首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[3H]Cytochalasin B binding and its competitive inhibition by D-glucose have been used to identify, the glucose transporter in plasma and microsomal membranes prepared from intact rat diaphragm. Scatchard plot analysis of [3H]cytochalasin B binding yields a binding site with a dissociation constant of roughly 110 nM. Since the inhibition constant of cytochalasin B for D-glucose uptake by diaphragm plasma membranes is similar to this value, this site is identified as the glucose transporter. Plasma membranes prepared from diaphragms bind approx. 17 pmol of cytochalasin B/mg of membrane protein to the D-glucose-inhibitable site. If 280 nM (40000 microunits/ml) insulin is present during incubation, cytochalasin B binding is increased roughly 2-fold without alteration in the dissociation constant of this site. In addition, membranes in the microsomal fraction contain 21 pmol of D-glucose-inhibitable cytochalasin B binding sites/mg of membrane protein. In the presence of insulin during incubation the number of these sites in the microsomal fraction is decreased to 9 pmol/mg of membrane protein. These results suggest that rat diaphragm contain glucose transporters with characteristics identical to those observed for the rat adipose cell glucose transporter. In addition, insulin stimulates glucose transport in rat diaphragm through a translocation of functionally identical glucose transporters from an intracellular membrane pool to the plasma membrane without an alteration in the characteristics of these sites.  相似文献   

2.
[3H]Cytochalasin B binding and its competitive inhibition by d-glucose have been used to identify the glucose transporter in plasma and microsomal membranes prepared from intact rat diaphragm. Scatchard plot analysis of [3H]cytochalasin B binding yields a binding site with a dissociation constant of roughly 110 nM. Since the inhibition constant of cytochalasin B for d-glucose uptake by diaphragm plasma membranes is similar to this value, this site is identified as the glucose transporter. Plasma membranes prepared from diaphragms bind approx. 17 pmol of cytochalasin B/mg of membrane protein to the d-glucose-inhibitable site. If 280 nM (40 000 μunits/ml) insulin is present during incubation, cytochalasin B binding is increased roughly 2-fold without alteration in the dissociation constant of this site. In addition, membranes in the microsomal fraction contain 21 pmol of d-glucose-inhibitable cytochalasin B binding sites/mg of membrane protein. In the presence of insulin during incubation the number of these sites in the microsomal fraction is decreased to 9 pmol/mg of membrane protein. These results suggest that rat diaphragm contain glucose transporters with characteristics identical to those observed for the rat adipose cell glucose transporter. In addition, insulin stimulates glucose transport in rat diaphragm through a translocation of functionally identical glucose transporters from an intracellular membrane pool to the plasma membrane without an alteration in the characteristics of these sites.  相似文献   

3.
Assay for D-glucose-inhibitable 3H-cytochalasin B-binding was carried out to elucidate the action mechanism of the tumor promoter-induced enhancement of glucose transport activity in Swiss 3T3 cells. Incubation of the cells with 12-0-tetradecanoylphorbol-13-acetate (TPA) increased the amount of D-glucose-inhibitable cytochalasin B-binding sites in plasma membrane from 13.5 to 40.1 pmol/mg protein. On the other hand, TPA treatment resulted in the decrease of binding sites in microsomal membrane from 68.9 to 34.1 pmol/mg protein. The tumor promoter-induced translocation of hexose transport system from microsomal membrane to plasma membrane was inhibited by the treatment with 2,4-dinitrophenol before the addition of TPA but was not affected by the treatment with cycloheximide. By removal of the promoter from its receptor, the stimulatory effect of the promoter on the translocation of hexose transport system was decreased. The analysis by electrophoresis demonstrated that among the affinity labeled hexose transporter components of Mr 48,000 and Mr 55,000, the former was responsible for the TPA-induced increase in hexose transport activity in plasma membrane.  相似文献   

