletion of the intracellular carboxyl-terminal tail (C tail) of bfGnRHR-1 remarkably decreased its ability to induce the AC/PKA-linked signaling pathway. Further dissection of the C tail indicated that an HFRK motif in the membrane-proximal sequence of bfGnRHR-1 C tail is a minimal requirement for the AC/PKA-linked signaling pathway as the addition of this motif to rat GnRHR or deletion of it from bfGnRHR-1 significantly affected the ability to induce the AC/PKA-linked signaling pathway. Deletion or addition of the HFRK motif, however, did not critically influence the PLC/PKC-linked signaling pathway. These results indicate that the HFRK motif in the membrane-proximal region confers the differential signal transduction pathways between mammalian and nonmammalian GnRHRs.  相似文献   

2.
5-Hydroxytryptamine 2A (5-HT2A) receptors, a major site of action of clozapine and other atypical antipsychotic medications, are, paradoxically, internalized in vitro and in vivo by antagonists and agonists. The mechanisms responsible for this paradoxical regulation of 5-HT2A receptors are unknown. In this study, the arrestin and dynamin dependences of agonist- and antagonist-mediated internalization were investigated in live cells using green fluorescent protein (GFP)-tagged 5-HT2A receptors (SR2-GFP). Preliminary experiments indicated that GFP tagging of 5-HT2A receptors had no effect on either the binding affinities of several ligands or agonist efficacy. Likewise, both the native receptor and SR2-GFP were internalized via endosomes in vitro. Experiments with a dynamin dominant-negative mutant (dynamin K44A) demonstrated that both agonist- and antagonist-induced internalization were dynamin-dependent. By contrast, both the agonist- and antagonist-induced internalization of SR2-GFP were insensitive to three different arrestin (Arr) dominant-negative mutants (Arr-2 V53D, Arr-2-(319-418), and Arr-3-(284-409)). Interestingly, 5-HT2A receptor activation by agonists, but not antagonists, induced greater Arr-3 than Arr-2 translocation to the plasma membrane. Importantly, the agonist-induced internalization of 5-HT2A receptors was accompanied by differential sorting of Arr-2, Arr-3, and 5-HT2A receptors into distinct plasma membrane and intracellular compartments. The agonist-induced redistribution of Arr-2 and Arr-3 into intracellular vesicles and plasma membrane compartments distinct from those involved in 5-HT2A receptor internalization implies novel roles for Arr-2 and Arr-3 independent of 5-HT2A receptor internalization and desensitization.  相似文献   

3.
Desensitization and internalization of G-protein-coupled receptors can reflect receptor phosphorylation-dependent binding of beta-arrestin, which prevents G-protein activation and targets receptors for internalization via clathrin-coated vesicles. These can be pinched off by a dynamin collar, and proteins controlling receptor internalization can also mediate mitogen-activated protein kinase signaling. Gonadotropin-releasing hormone (GnRH) stimulates internalization of its receptors via clathrin-coated vesicles. Mammalian GnRH receptors (GnRH-Rs) are unique in that they lack C-terminal tails and do not rapidly desensitize, whereas non-mammalian GnRH-R have C-terminal tails and, where investigated, do rapidly desensitize and internalize. Using recombinant adenovirus expressing human and Xenopus GnRH-Rs we have explored the relationship between receptor internalization and mitogen-activated protein kinase signaling in HeLa cells with regulated tetracycline-controlled expression of wild-type or a dominant negative mutant (K44A) of dynamin. These receptors were phospholipase C-coupled and had appropriate ligand affinity and specificity. K44A dynamin expression did not alter human GnRH-R internalization but dramatically reduced internalization of Xenopus GnRH-R (and epidermal growth factor (EGF) receptor). Blockade of clathrin-mediated internalization (sucrose) abolished internalization of all three receptors. Both GnRH-Rs also mediated phosphorylation of ERK 2 and for both receptors, this was inhibited by K44A dynamin. The same was true for EGF- and protein kinase C-mediated ERK 2 phosphorylation. ERK 2 phosphorylation was also inhibited by a protein kinase C inhibitor but not affected by an EGF receptor tyrosine kinase inhibitor. We conclude that a) desensitizing and non-desensitizing GnRH-Rs are targeted for clathrin-coated vesicle-mediated internalization by functionally distinct mechanisms, b) GnRH-R signaling to ERK 2 is dynamin-dependent and c) this does not reflect a dependence on dynamin-dependent GnRH-R internalization.  相似文献   

