首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《MABS-AUSTIN》2013,5(1):34-46
Monoclonal antibodies (mAb) have become a mainstay in tumor therapy. Clinical responses to mAb therapy, however, are far from optimal, with many patients presenting native or acquired resistance or suboptimal responses to a mAb therapy. MAbs exert antitumor activity through different mechanisms of action and we propose here a classification of these mechanisms. In many cases mAbs need to interact with immune cells to exert antitumor activity. We summarize evidence showing that interactions between mAbs and immune cells may be inadequate for optimal antitumor activity. This may be due to insufficient tumor accumulation of mAbs or immune cells, or to low-affinity interactions between these components. The possibilities to improve tumor accumulation of mAbs and immune cells, and to improve the affinity of the interactions between these components are reviewed. We also discuss future directions of research that might further improve the therapeutic efficacy of antitumor mAbs.  相似文献   

2.
Purpose: The gastrointestinal carcinoma-associated antigen epithelial cell adhesion molecule (EpCAM) has been a target for passive and active immunotherapy of gastrointestinal carcinoma patients. The antigen is expressed by both tumor and normal tissues. The immunogenicity of EpCAM in colorectal cancer patients has been described previously. The purpose of this study was to evaluate humoral and cellular immune responses of healthy individuals and ulcerative colitis patients to EpCAM and to relate immune responses to colonic tissue expression of EpCAM. Methods: An inhibition radioimmunoassay was used to detect anti-EpCAM serum antibodies. Anti-EpCAM antibodies of a healthy donor were expressed by phages and sequenced. 3H-thymidine incorporation assay was used for detection of lymphoproliferative responses to stimulation with EpCAM. EpCAM tissue expression was determined by immunohistochemistry. Results: We detected anti-EpCAM serum antibodies in 4 of 10, and EpCAM-specific lymphoproliferation responses in 1 of 10 healthy volunteers. The majority of anti-EpCAM antibodies derived from a healthy donor were germline-encoded. In contrast, none of the 23 patients with ulcerative colitis showed serum antibodies to EpCAM (P=0.005). Antigen expression was greatly reduced and altered in ulcerative colitis patients, whereas colon from healthy individuals and uninvolved colon of colorectal cancer patients expressed high levels of EpCAM. Conclusion: The results of these studies suggest an association between EpCAM antibody production and colonic EpCAM expression in healthy individuals and patients with ulcerative colitis. Decreased and altered colonic EpCAM expression in ulcerative colitis patients may be related to the disease induction, based on the previously demonstrated adhesion function of this molecule. Healthy individuals with anti-EpCAM immune responses and high risk for developing colorectal carcinoma are prime candidates for prophylactic immunization against EpCAM.Emma E. Furth and Jian Li contributed equally  相似文献   

3.
 Gangliosides GD3, GD2 and GM2, which are the major gangliosides expressed on most human cancers of neuroectodermal and epithelial origin, have been focused on as effective targets for passive immunotherapy with monoclonal antibodies. We previously developed a chimeric anti-GD3 mAb, KM871, and a humanized anti-GM2 mAb, KM8969, which specifically bound to the respective antigen with high affinity and showed potent immune effector functions. Humanization of anti-ganglioside antibody is expected to enhance its use for human cancer therapy. In the present study, we generated a chimeric anti-GD2 mAb, KM1138, and further developed the humanized form of anti-GD2 and anti-GD3 mAbs by the complementarity-determining regions grafting method. The resultant humanized anti-GD2 mAb, KM8138, and anti-GD3 mAb, KM8871, showed binding affinity and specificity similar to those of their chimeric counterparts. In addition, both humanized mAbs had functional potency comparable to the chimeric mAbs in mediating the immune effector functions, consisting of antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity. The production of these humanized anti-ganglioside mAbs, with potent effector functions and low immunogenicity, precedes the evaluation of the therapeutic value of anti-ganglioside mAbs in passive immunotherapy and the target validation for ganglioside-based vaccine therapy. Received: 30 November 2000 / Accepted: 30 January 2001  相似文献   

