首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thogoto (THO) virus is transmitted from infected to uninfected ticks when co-feeding on uninfected guinea-pigs, even though the guinea-pigs do not develop a detectable viraemia. This form of non-viraemic transmission is potentiated by a factor (s) secreted by the saliva of ticks and hence has been termed saliva-activated transmission (SAT). The synthesis of the SAT factor by the salivary glands of three ixodid tick species was determined by placing uninfected nymphal ticks on guineapigs that were subsequently inoculated with a mixture of THO virus and salivary gland extract (SGE) derived from one of the tick species. SAT factor activity was measured by determining the number of nymphs that acquired THO virus. For the three-host ixodid species,Rhipicephalus appendiculatus andAmblyomma variegatum, maximum enhancement of THO virus transmission was observed when salivary glands were derived from uninfected, female ticks that had fed for a period of 6 or 8 days, respectively. In contrast, when salivary glands were derived form uninfected femaleBoophilus microplus, a one-host ixodid tick species, enhancement of THO virus transmission was observed throughout the tick feeding period. Thus, the natural feeding behaviour of ticks appears to be an important factor in determining the relative importance of these vectors in mediating SAT.  相似文献   

2.
Abstract. To investigate the role of ticks in TBE virus transmission, salivary gland extract (SGE) was derived from partially fed female Ixodes ricinus, Dermacentor reticulatus and Rhipicephalus appendiculatus ticks. Guinea-pigs were infested with uninfected R.appendiculatus nymphs and inoculated with a mixture of TBE virus and SGE or with virus alone. The number of ticks which on average acquired virus from feeding on animals inoculated with TBE virus and SGE from partially fed ticks was 4-fold greater than the number that became infected by feeding on animals inoculated with virus alone or virus plus SGE from unfed I.ricinus. Viraemia was detected in 67% of guinea-pigs inoculated with virus plus SGE compared to 30% of guinea-pigs inoculated with virus alone. Virus titres in the blood were similar for both groups of animals [range 2.0-2.8 log10 plaque-forming units (PFU)/ml of blood]; however, the number of ticks that became infected was significantly higher on animals inoculated with virus plus SGE from partially fed ticks. No significant difference was observed with respect to the tick species used to derive SGE. The results indicate that TBE virus transmission is enhanced by factor(s) associated with the salivary glands of feeding ticks, and that these factor(s) may facilitate efficient transmission of TBE virus between infected and uninfected ticks even when they feed on hosts that have no detectable viraemia.  相似文献   

3.
African swine fever is a haemorrhagic disease in pig production that can have disastrous financial consequences for farming. No vaccines are currently available and animal slaughtering or area zoning to restrict risk-related movements are the only effective measures to prevent the spread of the disease. Ornithodoros soft ticks are known to transmit the African swine fever virus (ASFV) to pigs in farms, following the natural epidemiologic cycle of the virus. Tick saliva has been shown to modulate the host physiological and immunological responses during feeding on skin, thus affecting viral infection. To better understand the interaction between soft tick, ASFV and pig at the bite location and the possible influence of tick saliva on pig infection by ASFV, salivary gland extract (SGE) of Ornithodoros porcinus, co-inoculated or not with ASFV, was used for intradermal auricular inoculation. Our results showed that, after the virus triggered the disease, pigs inoculated with virus and SGE presented greater hyperthermia than pigs inoculated with virus alone. The density of Langerhans cells was modulated at the tick bite or inoculation site, either through recruitment by ASFV or inhibition by SGE. Additionally, SGE and virus induced macrophage recruitment each. This effect was enhanced when they were co-inoculated. Finally, the co-inoculation of SGE and virus delayed the early local spread of virus to the first lymph node on the inoculation side. This study has shown that the effect of SGE was powerful enough to be quantified in pig both on the systemic and local immune response. We believe this model should be developed with infected tick and could improve knowledge of both tick vector competence and tick saliva immunomodulation.  相似文献   