4.
This study examines the relationship between insulin-stimulated glucose transport and insulin-induced translocation of glucose transporters in isolated rat adipocytes. Adipose cells were incubated with or without cycloheximide, a potent inhibitor of protein synthesis, for 60 min and then for an additional 30 min with or without insulin. After the incubation we measured 3-O-methylglucose transport in the adipose cells, and subcellular membrane fractions were prepared. The numbers of glucose transporters in the various membrane fractions were determined by the cytochalasin B binding assay. Basal and insulin-stimulated 3-O-methylglucose uptakes were not affected by cycloheximide. Furthermore, cycloheximide affected neither Vmax. nor Km of insulin-stimulated 3-O-methylglucose transport. In contrast, the number of glucose transporters in plasma membranes derived from cells preincubated with cycloheximide and insulin was markedly decreased compared with those from cells incubated with insulin alone (10.5 +/- 0.8 and 22.2 +/- 1.8 pmol/mg of protein respectively; P less than 0.005). The number of glucose transporters in cells incubated with cycloheximide alone was not significantly different compared with control cells. SDS/polyacrylamide-gel-electrophoretic analysis of [3H]cytochalasin-B-photolabelled plasma-membrane fractions revealed that cycloheximide decreases the amount of labelled glucose transporters in insulin-stimulated membranes. However, the apparent molecular mass of the protein was not changed by cycloheximide treatment. The effect of cycloheximide on the two-dimensional electrophoretic profile of the glucose transporter in insulin-stimulated low-density microsomal membranes revealed a decrease in the pI-6.4 glucose-transporter isoform, whereas the insulin-translocatable isoform (pI 5.6) was decreased. Thus the observed discrepancy between insulin-stimulated glucose transport and insulin-induced translocation of glucose transporters strongly suggests that a still unknown protein-synthesis-dependent mechanism is involved in insulin activation of glucose transport.  相似文献   

5.
Cycloheximide, a potent inhibitor of protein synthesis, has been used to examine the relationship between recruitment of hexose carriers and the activation of glucose transport by insulin in rat adipocytes. Adipocytes were preincubated +/- cycloheximide for 90 min then +/- insulin for a further 30 min. We measured 3-O-methylglucose uptake in intact cells and in isolated plasma membrane vesicles. The concentration of glucose transporters in plasma membranes and low density microsomes was measured using a cytochalasin B binding assay. Cycloheximide had no affect on basal or insulin-stimulated 3-O-methylglucose uptake in intact cells or in plasma membrane vesicles. However, the number of glucose carriers in plasma membranes prepared from cells incubated with cycloheximide and insulin was markedly reduced compared to that from cells incubated with insulin alone (14 and 34 pmol/mg protein, respectively). Incubation of cells with cycloheximide alone did not change the concentration of glucose carriers in either plasma membranes or in low density microsomes compared to control cells. When isolated membranes were analyzed with an antiserum prepared against human erythrocyte glucose transporter, decreased cross-reactivity was observed in plasma membranes prepared from cycloheximide/insulin-treated cells compared to those from insulin cells. The present findings indicate that incubation of adipocytes with cycloheximide greatly reduces the number of hexose carriers in the plasma membrane of insulin-stimulated cells. Despite this reduction, insulin is still able to maximally stimulate glucose uptake. Thus, these data suggest an apparent dissociation between insulin stimulation of glucose transport activity and the recruitment of glucose carriers by the hormone.  相似文献   

6.
The properties of the glucose-transport systems in rat adipocytes and hepatocytes were compared in cells prepared from the same animals. Hormones and other agents which cause a large stimulation of 3-O-methylglucose transport in adipocytes were without acute effect in hepatocytes. Hepatocytes displayed a lower affinity for 3-O-methylglucose (20 mM) and alternative substrates than adipocytes (6 mM), whereas inhibitor affinities were similar in both cell types. The concentration and distribution of glucose transporters were determined by Scatchard analysis of D-glucose-inhibitable [3H]cytochalasin B binding to subcellular fractions. In liver, most of the transporters were located in the plasma membrane (42 +/- 5 pmol/mg of protein) with a small amount (4 +/- 3 pmol/mg) in the low-density microsomal fraction ('microsomes'), the reverse of the situation in adipocytes. Glucose transporters were covalently labelled with [3H]cytochalasin B by using the photochemical cross-linking agent hydroxysuccinimidyl-4-azidobenzoate and analysed by SDS/polyacrylamide-gel electrophoresis. A single D-glucose-inhibitable peak with a molecular mass of 40-50 kDa was seen in both plasma membrane and low-density microsomes. This peak was further characterized by isoelectric focusing and revealed a single peak of specific [3H]cytochalasin B binding at pI 6.05 in both low-density microsomes and plasma membrane, compared with peaks at pI 6.4 and 5.6 in adipocyte membranes. In summary: the glucose-transport system in hepatocytes has a lower affinity and higher capacity than that in adipocytes, and is also not accurately modulated by insulin; the subcellular distribution of glucose transporters in the liver suggests that few intracellular transporters would be available for translocation; the liver transporter has a molecular mass similar to that of the adipocyte transporter; the liver glucose transporter exists as a single charged form (pI 6.05), compared with the multiple forms in adipocytes. This difference in charge could reflect a functionally important difference in molecular structure between the two cell types.  相似文献   