4.
Cao Q  Xu W  Wen Z  Xu L  Li K  Chu Y  Xiong S 《DNA and cell biology》2008,27(2):91-100
Serological presence of anti-double-stranded DNA (anti-dsDNA) antibodies is a common phenomenon in cancer patients. Some patients with relatively high levels of anti-dsDNA antibodies may have a better prognosis, indicating the potential antitumor roles of anti-dsDNA antibodies. To delineate the role and mechanisms of anti-dsDNA antibodies in delaying tumor development, here we prepared a panel of anti-dsDNA monoclonal antibodies (mAbs) and assessed their antitumor effects both in vitro and in vivo. After immunization of BALB/c mice with DNA from SP2/0 tumor cells, 12 anti-dsDNA mAbs were obtained. Among these mAbs, mAb 2G8 exhibited the strongest cytotoxicity to Wehi164 cells in vitro and significantly inhibited the growth of tumor in vivo. This mAb 2G8-mediated antitumor effect was mainly exerted by triggering apoptosis, as evidenced by Annexin V staining and DNA fragmentation. Further, the expression of antiapoptotic genes Bcl-2 and Bcl-xL was downregulated while that of pro-apoptotic gene Bax was upregulated, suggesting the involvement of mitochondrial apoptotic pathway. Taken together, dsDNA-specific mAb 2G8 revealed promising tumor-suppressive activity by inducing apoptosis, which provides a possible new strategy for the development of tumor intervening methods.  相似文献   

5.
Two mouse tumor cell lines, Meth A (BALB/c mouse-derived fibrosarcoma) and MM46 (C3H/He mouse-derived mammary tumor), were shown to express high levels of complement receptor-related gene y/p65 (Crry/p65), a membrane-bound complement-regulatory protein. Inhibiting the complement-regulatory activity of Crry/p65 with mAb 5D5 induced high levels of C3 deposition on in vivo tumor-derived Meth A and MM46 cells. To determine the effect of Crry/p65 blockade and increased C3 deposition on in vivo tumor growth, Meth A and MM46 cells were treated with 5D5 mAb and injected into BALB/c and C3H/He mice, respectively. Pretreating MM46 cells with 5D5 mAb significantly suppressed their tumorigenicity when injected s.c. Pretreatment with 5D5 mAb had a modest effect on Meth A s.c. tumor growth. Because complement is involved in the induction of an immune response, we investigated the effect of Crry/p65 blockade and increased C3 deposition on the immunogenicity of the tumor cells in a vaccination protocol. Vaccination of mice with irradiated Meth A cells pretreated with 5D5 mAb protected mice from subsequent challenge. In contrast, vaccination with irradiated Meth A cells without pretreatment was not protective. Survival was correlated with a high titer IgM response and specific CTL activity. These data demonstrate that the functional inhibition of Crry/p65 on tumor cells affects tumor growth and immunogenicity, and that the complement deposition resulting from this inhibition can act in concert with antitumor effector mechanisms to elicit potent antitumor immunity in vivo.  相似文献   

6.
Antibodies are principal immune components elicited by vaccines to induce protection from microbial pathogens. In the Thai RV144 HIV-1 vaccine trial, vaccine efficacy was 31% and the sole primary correlate of reduced risk was shown to be vigorous antibody response targeting the V1V2 region of HIV-1 envelope. Antibodies against V3 also were inversely correlated with infection risk in subsets of vaccinees. Antibodies recognizing these regions, however, do not exhibit potent neutralizing activity. Therefore, we examined the antiviral potential of poorly neutralizing monoclonal antibodies (mAbs) against immunodominant V1V2 and V3 sites by passive administration of human mAbs to humanized mice engrafted with CD34+ hematopoietic stem cells, followed by mucosal challenge with an HIV-1 infectious molecular clone expressing the envelope of a tier 2 resistant HIV-1 strain. Treatment with anti-V1V2 mAb 2158 or anti-V3 mAb 2219 did not prevent infection, but V3 mAb 2219 displayed a superior potency compared to V1V2 mAb 2158 in reducing virus burden. While these mAbs had no or weak neutralizing activity and elicited undetectable levels of antibody-dependent cellular cytotoxicity (ADCC), V3 mAb 2219 displayed a greater capacity to bind virus- and cell-associated HIV-1 envelope and to mediate antibody-dependent cellular phagocytosis (ADCP) and C1q complement binding as compared to V1V2 mAb 2158. Mutations in the Fc region of 2219 diminished these effector activities in vitro and lessened virus control in humanized mice. These results demonstrate the importance of Fc functions other than ADCC for antibodies without potent neutralizing activity.  相似文献   