4.
West Nile virus (WNV) is transmitted to vertebrate hosts primarily by infected Culex mosquitoes. Transmission of arboviruses by the bite of infected mosquitoes can potentiate infection in hosts compared to viral infection by needle inoculation. Here we examined the effect of mosquito transmission on WNV infection and systematically investigated multiple factors that differ between mosquito infection and needle inoculation of WNV. We found that mice infected with WNV through the bite of a single infected Culex tarsalis mosquito exhibited 5- to 10-fold-higher viremia and tissue titers at 24 and 48 h postinoculation and faster neuroinvasion than mice given a median mosquito-inoculated dose of WNV (10(5) PFU) by needle. Mosquito-induced enhancement was not due to differences in inoculation location, because additional intravenous inoculation of WNV did not enhance viremia or tissue titers. Inoculation of WNV into a location where uninfected mosquitoes had fed resulted in enhanced viremia and tissue titers in mice similar to those in mice infected by a single infected mosquito bite, suggesting that differences in where virus is deposited in the skin and in the virus particle itself were not responsible for the enhanced early infection in mosquito-infected mice. In addition, inoculation of mice with WNV mixed with salivary gland extract (SGE) led to higher viremia, demonstrating that mosquito saliva is the major cause of mosquito-induced enhancement. Enhanced viremia was not observed when SGE was inoculated at a distal site, suggesting that SGE enhances WNV replication by exerting a local effect. Furthermore, enhancement of WNV infection still occurred in mice with antibodies against mosquito saliva. In conclusion, saliva from C. tarsalis is responsible for enhancement of early WNV infection in vertebrate hosts.  相似文献   

5.
The interferon-induced mouse Mx1 protein has intrinsic antiviral activity against orthomyxoviruses, including Thogoto virus. Thus, Mx1+ A2G mice are apparently resistant to infection following needle- or tick-borne virus challenge. However, tick-borne challenge and, to a lesser degree, injection of virus mixed with tick salivary gland extract resulted in virus transmission to uninfected ticks feeding on the A2G mice. The data indicate that immunomodulatory components in tick saliva can overcome a natural antiviral mechanism.  相似文献   

6.
Engorged nymphs (Rhipicephalus appendiculatus) were inoculated parenterally with Thogoto (THO) virus (approximately 1 microl per nymph; 10(6)-10(7) PFU/ml). The adult females which resulted were used as the source of infected ticks for this study. Hemolymph, salivary glands, synganglion, gut, ovary, and Malpighian tubules were collected on each day of the blood meal and titrated for THO virus by plaque assay. The percent of tissues infected with virus was 16% or less on the day of attachment. Percent infection rose for all tissues throughout 6-7 days of feeding, reaching 40-100% infection during the rapid phase of engorgement. For the first 4 days of feeding, virus titer in the synganglion was higher than in salivary glands (means of 6.4-34.7 PFU/synganglion and 1.6-8.8 PFU/salivary gland pair). From days 5-7, virus titer was generally higher in the salivary gland than the synganglion (means of 422, 408, and 817 PFU/gland pair and means of 62, 811, and 9 PFU/synganglion). However, because a salivary gland pair is much heavier than a synganglion, the virus concentration in the synganglion was much higher than in the salivary gland during the slow phase of feeding. During the rapid phase of feeding, the difference in virus titer between the synganglion and salivary gland reduced. This difference between the early and late stages of feeding may explain why a previous study [J. Gen. Virol. 70 (1989) 1093], using immunofluorescence and immuno-gold labelling, failed to detect virus in the salivary gland early in feeding. These data provide evidence to explain that R. appendiculatus can transmit THO virus within 24h of attachment, an important epidemiological finding.  相似文献   

7.
Mosquitoes (Diptera: Culicidae) are major vectors of numerous infectious agents. Compounds in mosquito saliva not only facilitate blood-feeding, but may also have an impact upon the immune system of vertebrate hosts. Consequently, the exposure to mosquito saliva may influence pathogen transmission, establishment and disease development. Using two medically important vector mosquitoes, Aedes aegypti (L.) and Culex quinquefasciatus Say, we examined the effects of mosquito saliva on immune cells of host mice. After antigen-specific or non-specific stimulation, murine splenocyte proliferation and production of both Th1 and Th2 cytokines were significantly reduced in the presence of salivary gland extract (SGE) from Ae. aegypti, but not SGE from Cx. quinquefasciatus. T cell populations were highly susceptible to this suppression, showing increased mortality and reduced division rates - judged by flow cytometric analyses. Evidently these two culicine mosquitoes differ in their host immunomodulatory activities.  相似文献   