7.
A marked resistance to the stimulatory action of insulin on glucose metabolism has previously been shown in guinea pig, compared to rat, adipose tissue and isolated adipocytes. The mechanism of insulin resistance in isolated guinea pig adipocytes has, therefore, been examined by measuring 125I-insulin binding, the stimulatory effect of insulin on 3-0-methylglucose transport and on lipogenesis from [3-3H]glucose, the inhibitory effect of insulin on glucagon-stimulated glycerol release, and the translocation of glucose transporters in response to insulin. The translocation of glucose transporters was assessed by measuring the distribution of specific D-glucose-inhibitable [3H]cytochalasin B binding sites among the plasma, and high and low density microsomal membrane fractions prepared by differential centrifugation from basal and insulin-stimulated cells. At a glucose concentration (0.5 mM) where transport is thought to be rate-limiting for metabolism, insulin stimulates lipogenesis from 30 to 80 fmol/cell/90 min in guinea pig cells and from 25 to 380 fmol/cell/90 min in rat cells with half-maximal effects at approximately 100 pM in both cell types. Insulin similarly stimulates 3-O-methylglucose transport from 0.40 to 0.70 fmol/cell/min and from 0.24 to 3.60 fmol/cell/min in guinea pig and rat fat cells, respectively. Nevertheless, guinea pig cells bind more insulin per cell than rat cells, and insulin fully inhibits glucagon-stimulated glycerol release. In addition, the differences between guinea pig and rat cells in the stimulatory effect of insulin on lipogenesis and 3-O-methylglucose transport cannot be explained by the greater cell size of the former compared to the latter (0.18 and 0.09 micrograms of lipid/cell, respectively). However, the number of glucose transporters in the low density microsomal membrane fraction prepared from basal guinea pig cells is markedly reduced compared to that from rat fat cells (12 and 70 pmol/mg of membrane protein, respectively) and the translocation of intracellular glucose transporters to the plasma membrane fraction in response to insulin is correspondingly reduced. These results suggest that guinea pig adipocytes are markedly resistant to the stimulatory action of insulin on glucose transport and that this resistance is the consequence of a relative depletion in the number of intracellular glucose transporters.  相似文献   

8.
Ca2+-induced translocation of hexose carriers from microsomal membrane to plasma membrane was demonstrated in saponin-permeabilized Swiss 3T3 cells by a specific D-glucose-inhibitable cytochalasin B-binding assay. The number of hexose carriers in the plasma membrane and the hexose transport activity in intact cells were also compared. The incubation of permeabilized cells with 10 microM Ca2+ at 37 degrees C rapidly increased the number of D-glucose-inhibitable cytochalasin B-binding sites in the plasma membrane from 13 to 40 pmol/mg protein and concomitantly decreased that in the microsomal membrane from 66 to 36 pmol/mg protein, each with a half-time of approx. 2 min. Furthermore, when Ca2+-stimulated cells were exposed to 50 microM EGTA, the effect of Ca2+ on the translocation of D-glucose-inhibitable cytochalasin B-binding sites was reversed with a half-time of approx. 5 min. The concentration of Ca2+ required for the half-maximal effect was approx 500 nM. The magnitude of the stimulatory effect of D-glucose-inhibitable cytochalasin B-binding sites in the plasma membrane closely correlated with the magnitude of stimulatory action of Ca2+ on 3-O-methylglucose transport in the intact cells. These results suggest that Ca2+ regulates the activity of hexose transport across the plasma membrane through a rapid and reversible translocation of hexose carrier between microsomal and plasma membranes of mouse fibroblast Swiss 3T3 cells.  相似文献   