7.
To overcome the lack of selectivity and nonspecific biodistribution of drugs in the body, targeted delivery of chemotherapeutic agents with aptamers is a very effective method. In this strategy, aptamers could be specifically identified and attach to targeted molecules on the cancerous cells and deliver the chemotherapeutic agents to desired tissue with minimal or no damage to the normal cells. In this study, we designed anti-epithelial cell adhesion molecule (EpCAM) RNA aptamer conjugated PEGylated liposomal doxorubicin (ER-lip) to investigate its in vitro and in vivo anticancer abilities. Data showed that EpCAM aptamer was able to enhance cell uptake and cytotoxic effects of Dox in C26 cell line. The biodistribution study indicated that ER-lip enhanced the tumor accumulation of Dox compared to Caelyx. Also, double staining of isolated tumor cells with anti-CD44-PE-cy5 and anti-EpCAM Cy-7 antibodies indicated that tumor cells expressed a high level of EpCAM+ CD44+ cells (p ≤ .001) compared to cultured C26 cell line. in vivo results showed that ER-lip promoted survival and reduced tumor growth rate in animal model compared to Caelyx. In conclusion, these results suggested that the ER-lip could be served as promising formulation for the treatment of cancers with the high expression of EpCAM.  相似文献   

8.
A glycoengineered Pichia pastoris host was used to produce an IgG1 with either afucosylated N-glycosylation (afucosylated biantennary complex) or without N-glycosylation (N297A) while a wild type P. pastoris host was used to produce an IgG1 containing fungal-type N- and O-linked glycosylation. The PK properties of these antibodies were compared to a commercial IgG1 produced in CHO cells following intravenous administration in wild type C57B6, FcγR-/- or hFcRn transgenic mice. MAbs produced in glycoengineered yeast exhibited similar PK properties in wild type mice or FcγR-/- mice with respect to clearance (CL), volume of distribution at steady-state (Vss) and half-life (t1/2) to that produced in mammalian (CHO) cells, while the mAb produced in wild type yeast exhibited ∼2–3-fold faster CL, which might be due to the high mannose content interacting with mannose receptors. Furthermore, in vitro binding affinity to human FcRn or mouse FcRn was similar between the reference mAb and mAbs produced in humanized yeast, and the glycovariants produced in humanized yeast exhibited similar PK patterns in human FcRn transgenic mice and in wild type mice. These results suggest the potential application of P. pastoris as a production platform for clinically viable mAbs.  相似文献   

9.

Background

Epithelial cell adhesion molecule (EpCAM) is frequently and highly expressed on human carcinomas. The emerging role of EpCAM as a signalling receptor and activator of the wnt pathway, and its expression on tumor-initiating cells, further add to its attractiveness as target for immunotherapy of cancer. Thus far, five conventional monoclonal IgG antibodies have been tested in cancer patients. These are murine IgG2a edrecolomab and its murine/human chimeric IgG1 antibody version, and humanized, human-engineered and fully human IgG1 antibodies 3622W94, ING-1, and adecatumumab (MT201), respectively. Here we compared all anti-EpCAM antibodies in an attempt to explain differences in clinical activity and safety.

Methods

We recombinantly produced all antibodies but murine edrecolomab and investigated them for binding affinity, EpCAM epitope recognition, ADCC and CDC, and inhibition of breast cancer cell proliferation.

Results

ING-1 and 3622W94 bound to EpCAM with much higher affinity than adecatumumab and edrecolomab. Edrecolomab, ING-1, and 3622W94 all recognized epitopes in the exon 2-encoded N-terminal domain of EpCAM, while adecatumumab recognized a more membrane proximal epitope encoded by exon 5. All antibodies induced lysis of EpCAM-expressing cancer cell lines by both ADCC and CDC with potencies that correlated with their binding affinities. The chimeric version of edrecolomab with a human Fcγ1 domain was much more potent in ADCC than the murine IgG2a version. Only adecatumumab showed a significant inhibition of MCF-7 breast cancer cell proliferation in the absence of complement and immune cells.