4.
The functional role of neutrophils during acute inflammatory responses is regulated by two high affinity interleukin-8 receptors (CXCR1 and CXCR2) that are rapidly desensitized and internalized upon binding their cognate chemokine ligands. The efficient re-expression of CXCR1 on the surface of neutrophils following agonist-induced internalization suggests that CXCR1 surface receptor turnover may involve regulatory pathways and intracellular factors similar to those regulating beta2-adrenergic receptor internalization and re-expression. To examine the internalization pathway utilized by ligand-activated CXCR1, a CXCR1-GFP construct was transiently expressed in two different cell lines, HEK 293 and RBL-2H3 cells. While interleukin-8 stimulation promoted CXCR1 sequestration in RBL-2H3 cells, receptor internalization in HEK 293 cells required co-expression of G protein-coupled receptor kinase 2 and beta-arrestin proteins. The importance of beta-arrestins in CXCR1 internalization was confirmed by the ability of a dominant negative beta-arrestin 1-V53D mutant to block internalization of CXCR1 in RBL-2H3 cells. A role for dynamin was also demonstrated by the lack of CXCR1 internalization in dynamin I-K44A dominant negative mutant-transfected RBL-2H3 cells. Agonist-promoted co-localization of transferrin and CXCR1-GFP in endosomes of RBL-2H3 cells confirmed that receptor internalization occurs via clathrin-coated vesicles. Our data provides a direct link between agonist-induced internalization of CXCR1 and a requirement for G protein-coupled receptor kinase 2, beta-arrestins, and dynamin during this process.  相似文献   

5.
After stimulation by ligand, most G protein-coupled receptors (GPCRs) undergo rapid phosphorylation, followed by desensitization and internalization. In the case of the N-formyl peptide receptor (FPR), these latter two processing steps have been shown to be entirely dependent on phosphorylation of the receptor's carboxy terminus. We have previously demonstrated that FPR internalization can occur in the absence of receptor desensitization, indicating that FPR desensitization and internalization are regulated differentially. In this study, we have investigated whether human chemoattractant receptors internalize via clathrin-coated pits. Internalization of the FPR transiently expressed in HEK 293 cells was shown to be dependent upon receptor phosphorylation. Despite this, internalization of the FPR, as well as the C5a receptor, was demonstrated to be independent of the actions of arrestin, dynamin, and clathrin. In addition, we utilized fluorescence microscopy to visualize the FPR and beta(2)-adrenergic receptor as they internalized in the same cell, revealing distinct sites of internalization. Last, we found that a nonphosphorylatable mutant of the FPR, unable to internalize, was competent to activate p44/42 MAP kinase. Together, these results demonstrate not only that the FPR internalizes via an arrestin-, dynamin-, and clathrin-independent pathway but also that signal transduction to MAP kinases occurs in an internalization-independent manner.  相似文献   

6.
Gonadotropin releasing hormone (GnRH), preincubated with cultured rat pituitary cells, induced down regulation of GnRH receptors in a time- and dose-dependent manner. The specific binding was inhibited by 50% after 30 min and maximal inhibition (70%) was obtained after 75 min preincubation with 1 microM GnRH. Preincubation of the cells for 2 h with 10 nM GnRH inhibited the specific binding by 20%, reaching a plateau of 70% inhibition with 0.1 microM GnRH. Concomitantly, exposure of the cells to GnRH caused a time- and dose-dependent desensitization of LH release. The responsiveness of the desensitized cells was not parallel to the binding capacity and was inhibited to a greater extent (93%). Photoactivation of GnRH receptors with iodinated [azidobenzoyl-D-Lys6]GnRH in control and desensitized cells resulted in the identification of a single specific band with the same apparent molecular weight of 60K daltons. These results indicate that structural alterations of GnRH receptors are not associated with GnRH-induced desensitization. Therefore, desensitization may involve conformational changes in the receptor or more likely a post-receptor mechanism.  相似文献   