9.
Insulin's effect on glucose transport activity and the subcellular distribution of glucose transporters have been examined in isolated human abdominal adipose cells, by measuring 3-O-methylglucose transport and specific D-glucose-inhibitable cytochalasin B binding to plasma membranes and low-density microsomes, respectively. Insulin appears to stimulate glucose transport in isolated human adipose cell through the translocation of glucose transporters from a large intracellular pool to the plasma membrane as initially postulated for rat adipose and muscle cells.  相似文献   

10.
The effects of insulin therapy in streptozotocin diabetic rats on the glucose transport response to insulin in adipose cells have been examined. At sequential intervals during subcutaneous insulin infusion, isolated cells were prepared and incubated with or without insulin, and 3-O-methylglucose transport was measured. Insulin treatment not only reversed the insulin-resistant glucose transport associated with diabetes, but resulted in a progressive hyperresponsiveness, peaking with a 3-fold overshoot at 7-8 days (12.1 +/- 0.3 versus 3.4 +/- 0.1 fmol/cell/min, mean +/- S.E.) and remaining elevated for more than 3 weeks. During the peak overshoot, glucose transporters in subcellular membrane fractions were assessed by cytochalasin B binding. Insulin therapy restored glucose transporter concentration in the plasma membranes of insulin-stimulated cells from a 40% depleted level previously reported in the diabetic state to approximately 35% greater than control (38 +/- 4 versus 28 +/- 2 pmol/mg of membrane protein). Glucose transporter concentration in the low-density microsomes from basal cells was also restored from an approximately 45% depleted level back to normal (50 +/- 4 versus 50 +/- 6 pmol/mg of membrane protein), whereas total intracellular glucose transporters were further increased due to an approximately 2-fold increase in low-density microsomal membrane protein. However, these increases remained markedly less than the enhancement of insulin-stimulated glucose transport activity in the intact cell. Thus, insulin treatment of diabetic rats produces a marked and sustained hyperresponsive insulin-stimulated glucose transport activity in the adipose cell with little more than a restoration to the non-diabetic control level of glucose transporter translocation. Because this enhanced glucose transport activity occurs through an increase in Vmax, insulin therapy appears to be associated with a marked increase in glucose transporter intrinsic activity.  相似文献   

11.
We have studied the biochemical mechanism of insulin action on glucose transport in the rat adipocyte. Plasma membranes and low-density microsomes were prepared by differential ultracentrifugation of basal and insulin-stimulated cells. The photochemical cross-linking agent hydroxysuccinimidyl-4-azidobenzoate was used to covalently bind [3H]cytochalasin B to the glucose transporter which migrated as a 45-50-kDa protein on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Isoelectric focusing of the eluted 40-55-kDa proteins revealed two peaks of D-glucose-inhibitable [3H]cytochalasin B radioactivity focusing at pH 6.4 and 5.6 when low-density microsomes were used as the starting material. In contrast, only one D-glucose inhibitable peak, focusing at pH 5.6, was found in plasma membranes. Pretreatment of the cells with insulin led to a marked redistribution of the pH 5.6 form of the glucose transporter from low-density microsomes to plasma membranes with no effect on the pH 6.4 form of the glucose transporter. Following isolation from the isoelectric focusing and sodium dodecyl sulfate-polyacrylamide gels, both glucose transporter isoforms were shown to cross-react with an antiserum raised against the purified human erythrocyte glucose transporter. Following incubation of [3H]cytochalasin B-labeled low-density microsomal and plasma membranes with neuraminidase, the pH 5.6 transporter isoform was shifted on isoelectric focusing to a more basic pH, while the pH 6.4 isoform was not affected. These data demonstrate that: there is a heterogeneity of glucose transporter species in the intracellular pool while the plasma membrane transporters are more uniform in structure. The pH 5.6 glucose transporter isoform is translocated by insulin from the low-density microsomes to the plasma membrane but the pH 6.4 isoform is not sensitive to insulin. Differential sensitivity of the glucose transporter isoforms to neuraminidase suggests that the heterogeneity is at least partially due to differences in glycosylation state.  相似文献   