8.
The impact of Ixodes ricinus salivary gland extract (SGE) on inflammatory changes in the skin and draining lymph nodes of mice, elicited by the infection with the important human pathogen, B. afzelii, was determined using flow cytometry. SGE injected together with spirochetes reduced the numbers of leukocytes and gammadelta-T lymphocytes in infected epidermis at early time-points post infection. In draining lymph nodes, the anti-inflammatory effect of SGE was manifested by the decrease of total cell count compared with that in mice treated with inactivated SGE. Changes in subpopulations of immunocompetent cells apparently reflected the effect of SGE on the proliferation of spirochetes in the host. The significance of tick saliva anti-inflammatory effect for saliva activated transmission of B. afzelii is shown.  相似文献   

9.
Norte de Santander is a region in Colombia with a high incidence of dengue virus (DENV). In this study, we examined the serum concentration of anti-Aedes salivary gland extract (SGE) antibodies as a biomarker of DENV infection and transmission, and assessed the duration of anti-SGE antibody concentration after exposure to the vector ceased. We also determined whether SGE antibody concentration could differentiate between positive and negative DENV infected individuals and whether there are differences in exposure for each DENV serotype. We observed a significant decrease in the concentration of IgG antibodies at least 40 days after returning to an “Ae. aegypti-free” area. In addition, we found significantly higher anti-SGE IgG concentrations in DENV positive patients with some difference in exposure to mosquito bites among DENV serotypes. We conclude that the concentration of IgG antibodies against SGE is an accurate indicator of risk of dengue virus transmission and disease presence.  相似文献   

10.
The saliva of ticks contains anti-haemostatic, anti-inflammatory and immunomodulatory molecules that allow these parasites to obtain a blood meal from the host and help tick-borne pathogens to infect the vertebrate host more efficiently. This makes the salivary molecules attractive targets to control ticks and tick-borne pathogens. Although Ornithodoros moubata and O. erraticus are important argasid ticks that transmit severe diseases, to date only a few of their salivary proteins have been identified. Here we report our initial studies using proteomic approaches to characterize the protein profiles of salivary gland extracts (SGE) from these two argasids. The present work describes the proteome of the SGEs of both tick species, their antigenic spots, and the identification of several of their proteins. The whole number of identifications was low despite the good general quality of the peptide mass maps obtained. In the O. moubata SGE, 18 isoforms of a protein similar to O. savignyi TSGP1 were identified. In the O. erraticus SGE we identified 6 novel proteins similar to unknown secreted protein DS-1 precursor, NADPH dehydrogenase subunit 5, proteasome alpha subunit, ATP synthase F0 subunit 6, lipocalin and alpha tubulin. Finally, the current drawbacks of proteomics when applied to the identification of acarine peptides and proteins are discussed.  相似文献   

11.
Adult Rhipicephalus appendiculatus ticks, infectedwith Thogoto (THO) virus or control, were fed on guinea pigs and removed atintervals throughout the feeding cycle. Salivary fluid secretion was measuredbyan in vitro technique. The salivary glandsof infected, partially-fed ticks secreted fluid in vitro at about 75% the rateof controls, but the difference between infected and controls among engorgedticks was not statistically significant. Basal and DA-stimulated levels ofcyclic AMP (cAMP) were determined in isolated glands and were significantlyaffected by THO virus infection. The differences in secretory rate amongcontroland infected ticks could not be explained in terms of altered cAMP levels.Haemolymph volume was measured by a tracer-dilution technique using3H-inulin. The mean haemolymph volume for both THO-infected andcontrol groups was between 23–24% body weight throughout the feedingcycle, indicating that infection by this arbovirus did not influence salivaryfluid secretion via altered haemolymph volume. The mechanism by which THO virusaffects secretory activity of its tick vector remains unknown.  相似文献   