7.
Cell signaling pathways are noisy communication channels, and statistical measures derived from information theory can be used to quantify the information they transfer. Here we use single cell signaling measures to calculate mutual information as a measure of information transfer via gonadotropin-releasing hormone (GnRH) receptors (GnRHR) to extracellular signal-regulated kinase (ERK) or nuclear factor of activated T-cells (NFAT). This revealed mutual information values <1 bit, implying that individual GnRH-responsive cells cannot unambiguously differentiate even two equally probable input concentrations. Addressing possible mechanisms for mitigation of information loss, we focused on the ERK pathway and developed a stochastic activation model incorporating negative feedback and constitutive activity. Model simulations revealed interplay between fast (min) and slow (min-h) negative feedback loops with maximal information transfer at intermediate feedback levels. Consistent with this, experiments revealed that reducing negative feedback (by expressing catalytically inactive ERK2) and increasing negative feedback (by Egr1-driven expression of dual-specificity phosphatase 5 (DUSP5)) both reduced information transfer from GnRHR to ERK. It was also reduced by blocking protein synthesis (to prevent GnRH from increasing DUSP expression) but did not differ for different GnRHRs that do or do not undergo rapid homologous desensitization. Thus, the first statistical measures of information transfer via these receptors reveals that individual cells are unreliable sensors of GnRH concentration and that this reliability is maximal at intermediate levels of ERK-mediated negative feedback but is not influenced by receptor desensitization.  相似文献   

8.
The melanocortin 1 receptor (MC1R), a G protein-coupled receptor (GPCR) positively coupled to adenylyl cyclase, is a key regulator of melanocyte proliferation and differentiation and a determinant of pigmentation, skin phototype, and skin cancer risk. MC1R activation stimulates melanogenesis and increases the ratio of black, strongly photoprotective eumelanins to yellowish and poorly photoprotective pheomelanin pigments. Desensitization and internalization are key regulatory mechanisms of GPCR signaling. Agonist-induced desensitization usually depends on phosphorylation by a GPCR kinase (GRK) followed by receptor internalization in endocytic vesicles. We have shown that MC1R desensitization is mediated by two GRKs expressed in melanocytes and melanoma cells, GRK2 and GRK6. Here we show that in contrast with this dual specificity for desensitization, GRK6 but not GRK2 mediated MC1R internalization. Mutagenesis studies suggested that the targets of GRK6 are two residues located in the MC1R cytosolic C terminus, Thr-308 and Ser-316. A T308D/S316D mutant mimicking their phosphorylated state was constitutively desensitized and associated with endosomes, whereas a T308A/S316A mutant was resistant to desensitization and internalization. We studied the desensitization and internalization of three variant MC1R forms associated with red hair and increased skin cancer risk: R151C, R160W, and D294H. These variants showed a less efficient desensitization. Moreover, D294H was resistant to internalization, thus accounting for its abnormally high surface expression. Co-expression of variant and wild type MC1R modified its desensitization and internalization behavior. These data suggest that MC1R might be regulated by novel mechanisms including differential effects of GRKs and altered desensitization rates of certain allelic combinations.  相似文献   

9.
Activation of seven-transmembrane region receptors typically causes their phosphorylation with consequent arrestin binding and desensitization. Arrestins also act as scaffolds, mediating signaling to Raf and ERK and, for some receptors, inhibiting nuclear translocation of ERK. GnRH receptors (GnRHRs) act via Gq/11 to stimulate the phospholipase C/Ca2+/protein kinase C (PKC) cascade and the Raf/MEK/ERK cassette. Uniquely, type I mammalian GnRHRs lack the C-tails that are found in other seven-transmembrane region receptors (including nonmammalian GnRHRs) and are implicated in arrestin binding. Here we have compared ERK signaling by human GnRHRs (hGnRHRs) and Xenopus GnRHRs (XGnRHRs). In HeLa cells, XGnRHRs underwent rapid and arrestin-dependent internalization and caused arrestin/green fluorescent protein (GFP) translocation to the membrane and endosomes, whereas hGnRHRs did not. Internalized XGnRHRs were co-localized with arrestin-GFP, whereas hGnRHRs were not. Both receptors mediated transient ERK phosphorylation and nuclear translocation (revealed by immunohistochemistry or by imaging of co-transfected ERK2-GFP), and for both, ERK phosphorylation was reduced by PKC inhibition but not by inhibiting epidermal growth factor receptor autophosphorylation. In the presence of PKC inhibitor, Deltaarrestin-(319-418) blocked XGnRHR-mediated, but not hGnRHR-mediated, ERK phosphorylation. When receptor number was varied, hGnRHRs activated phospholipase C and ERK more efficiently than XGnRHRs but were less efficient at causing ERK2-GFP translocation. At high receptor number, XGnRHRs and hGnRHRs both caused ERK2-GFP translocation to the nucleus, but at low receptor number, XGnRHRs caused ERK2-GFP translocation, whereas hGnRHRs did not. Thus, experiments with XGnRHRs have revealed the first direct evidence of arrestin-mediated (probably G protein-independent) GnRHR signaling, whereas those with hGnRHRs imply that scaffolds other than arrestins can determine GnRHR effects on ERK compartmentalization.  相似文献   