Conclusion

A moderate binding affinity and recognition of a distinct domain of EpCAM may best explain why adecatumumab showed a larger therapeutic window in cancer patients than the two high-affinity IgG1 antibodies ING-1 and 3622W94, both of which caused acute pancreatitis.  相似文献   

10.
EpCAM is expressed at low levels in a variety of normal human epithelial tissues, but is overexpressed in 70–90% of carcinomas. From a clinico-pathological point of view, this has both prognostic and therapeutic significance. EpCAM was first suggested as a therapeutic target for the treatment of epithelial cancers in the 1990s. However, following several immunotherapy trials, the results have been mixed. It has been suggested that this is due, at least in part, to an unknown level of EpCAM expression in the tumors being targeted. Thus, selection of patients who would benefit from EpCAM immunotherapy by determining EpCAM status in the tumor biopsies is currently undergoing vigorous evaluation. However, current EpCAM antibodies are not robust enough to be able to detect EpCAM expression in all pathological tissues. Here we report a newly developed EpCAM RNA aptamer, also known as a chemical antibody, which is not only specific but also more sensitive than current antibodies for the detection of EpCAM in formalin-fixed paraffin-embedded primary breast cancers. This new aptamer, together with our previously described aptamer, showed no non-specific staining or cross-reactivity with tissues that do not express EpCAM. They were able to reliably detect target proteins in breast cancer xenograft where an anti-EpCAM antibody (323/A3) showed limited or no reactivity. Our results demonstrated a more robust detection of EpCAM using RNA aptamers over antibodies in clinical samples with chromogenic staining. This shows the potential of aptamers in the future of histopathological diagnosis and as a tool to guide targeted immunotherapy.  相似文献   

11.
《MABS-AUSTIN》2013,5(6):535-545
Monoclonal antibody (mAb) therapy was first established upon the approval of a mouse antibody for treatment of human acute organ rejection. However, the high incidence of immune response against the mouse mAb restricted therapeutic utility. Development of chimeric, “humanized” and human mAbs broadened therapeutic application to immune-mediated diseases requiring long-term treatment. Indeed, mAb therapeutics targeting soluble cytokines are highly effective in numerous immune-mediated disorders. A recent example is ustekinumab, a first-in-class therapeutic human immunoglobulin G1 kappa mAb that binds to the interleukins (IL)-12 and IL-23, cytokines that modulate lymphocyte function, including T-helper (Th) 1 and Th17 cell subsets. Ustekinumab was generated via recombinant human IL-12 immunization of human immunoglobulin (hu-Ig) transgenic mice. Ustekinumab binds to the p40 subunit common to IL-12 and IL-23 and prevents their interaction with the IL-12 receptor β1 subunit of the IL-12 and IL-23 receptor complexes. Ustekinumab is approved for treatment of moderate-to-severe plaque psoriasis and has demonstrated efficacy in Crohn disease and psoriatic arthritis. The clinical characterization of ustekinumab continues to clarify our understanding of human immune pathologies and may offer a novel therapeutic option for certain immune-mediated diseases.  相似文献   

12.
Purpose  There are no suitable small animal models to evaluate human antibody-dependent cellular cytotoxicity (ADCC) in vivo, due to species incompatibilities. Thus, the first aim of this study was to establish a human tumor-bearing mouse model in which human immune cells can engraft and mediate ADCC, but where the endogenous mouse immune cells cannot mediate ADCC. The second aim was to evaluate ADCC mediated in these humanized mice by the defucosylated anti-CC chemokine receptor 4 (CCR4) monoclonal antibody (mAb) which we have developed and which is now in phase I clinical trials. Experimental design  NOD/Shi-scid, IL-2Rγnull (NOG) mice were the recipients of human immune cells, and CCR4-expressing Hodgkin lymphoma (HL) and cutaneous T-cell lymphoma (CTCL) cell lines were used as target tumors. Results  Humanized mice have been established using NOG mice. The chimeric defucosylated anti-CCR4 mAb KM2760 showed potent antitumor activity mediated by robust ADCC in these humanized mice bearing the HL or CTCL cell lines. KM2760 significantly increased the number of tumor-infiltrating CD56-positive NK cells which mediate ADCC, and reduced the number of tumor-infiltrating FOXP3-positive regulatory T (Treg) cells in HL-bearing humanized mice. Conclusions  Anti-CCR4 mAb could be an ideal treatment modality for many different cancers, not only to directly kill CCR4-expressing tumor cells, but also to overcome the suppressive effect of Treg cells on the host immune response to tumor cells. In addition, using our humanized mice, we can perform the appropriate preclinical evaluation of many types of antibody based immunotherapy.  相似文献   