12.
The mechanism for hyperresponsive insulin-mediated glucose transport in adipose cells from 30-day-old obese Zucker rats was examined. Glucose transport was assayed by measuring 3-O-methylglucose transport, and the concentration of glucose transporters was estimated by measuring specific D-glucose-inhibitable cytochalasin B binding. Insulin increased glucose transport activity by approximately 17 fmol/cell/min in cells from obese rats compared to 3 fmol/cell/min in lean littermates. Insulin increased the concentration of glucose transporters in the plasma membrane fraction by about 15 pmol/mg of membrane protein in both groups. The insulin-mediated decrease in the concentration of transporters in the low-density microsomal fraction was 30 pmol/mg of membrane protein for the obese rats compared to 15 pmol/mg of membrane protein for the lean controls. An estimated number of glucose transporters was calculated using membrane protein and enzyme recoveries for each group. Insulin increased the number of transporters in the plasma membrane by 3 X 10(6) sites/cell for the obese rats and only 0.6 X 10(6) sites/cell for the lean controls. In addition, insulin decreased the number of transporters/cell in the intracellular membrane pool by approximately 4 X 10(6) sites/cell for the obese rats and 0.9 X 10(6) sites/cells for the lean rats. The total number of transporters/cell was about 7 X 10(6) sites/cell for the obese animals and 1.6 X 10(6) sites/cell for the lean controls. In the basal state, more than 80% of these transporters were located in the intracellular pool for both the lean and obese rats. Thus, the marked hyperresponsive insulin-mediated glucose transport observed in adipose cells from 30-day-old obese Zucker rats may be the consequence of a marked increase in the number of glucose transporters in the intracellular pool.  相似文献   

13.
Plasma membranes and light microsomes were isolated from fused L6 muscle cells. Pre-treatment of cells with insulin did not affect marker enzyme or protein distribution in isolated membranes. The number of glucose transporters in the isolated membranes was calculated from the D-glucose-protectable binding of [3H]cytochalasin B. Glucose transporter number was higher in plasma membranes and lower in intracellular membranes derived from insulin-treated cells than in the corresponding fractions from untreated cells. The net increase in glucose transporters in plasma membranes was identical to the net decrease in glucose transporters in light microsomes (2 pmol/1.23 x 10(8) cells). The fold increase in glucose transporter number/mg protein in plasma membranes (2-fold) was similar to the fold increase in glucose transport caused by insulin. This suggests that recruitment of glucose transporters from intracellular membranes to the plasma membrane is the major mechanism of stimulation of hexose transport in L6 muscle cells. This is the first report of isolation of the two insulin-sensitive membrane elements from a cell line, and the results indicate that, in contrast to rat adipocytes, there is not change in the intrinsic activity of the transporters in response to insulin.  相似文献   

14.
The mechanism of modulation of insulin-stimulated glucose transport activity in isolated rat adipose cells by lipolytic and antilipolytic agents has been examined. We have measured glucose transport activity in intact cells with 3-O-methylglucose and in plasma membranes with D-glucose, and the concentration of glucose transporters in plasma membranes using a cytochalasin B binding assay. In intact cells, isoproterenol reduced insulin-stimulated transport activity by 60%. This effect was lost after cooling and washing the cells with homogenization buffer, and neither the concentration of glucose transporters nor transport activity in the plasma membranes differed from control. However, treatment of cells with KCN prior to homogenization preserved the isoproterenol effect through the fractionation procedure. Plasma membranes from these cells contained an unchanged number of transporters (31 +/- 7, mean +/- S.E., versus 31 +/- 4 pmol/mg of protein in controls) but transported glucose at a reduced rate (19 +/- 6 versus 48 +/- 9 pmol/mg of protein/s). Conversely, incubation of intact cells in the presence of adenosine stimulated plasma membrane glucose transport activity compared to that in the absence of adenosine (44 +/- 6 versus 36 +/- 6 pmol/mg of protein/s). Kinetic studies of isoproterenol-inhibited glucose transport in plasma membranes revealed a 60% decrease in Vmax (2900 +/- 350 versus 7200 +/- 1000 pmol/mg of protein/s) and a small increase in Km (15.1 +/- 1 versus 13.0 +/- 0.6 mM). These data indicate that modifications of glucose transport activity produced by lipolytic and antilipolytic agents in intact adipose cells can be fully retained in plasma membranes isolated under appropriate conditions. Furthermore, the effects of these agents occur through a modification of the glucose transporter intrinsic activity.  相似文献   