10.
Regulation and intracellular trafficking pathways of the endothelin receptors   总被引:12,自引:0,他引:12  
The effects of endothelin (ET) are mediated via the G protein-coupled receptors ET(A) and ET(B). However, the mechanisms of ET receptor desensitization, internalization, and intracellular trafficking are poorly understood. The aim of the present study was to investigate the molecular mechanisms of ET receptor regulation and to characterize the intracellular pathways of ET-stimulated ET(A) and ET(B) receptors. By analysis of ET(A) and ET(B) receptor internalization in transfected Chinese hamster ovary cells in the presence of overexpressed betaARK, beta-arrestin-1, beta-arrestin-2, or dynamin as well as dominant negative mutants of these regulators, we have demonstrated that both ET receptor subtypes follow an arrestin- and dynamin/clathrin-dependent mechanism of internalization. Fluorescence microscopy of Chinese hamster ovary and COS cells expressing green fluorescent protein (GFP)-tagged ET receptors revealed that the ET(A) and ET(B) subtypes were targeted to different intracellular routes after ET stimulation. While ET(A)-GFP followed a recycling pathway and colocalized with transferrin in the pericentriolar recycling compartment, ET(B)-GFP was targeted to lysosomes after ET-induced internalization. Both receptor subtypes colocalized with Rab5 in classical early endosomes, indicating that this compartment is a common early intermediate for the two ET receptors during intracellular transport. The distinct intracellular routes of ET-stimulated ET(A) and ET(B) receptors may explain the persistent signal response through the ET(A) receptor and the transient response through the ET(B) receptor. Furthermore, lysosomal targeting of the ET(B) receptor could serve as a biochemical mechanism for clearance of plasma endothelin via this subtype.  相似文献   

11.
Beta-arrestins target G protein-coupled receptors (GPCRs) for endocytosis via clathrin-coated vesicles. Beta-arrestins also become detectable on endocytic vesicles in response to angiotensin II type 1A receptor (AT1AR), but not beta2-adrenergic receptor (beta2AR), activation. The carboxyl-terminal tails of these receptors contribute directly to this phenotype, since a beta2AR bearing the AT1AR tail acquired the capacity to stimulate beta-arrestin redistribution to endosomes, whereas this property was lost for an AT1AR bearing the beta2AR tail. Using beta2AR/AT1AR chimeras, we tested whether the beta2AR and AT1AR carboxyl-terminal tails, in part via their association with beta-arrestins, might regulate differences in the intracellular trafficking and resensitization patterns of these receptors. In the present study, we find that beta-arrestin formed a stable complex with the AT1AR tail in endocytic vesicles and that the internalization of this complex was dynamin dependent. Internalization of the beta2AR chimera bearing the AT1AR tail was observed in the absence of agonist and was inhibited by a dominant-negative beta-arrestin1 mutant. Agonist-independent AT1AR internalization was also observed after beta-arrestin2 overexpression. After internalization, the beta2AR, but not the AT1AR, was dephosphorylated and recycled back to the cell surface. However, the AT1AR tail prevented beta2AR dephosphorylation and recycling. In contrast, although the beta2AR-tail promoted AT1AR recycling, the chimeric receptor remained both phosphorylated and desensitized, suggesting that receptor dephosphorylation is not a property common to all receptors. In summary, we show that the carboxyl-terminal tails of GPCRs not only contribute to regulating the patterns of receptor desensitization, but also modulate receptor intracellular trafficking and resensitization patterns.  相似文献   