12.
Abstract. Following engorgement of Rhipicephalus appendiculatus larvae on guinea-pigs infected with tick-borne encephalitis (TBE) virus, none of the engorged larvae or emergent nymphs contained detectable infectious virus. However, one of twelve pools, each containing three of the unfed nymphs, was positive when screened by polymerase chain reaction (PCR), indicating a low prevalence of TBE virus infection in the unfed nymphs. After engorgement of the nymphs on four uninfected guinea-pigs, 19/24 (79%) fed nymphs from one guinea-pig and 4/25 (16%) fed nymphs from a second guinea-pig were infected; all the ticks examined from the other two guinea-pigs were uninfected. The results suggest that TBE virus was transmitted from a low proportion of infected nymphs (infected as larvae) to uninfected nymphs as they fed together on an uninfected guinea-pig. Such amplification of the initial infection, at the population level, could play an important role in maintaining TBE virus infections in nature, particularly if there is a low level of vertical transmission from one tick generation to the next.  相似文献   

13.
Enzyme-linked immunosorbent assay (ELISA) was used to investigate the antibody responses of control sheep, and sheep naturally exposed to Ixodes ricinus Linné (Acari: Ixodidae) ticks, to salivary gland extract (SGE) proteins of partially fed, adult I. ricinus. Comparisons between responses of control sheep and naturally infested sheep by Western blot analysis suggested that variations in IgG responses of I. ricinus-exposed sheep were mostly associated with specific responses to I. ricinus SGE antigens. Sheep IgG responses were positively related to the numbers of adult ticks feeding per sheep at the time samples were collected, were greater during the spring than the autumn periods of I. ricinus activity and were inversely related to sheep resistance to ticks measured by the weights of nymphal I. ricinus that engorged on the sheep. These findings suggest that sheep lose their resistance to ticks due to polarization of a Th1 type response to some tick antigens towards a Th2 type response when sheep are exposed to high, natural tick infestations, or to seasonal conditions of relative nutritional stress. Potential consequences for the epidemiology of tick-borne diseases are discussed.  相似文献   

14.
For successful blood-feeding, ticks must confront the host immune system comprising many cells and signaling molecules, mainly cytokines and growth factors. These factors bind to specific receptors on the cell membranes, thereby initiating a signaling cascade that leads to distinct cellular activities. Ticks are able to manipulate host immune responses via molecules secreted from their salivary glands. Saliva of ixodid ticks contains factors binding important cytokines and their subgroup, chemokines. Here we demonstrate that constituents of tick salivary gland extract (SGE) also appear to bind growth factors: transforming growth factor beta (TGF-β1), platelet-derived growth factor (PDGF), fibroblast growth factor (FGF-2), and hepatocyte growth factor (HGF), depending on tick species. SGE derived from Amblyommavariegatum reacted with TGF-β1, PDGF, FGF-2 and HGF; Dermacentorreticulatus and Rhipicephalusappendiculatus with TGF-β1, FGF-2 and HGF; and Ixodes ricinus and Ixodesscapularis with PDGF. SGE from the species targeting PDGF (A. variegatum and I. ricinus) also inhibited cell proliferation in vitro and induced a change in morphology of different cell lines. These effects correlated with disruption of the actin cytoskeleton. Such effects were not observed with SGE of the two species that did not target PDGF. Targeting of wound healing growth factors appears to be yet another strategy ixodid ticks adopt for suppression of inflammation and successful haematophagy.  相似文献   

15.
The tick Rhipicephalus appendiculatus Neumann (Acari: Ixodidae) naturally infests many host species. However, the mechanisms that enable it to feed on such a wide range of hosts are unclear. One possibility is that a tick population maintains molecular (genotypic and/or phenotypic) diversity among individuals such that individuals vary in their competency in taking bloodmeals under different feeding conditions. As a first step in testing this hypothesis, we showed that the polymorphism of salivary gland proteins, previously demonstrated in unfed ticks, was maintained during feeding on guinea-pigs. We then compared feeding performance under standard laboratory rearing conditions: one instar (adults or nymphs) feeding on guinea-pigs, with three changed conditions: (1) two instars (adults and nymphs) feeding together on guinea-pigs; (2) one instar (adults or nymphs) feeding on hamsters; and (3) two instars (adults and nymphs) feeding together on hamsters. The mean engorged weight of adult females was significantly reduced under all changed conditions, indicating that most of the adult individuals were significantly challenged by the changed conditions. However, some individuals achieved successful engorgement, indicating competence to the changed condition, and demonstrating variation in adaptive ability among individuals. Engorged females produced egg masses positively correlated to the engorged weights. More interestingly, the correlation coefficient (R) increased when feeding condition was changed. This may lead to more efficient selection for population adaptation under the changed conditions. As the feeding success of ixodid ticks depends on the efficiency of the cocktail of immunomodulatory saliva, the relevance of the polymorphism of salivary gland proteins and host adaptation is discussed.  相似文献   

16.