15.
The effect of simian virus 40 transformation on the hexose transport system in mouse embryo fibroblast Swiss 3T3 cells was examined. The concentration of hexose transporters was estimated by measuring D-glucose-inhibitable cytochalasin B binding. The binding of cytochalasin B to the plasma membranes of simian virus 40-transformed mouse 3T3 cells (SV3T3 cells) was significantly greater than that of 3T3 cells. On the other hand, cytochalasin B binding to the microsomal membranes of SV3T3 cells was decreased, and the total amount of binding to plasma and microsomal membranes was not significantly changed in both cell lines. The electrophoretic analysis demonstrated that both hexose-transporter components of Mr 46 000 and Mr 58 000 affinity labeled were responsible for an increase in the hexose transport by viral transformation. These results suggested that the higher hexose-transport activity of transformed cells is caused by a redistribution of transporter from intracellular membranes to plasma membranes.  相似文献   

16.
The purpose of this study was to simultaneously isolate skeletal muscle plasma and microsomal membranes from the hind limbs of male Sprague-Dawley rats perfused either in the absence or presence of 20 milliunits/ml insulin and to determine the effect of insulin on the number and distribution of glucose transporters in these membrane fractions. Insulin increased hind limb glucose uptake greater than 3-fold (2.4 +/- 0.7 versus 9.2 +/- 1.0 mumol/g x h, p less than 0.001). Plasma membrane glucose transporter number, measured by cytochalasin B binding, increased 2-fold (9.1 +/- 1.0 to 20.4 +/- 3.1 pmol/mg protein, p less than 0.005) in insulin-stimulated muscle while microsomal membrane transporters decreased significantly (14.8 +/- 1.6 to 9.8 +/- 1.4 pmol/mg protein, p less than 0.05). No change in the dissociation constant (Kd approximately 120 nm) was observed. K+-stimulated-p-nitrophenol phosphatase, 5'-nucleotidase, and galactosyltransferase specific activity, enrichment, and recovery in the plasma and microsomal membrane fractions were not altered by insulin treatment. Western blot analysis using the monoclonal antibody mAb 1F8 (specific for the insulin-regulatable glucose transporter) demonstrated increased glucose transporter densities in plasma membranes from insulin-treated hind limb skeletal muscle compared with untreated tissues, while microsomal membranes from the insulin-treated hind limb skeletal muscle had a concomitant decrease in transporter density. We conclude that the increase in plasma membrane glucose transporters explains, at least in part, the increase in glucose uptake associated with insulin stimulation of hind limb skeletal muscle. Our data further suggest that these recruited transporters originate from an intracellular microsomal pool, consistent with the translocation hypothesis.  相似文献   

17.
The in situ assembly states of the glucose transport carrier protein in the plasma membrane and in the intracellular (microsomal) storage pool of rat adipocytes were assessed by studying radiation-induced inactivation of the D-glucose-sensitive cytochalasin B binding activities. High energy radiation inactivated the glucose-sensitive cytochalasin B binding of each of these membrane preparations by reducing the total number of the binding sites without affecting the dissociation constant. The reduction in total number of binding sites was analyzed as a function of radiation dose based on target theory, from which a radiation-sensitive mass (target size) was calculated. When the plasma membranes of insulin-treated adipocytes were used, a target size of approximately 58,000 daltons was obtained. For adipocyte microsomal membranes, we obtained target sizes of approximately 112,000 and 109,000 daltons prior to and after insulin treatment, respectively. In the case of microsomal membranes, however, inactivation data showed anomalously low radiation sensitivities at low radiation doses, which may be interpreted as indicating the presence of a radiation-sensitive inhibitor. These results suggest that the adipocyte glucose transporter occurs as a monomer in the plasma membrane while existing in the intracellular reserve pool either as a homodimer or as a stoichiometric complex with a protein of an approximately equal size.  相似文献   