12.
The vasoactive intestinal polypeptide type-1 (VPAC(1)) receptor is a class II G protein-coupled receptor, distinct from the adrenergic receptor superfamily. The mechanisms involved in the regulation of the VPAC(1) receptor are largely unknown. We examined agonist-dependent VPAC(1) receptor signaling, phosphorylation, desensitization, and sequestration in human embryonic kidney 293 cells. Agonist stimulation of cells overexpressing this receptor led to a dose-dependent increase in cAMP that peaked within 5-10 min and was completely desensitized after 20 min. Cells cotransfected with the VPAC(1) receptor (VPAC(1)R) and G protein-coupled receptor kinases (GRKs) 2, 3, 5, and 6 exhibited enhanced desensitization that was not evident with GRK 4. Immunoprecipitation of the epitope-tagged VPAC(1) receptor revealed dose-dependent phosphorylation that was increased with cotransfection of any GRK. Agonist-stimulated internalization of the VPAC(1)R peaked in 10 min, and neither overexpressed beta-arrestin nor its dominant-negative mutant altered internalization. However, a dynamin-dominant negative mutant did inhibit VPAC(1) receptor internalization. Interestingly, VPAC(1)R specificity in desensitization was not evident by study of the overexpressed receptor; however, we determined that human embryonic kidney 293 cells express an endogenous VPAC(1)R that did demonstrate dose-dependent GRK specificity. Therefore, VPAC(1) receptor regulation involves agonist-stimulated, GRK-mediated phosphorylation, beta-arrestin translocation, and dynamin-dependent receptor internalization. Moreover, study of endogenously expressed receptors may provide information not evident in overexpressed systems.  相似文献   

13.
A(3) adenosine receptors have been proposed to play an important role in the pathophysiology of cerebral ischemia with a regimen-dependent nature of the therapeutic effects probably related to receptor desensitization and down-regulation. Here we studied the agonist-induced internalization of human A(3) adenosine receptors in transfected Chinese hamster ovary cells, and then we evaluated the relationship between internalization and signal desensitization and resensitization. Binding of N(6)-(4-amino-3-[(125)I]iodobenzyl)adenosine-5'-N-methyluronamide to membranes from Chinese hamster ovary cells stably transfected with the human A(3) adenosine receptor showed a profile typical of these receptors in other cell lines (K:(D) = 1.3+/-0.08 nM; B(max) = 400+/-28 fmol/mg of proteins). The iodinated agonist, bound at 4 degrees C to whole transfected cells, was internalized by increasing the temperature to 37 degrees C with a rate constant of 0.04+/-0.034 min(-1). Agonist-induced internalization of A(3) adenosine receptors was directly demonstrated by immunogold electron microscopy, which revealed the localization of these receptors in plasma membranes and intracellular vesicles. Moreover, short-term exposure of these cells to the agonist caused rapid desensitization as tested in adenylyl cyclase assays. Subsequent removal of the agonist led to restoration of the receptor function and recycling of the receptors to the cell surface. The rate constant of receptor recycling was 0.02+/-0.0017 min(-1). Blockade of internalization and recycling demonstrated that internalization did not affect signal desensitization, whereas recycling of internalized receptors was implicated in the signal resensitization.  相似文献   

14.
In the current study, we investigated the role of receptor phosphorylation and beta-arrestins in delta-opioid receptor (DOR) signaling and trafficking by using a DOR mutant in which all Ser/Thr residues in the C terminus were mutated to Ala (DTS). We demonstrated that the DOR agonist D-[Pen(2),Pen(5)]enkephalin could induce receptor internalization and adenylyl cyclase (AC) desensitization of DTS, but with comparatively slower kinetics than those observed with wild type DOR. Blockade of the internalization of DTS by the dominant-negative mutant dynamin, dynamin K44E, did not affect AC desensitization. However, depletion of beta-arrestins almost totally blocked both internalization and AC desensitization of DTS. A BRET assay suggested that DOR phosphorylation promotes receptor selectivity for beta-arrestin 2 over beta-arrestin 1. Furthermore, in mouse embryonic fibroblast (MEF) cells lacking either beta-arrestin 1 (beta arr1(-/-)) or beta-arrestin 2 (beta arr2(-/-)), agonist-induced DTS desensitization and internalization were similar to that observed in wild type MEFs. In contrast, although DOR internalization decreased in both beta arr1(-/-) MEFs and beta arr2(-/-) MEFs, DPDPE-induced DOR desensitization was significantly reduced in beta arr2(-/-) MEFs, but not in beta arr1(-/-) MEFs. Additionally, the BRET assay suggested that depletion of phosphorylation did not influence the stability of the receptor-beta-arrestin complex. Consistent with this observation, DTS did not recycle after internalization, which is like wild type DOR. Taken together, these results indicate that receptor phosphorylation confers DOR selectivity for beta-arrestin 2 without affecting the stability of the receptor-beta-arrestin complex and the fate of the internalized receptor.  相似文献   