Background

Rift Valley fever (RVF) is a severe mosquito-borne disease affecting humans and domestic ruminants. Mosquito saliva contains compounds that counteract the hemostatic, inflammatory, and immune responses of the host. Modulation of these defensive responses may facilitate virus infection. Indeed, Aedes mosquito saliva played a crucial role in the vector''s capacity to effectively transfer arboviruses such as the Cache Valley and West Nile viruses. The role of mosquito saliva in the transmission of Rift Valley fever virus (RVFV) has not been investigated.

Objective

Using a murine model, we explored the potential for mosquitoes to impact the course of RVF disease by determining whether differences in pathogenesis occurred in the presence or absence of mosquito saliva and salivary gland extract.

Methods

C57BL/6NRJ male mice were infected with the ZH548 strain of RVFV via intraperitoneal or intradermal route, or via bites from RVFV-exposed mosquitoes. The virus titers in mosquitoes and mouse organs were determined by plaque assays.

Findings

After intraperitoneal injection, RVFV infection primarily resulted in liver damage. In contrast, RVFV infection via intradermal injection caused both liver and neurological symptoms and this route best mimicked the natural infection by mosquitoes. Co-injections of RVFV with salivary gland extract or saliva via intradermal route increased the mortality rates of mice, as well as the virus titers measured in several organs and in the blood. Furthermore, the blood cell counts of infected mice were altered compared to those of uninfected mice.

Interpretation

Different routes of infection determine the pattern in which the virus spreads and the organs it targets. Aedes saliva significantly increases the pathogenicity of RVFV.  相似文献   

17.
Among several pharmacological compounds, Phlebotomine saliva contains substances with anti-inflammatory properties. In this article, we demonstrated the therapeutic activity of salivary gland extract (SGE) of Phlebotomus papatasi in an experimental model of arthritis (collagen-induced arthritis [CIA]) and identified the constituents responsible for such activity. Daily administration of SGE, initiated at disease onset, attenuated the severity of CIA, reducing the joint lesion and proinflammatory cytokine release. In vitro incubation of dendritic cells (DCs) with SGE limited specific CD4(+) Th17 cell response. We identified adenosine (ADO) and 5'AMP as the major salivary molecules responsible for anti-inflammatory activities. Pharmacologic inhibition of ADO A2(A) receptor or enzymatic catabolism of salivary nucleosides reversed the SGE-induced immunosuppressive effect. Importantly, CD73 (ecto-5'-nucleotidase enzyme) is expressed on DC surface during stage of activation, suggesting that ADO is also generated by 5'AMP metabolism. Moreover, both nucleosides mimicked SGE-induced anti-inflammatory activity upon DC function in vitro and attenuated establishment of CIA in vivo. We reveal that ADO and 5'AMP are present in pharmacological amounts in P. papatasi saliva and act preferentially on DC function, consequently reducing Th17 subset activation and suppressing the autoimmune response. Thus, it is plausible that these constituents might be promising therapeutic molecules to target immune inflammatory diseases.  相似文献   

18.
The salivary glands are vital to the biological success of ixodid ticks and the major route for pathogen transmission. Important functions include the absorption of water vapor from unsaturated air by free-living ticks, excretion of excess fluid for blood meal concentration, and the secretion of bioactive protein and lipid compounds during tick feeding. Fluid secretion is controlled by nerves. Dopamine is the neurotransmitter at the neuroeffector junction regulating secretion via adenylate cyclase and an increase in cellular cAMP. Dopamine also affects the release of arachidonic acid which is subsequently converted to prostaglandins. Prostaglandin E(2) (PGE(2)) is secreted at extremely high levels into tick saliva for export to the host where it impacts the host physiology. Additionally, PGE(2) has an autocrine or paracrine role within the salivary gland itself where it interacts with a PGE(2) receptor to induce secretion (exocytosis) of bioactive saliva proteins via a phosphoinositide signalling pathway and an increase in cellular Ca(2+). Regulation of fluid secretion has been extensively studied, but little is known about the mechanism of fluid secretion. Continuing advances in tick salivary gland physiology will be made as key regulatory and secretory gland proteins are purified and/or their genes cloned and sequenced.  相似文献   