18.
Plasma membrane vesicles prepared from adipocytes incubated with insulin exhibited accelerated D-glucose transport activity characteristic of insulin action on intact fat cells. Both control and insulin-stimulated D-glucose transport activities were inhibited by cytochalasin B and thiol reagents. Extraction of plasma membranes with dimethylmaleic anhydride eluted 80% of the protein from plasma membrane vesicles. The two major glycoprotein bands (94,000 and 78,000 daltons) and small amounts of a 56,000-dalton band were retained in dodecyl sulfate gels of the extracted membranes. Both control and insulin-activated D-glucose transport activities were retained by plasma membrane vesicles extracted with dimethylmaleic anhydride. Cytochalasin B binding activity was also retained by extracted membrane vescles and D-glucose uptake into extracted vescles derived from untreated or insulin-treated fat cells was inhibited by cytochalasin B. These results suggest that the modification of the adipocyte hexose transport system elicited by insulin action is not altered by a major purification step which involves quantitative extraction of extrinsic membrane proteins.  相似文献   

19.
The glucose transporter was identified and characterized by cytochalasin B binding in subcellular membrane fractions of chromaffin tissue. The binding was saturable with Kd of about 0.3 microM for each subcellular fraction. The Bmax capacity was 12-16 pmol/mg protein for enriched plasma membrane fractions, 6.3 pmol/mg protein for microsomal membrane preparations and 5.4 pmol/mg protein for chromaffin granule membranes. Irreversible photoaffinity labelling of the glucose-protectable binding sites with [3H]cytochalasin B followed by solubilization and polyacrylamide gel electrophoresis from enriched plasma membrane preparations demonstrated the presence of three molecular species: 97 +/- 10, 51.5 +/- 6 and 30 +/- 4 kDa. The chromaffin granule membranes showed only a molecular species of 80 +/- 10 kDa.  相似文献   

20.
Tumour-promoting phorbol esters have insulin-like effects on glucose transport and lipogenesis in adipocytes and myocytes. It is believed that insulin activates the glucose-transport system through translocation of glucose transporters from subcellular membranes to the plasma membrane. The aim of the present study was to investigate if phorbol esters act through the same mechanism as insulin on glucose-transport activity of rat adipocytes. We compared the effects of the tumour-promoting phorbol ester tetradecanoylphorbol acetate (TPA) and of insulin on 3-O-methylglucose transport and on the distribution of D-glucose-inhibitable cytochalasin-B binding sites in isolated rat adipocytes. Insulin (100 mu units/ml) stimulated 3-O-methylglucose uptake 9-fold, whereas TPA (1 nM) stimulated the uptake only 3-fold (mean values of five experiments, given as percentage of equilibrium reached after 4 s: basal 7 +/- 1.3%, insulin 60 +/- 3.1%, TPA 22 +/- 2.3%). In contrast, both agents stimulated glucose-transporter translocation to the same extent [cytochalasin B-binding sites (pmol/mg of protein; n = 7): plasma membranes, basal 6.2 +/- 1.0, insulin 13.4 +/- 2.0, TPA 12.7 +/- 2.7; low-density membranes, basal 12.8 +/- 2.1, insulin 6.3 +/- 0.9, TPA 8.9 +/- 0.7; high-density membranes, 6.9 +/- 1.1; insulin 12.5 +/- 1.0, TPA 8.1 +/- 0.9]. We conclude from these data: (1) TPA stimulates glucose transport in fat-cells by stimulation of glucose-carrier translocation; (2) insulin and TPA stimulate the carrier translocation to the same extent, whereas the stimulation of glucose uptake is 3-fold higher with insulin, suggesting that the stimulatory effect of insulin on glucose-transport activity involves other mechanisms in addition to carrier translocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号