15.
Studies of TRH and GnRH receptors have revealed much information about the roles of G-proteins and beta-arrestins, as well as receptor residues important for signaling, desensitization and internalization. However, the proteins involved are only just beginning to be identified and characterized. Additional complexity now exists with the observation that these receptors form oligomers in live cells. Indeed, hetero-oligomerization of TRH receptor subtypes 1 and 2 potentially alters interactions with intracellular regulatory proteins. Knowledge of proteins that interact with TRH or GnRH receptors will increase our understanding of receptor function and provide potential drug targets for a range of receptor-associated conditions.  相似文献   

16.
In mammals, the receptor of the neuropeptide gonadotropin-releasing hormone (GnRHR) is unique among the G protein-coupled receptor (GPCR) family because it lacks the carboxyl-terminal tail involved in GPCR desensitization. Therefore, mechanisms involved in the regulation of GnRHR signaling are currently poorly known. Here, using immunoprecipitation and GST pull-down experiments, we demonstrated that SET interacts with GnRHR and targets the first and third intracellular loops. We delineated, by site-directed mutagenesis, SET binding sites to the basic amino acids 66KRKK69 and 246RK247, located next to sequences required for receptor signaling. The impact of SET on GnRHR signaling was assessed by decreasing endogenous expression of SET with siRNA in gonadotrope cells. Using cAMP and calcium biosensors in gonadotrope living cells, we showed that SET knockdown specifically decreases GnRHR-mediated mobilization of intracellular cAMP, whereas it increases its intracellular calcium signaling. This suggests that SET influences signal transfer between GnRHR and G proteins to enhance GnRHR signaling to cAMP. Accordingly, complexing endogenous SET by introduction of the first intracellular loop of GnRHR in αT3-1 cells significantly reduced GnRHR activation of the cAMP pathway. Furthermore, decreasing SET expression prevented cAMP-mediated GnRH stimulation of Gnrhr promoter activity, highlighting a role of SET in gonadotropin-releasing hormone regulation of gene expression. In conclusion, we identified SET as the first direct interacting partner of mammalian GnRHR and showed that SET contributes to a switch of GnRHR signaling toward the cAMP pathway.  相似文献   

17.
It is widely assumed that G protein-coupled receptor kinase 2 (GRK2)-mediated specific inhibition of G protein-coupled receptors (GPCRs) response involves GRK-mediated receptor phosphorylation followed by β-arrestin binding and subsequent uncoupling from the heterotrimeric G protein. It has recently become evident that GRK2-mediated GPCRs regulation also involves phosphorylation-independent mechanisms. In the present study we investigated whether the histamine H2 receptor (H2R), a Gα(s)-coupled GPCR known to be desensitized by GRK2, needs to be phosphorylated for its desensitization and/or internalization and resensitization. For this purpose we evaluated the effect of the phosphorylating-deficient GRK2K220R mutant on H2R signaling in U937, COS7, and HEK293T cells. We found that although this mutant functioned as dominant negative concerning receptor internalization and resensitization, it desensitized H2R signaling in the same degree as the GRK2 wild type. To identify the domains responsible for the kinase-independent receptor desensitization, we co-transfected the receptor with constructions encoding the GRK2 RGS-homology domain (RH) and the RH or the kinase domain fused to the pleckstrin-homology domain. Results demonstrated that the RH domain of GRK2 was sufficient to desensitize the H2R. Moreover, disruption of RGS functions by the use of GRK2D110A/K220R double mutant, although coimmunoprecipitating with the H2R, reversed GRK2K220R-mediated H2R desensitization. Overall, these results indicate that GRK2 induces desensitization of H2R through a phosphorylation-independent and RGS-dependent mechanism and extends the GRK2 RH domain-mediated regulation of GPCRs beyond Gα(q)-coupled receptors. On the other hand, GRK2 kinase activity proved to be necessary for receptor internalization and the resulting resensitization.  相似文献   