19.
The ability of rabbits, goats and cattle to acquire immunity to the ixodid ticksAmblyomma variegatum andRhipicephalus appendiculatus was studied under laboratory and field conditions. Rabbits were successfully immunized with crude salivary gland extract (SGE) and midgut extract (ME) obtained from flat or partly fed femaleR. appendiculatus ticks. The lowest numbers of larvae were produced by females fed on rabbits immunized with unfed midgut extract. Similar reductions in larval production could be induced after three infestations of rabbits with adultR. appendiculatus. Also, successive feedings of nymphs ofR. appendiculatus on rabbits resulted in significantly reduced engorgement weights. Skin testing with SGE induced delayed-type hypersensitivity reactions, which could be correlated with immunity toR. appendiculatus in rabbits. Moreover, circulating antibodies were detected in rabbits with an ELISA using SGE ofR. appendiculatus.Immunity toA. variegatum nymphs could be induced in rabbits by repeated infestations, but this failed in goats. Immunization of goats with midgut extract from adultA. variegatum did not protect against subsequent nymphal challenge, but strong skin reactions were noticed when adults ticks fed on immunized goats. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of SGE and ME fromA. variegatum revealed the presence of 48 protein bands in SGE and 29 bands in midgut extract. Western blotting employing serum from a rabbit immune toR. appendiculatus recognized a number of bands in SGE fromR. appendiculatus, but also in SGE ofA. variegatum.Immunity acquired by cattle to ixodid tick infestations under field conditions was monitored by skin testing with SGE and western blot analysis. In general, cattle with the lowest tick numbers manifested the strongest delayed-type hypersensitivity responses. Finally, western blot analysis employing sera from tick-infested and tick-naive cattle could not be related to actual immune status.  相似文献   

20.
Bluetongue virus (BTV) and epizootic haemorrhagic disease virus (EHDV) are related orbiviruses, transmitted between their ruminant hosts primarily by certain haematophagous midge vectors (Culicoides spp.). The larger of the BTV outer-capsid proteins, 'VP2', can be cleaved by proteases (including trypsin or chymotrypsin), forming infectious subviral particles (ISVP) which have enhanced infectivity for adult Culicoides, or KC cells (a cell-line derived from C. sonorensis). We demonstrate that VP2 present on purified virus particles from 3 different BTV strains can also be cleaved by treatment with saliva from adult Culicoides. The saliva proteins from C. sonorensis (a competent BTV vector), cleaved BTV-VP2 more efficiently than those from C. nubeculosus (a less competent/non-vector species). Electrophoresis and mass spectrometry identified a trypsin-like protease in C. sonorensis saliva, which was significantly reduced or absent from C. nubeculosus saliva. Incubating purified BTV-1 with C. sonorensis saliva proteins also increased their infectivity for KC cells ~10 fold, while infectivity for BHK cells was reduced by 2-6 fold. Treatment of an 'eastern' strain of EHDV-2 with saliva proteins of either C. sonorensis or C. nubeculosus cleaved VP2, but a 'western' strain of EHDV-2 remained unmodified. These results indicate that temperature, strain of virus and protein composition of Culicoides saliva (particularly its protease content which is dependent upon vector species), can all play a significant role in the efficiency of VP2 cleavage, influencing virus infectivity. Saliva of several other arthropod species has previously been shown to increase transmission, infectivity and virulence of certain arboviruses, by modulating and/or suppressing the mammalian immune response. The findings presented here, however, demonstrate a novel mechanism by which proteases in Culicoides saliva can also directly modify the orbivirus particle structure, leading to increased infectivity specifically for Culicoides cells and, in turn, efficiency of transmission to the insect vector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号