18.
Duan D  Li Q  Kao AW  Yue Y  Pessin JE  Engelhardt JF 《Journal of virology》1999,73(12):10371-10376
Recombinant adeno-associated virus (rAAV) vectors for gene therapy of inherited disorders have demonstrated considerable potential for molecular medicine. Recent identification of the viral receptor and coreceptors for AAV type 2 (AAV-2) has begun to explain why certain organs may demonstrate higher efficiencies of gene transfer with this vector. However, the mechanisms by which AAV-2 enters cells remain unknown. In the present report, we have examined whether the endocytic pathways of rAAV-2 are dependent on dynamin, a GTPase protein involved in clathrin-mediated internalization of receptors and their ligands from the plasma membrane. Using a recombinant adenovirus expressing a dominant-inhibitory form of dynamin I (K44A), we have demonstrated that rAAV-2 infection is partially dependent on dynamin function. Overexpression of mutant dynamin I significantly inhibited AAV-2 internalization and gene delivery, but not viral binding. Furthermore, colocalization of rAAV and transferrin in the same endosomal compartment provides additional evidence that clathrin-coated pits are the predominant pathway for endocytosis of AAV-2 in HeLa cells.  相似文献   

19.
The human PTH receptor type 2 (PTH2R) is activated by PTH and tuberoinfundibular peptide of 39 residues (TIP39), resulting in cAMP and intracellular Ca signaling. We now report that, despite these similarities, PTH and TIP39 elicit distinct responses from PTH2R. First, TIP39 induced beta-arrestin and protein kinase Cbeta mobilization and receptor internalization, whereas PTH did not. However, PTH stimulated trafficking of these molecules for a chimeric PTH2R containing the N terminus and third extracellular loop of PTH receptor type 1 (PTH1R). Second, whereas PTH-stimulated cAMP activity was brief and rapidly resensitized, the response to TIP39 was sustained and partly desensitized for a prolonged period. PTH2R desensitization was mediated by beta-arrestin interaction with the C terminus (amino acids 426-457) of PTH2R, whereas beta-arrestin mobilization had a minor influence on PTH2R internalization in response to TIP39, as shown with C terminus deletion mutants and/or dominant negative forms of beta-arrestin and dynamin. These data contrast with PTH1R, at which these dominant negative mutants markedly inhibited receptor internalization. Collectively, these results further highlight how specific interactions within the ligand-receptor bimolecular complex mediate distinct postactivation responses of class II G protein- coupled receptors and provide novel insights into the physiological regulation of PTH2R activity.  相似文献   

20.
Agonist-promoted internalization of some G protein-coupled receptors has been shown to mediate receptor desensitization, resensitization, and down-regulation. In this study, we investigated whether opioids induced internalization of the human and rat kappa opioid receptors stably expressed in Chinese hamster ovary cells, the potential mechanisms involved in this process and its possible role in activation of mitogen-activated protein (MAP) kinase. Exposure of the human kappa receptor to the agonists U50,488H, U69,593, ethylketocyclazocine, or tifluadom, but not etorphine, promoted receptor internalization. However, none of these agonists induced significant internalization of the rat kappa opioid receptor. U50, 488H-induced human kappa receptor internalization was time- and concentration-dependent, with 30-40% of the receptors internalized following a 30-min exposure to 1 microM U50,488H. Agonist removal resulted in the receptors gradually returning to the cell surface over a 60-min period. The antagonist naloxone blocked U50, 488H-induced internalization without affecting internalization itself, while pretreatment with pertussis toxin had no effect on U50, 488H-induced internalization. In contrast, incubation with sucrose (0.4-0.8 M) significantly reduced U50,488H-induced internalization of the kappa receptor. While co-expression of the wild type GRK2, beta-arrestin, or dynamin I had no effect on kappa receptor internalization, co-expression of the dominant negative mutants GRK2-K220R, beta-arrestin (319-418), or dynamin I-K44A significantly inhibited receptor internalization. Whether receptor internalization is critical for MAP kinase activation was next investigated. Co-expression of dominant negative mutants of beta-arrestin or dynamin I, which greatly reduced U50,488H-induced internalization, did not affect MAP kinase activation by the agonist. In addition, etorphine, which did not promote human kappa receptor internalization, was able to fully activate MAP kinase. Moreover, U50,488H or etorphine stimulation of the rat kappa receptor, which did not undergo internalization, also effectively activated MAP kinase. Thus, U50,488H-induced internalization of the human kappa opioid receptor in Chinese hamster ovary cells occurs via a GRK-, beta-arrestin-, and dynamin I-dependent process that likely involves clathrin-coated pits. In addition, internalization of the kappa receptor is not required for activation of MAP kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号