13.
Human epidermal growth factor receptor-2 (HER-2)/neu (ErbB2), a member of the epidermal growth factor family of receptors, is overexpressed in 20-30% of breast cancers. It is an attractive target for receptor-directed antitumor therapy using mAbs. Unlike other epidermal growth factor receptor family members, HER-2/neu does not bind a high-affinity ligand, but rather functions as the preferred dimerization partner. Pertuzumab (Omnitarg) is a humanized mAb directed against the HER-2/neu dimerization domain that inhibits receptor signaling. The recent definition of the crystal structure of the HER-2/neu-pertuzumab complex demonstrated that the receptor dimerization region encompassed residues 266-333. Based on the three-dimensional structure of the complex, we have designed three conformational peptide constructs (sequences 266-296, 298-333, and 315-333) to mimic regions of the dimerization loop of the receptor and to characterize their in vitro and in vivo antitumor efficacy. All the constructs elicited high-affinity peptide Abs that inhibited multiple signaling pathways including HER-2/neu-specific inhibition of cellular proliferation and cytoplasmic receptor domain phosphorylation. All the peptide Abs showed Ab-dependent cellular cytotoxicity to varying degrees with the 266-296 constructs being equally effective as compared with Herceptin. The 266-296 peptide vaccine had statistically reduced tumor onset in both transplantable tumor models (FVB/n and BALB/c) and significant reduction in tumor development in two transgenic mouse tumor models (BALB-neuT and VEGF(+/-)Neu2-5(+/-)). The 266-296 construct represents the most promising candidate for antitumor vaccination and could also be used to treat a variety of cancers with either normal or elevated expression of HER-2 including breast, lung, ovarian, and prostate.  相似文献   

14.
There have been several studies suggesting that cancer stem cells (CSCs) contribute to the high rates of recurrence and resistance to therapies observed in hepatocellular carcinoma (HCC). Epithelial cell adhesion molecule (EpCAM) has been demonstrated to be a biomarker of CSCs and a potential therapeutic target in HCC. Here, we prepared two anti-EpCAM monoclonal antibodies (1H8 and 2F2) and an anti-EpCAM bispecific T cell engager (BiTE) 1H8/CD3, which was derived from 1H8, and used them to treat HCC in vitro and in vivo. The results demonstrated that all of the developed anti-EpCAM antibodies specifically bound to EpCAM. Neither anti-EpCAM monoclonal antibody had obvious anti-HCC activities in vitro or in vivo. However, anti-EpCAM BiTE 1H8/CD3 induced strong peripheral blood mononuclear cell-dependent cellular cytotoxicity in Huh-7 and Hep3B cells but not EpCAM-negative SK-Hep-1 cells. Notably, 1H8/CD3 completely inhibited the growth of Huh-7 and Hep3B xenografts in vivo. Treatment of the Huh-7 HCC xenografts with 1H8/CD3 significantly suppressed tumor proliferation and reduced the expression of most CSC biomarkers. Intriguingly, galectin-1 (Gal-1) overexpression inhibited 1H8/CD3-induced lymphocytotoxicity in HCCs while knockdown of Gal-1 increased the lymphocytotoxicity. Collectively, these results indicate that anti-EpCAM BiTE 1H8/CD3 is a promising therapeutic agent for HCC treatment. Gal-1 may contribute to the resistance of HCC cells to 1H8/CD3-induced lysis.  相似文献   

15.
Engineering the Fc region of monoclonal antibodies (mAb) in order to enhance effector functions such as antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity (CDC) is likely to a be promising approach for next-generation mAb therapy. Here, we report on such an antibody, 113F, a novel CDC-enhancing variant of rituximab, and determine the tumor-associated factors influencing susceptibility to 113F-induced CDC. The latter included the quantity of complement inhibitors present, such as CD55 and CD59. We report that compared to rituximab, 113F mediated highly enhanced CDC against primary CD20-expressing lymphoma cells in vitro. Currently, a major problem in the field of immunotherapy research is the lack of suitable small animal models to evaluate human CDC in vivo. Therefore, we established a novel human tumor-bearing NOD/Shi-scid, IL-2Rγnull mouse model, in which human complement functions as the CDC mediator. We demonstrated that rituximab exerted significant antitumor effects via human CDC in this humanized mouse. The finding of specific localization of human C1q on CD20-expressing tumor cell membranes was consistent with the observation that human CDC indeed contributed to the antitumor effect in this model. Moreover, 113F exerted significantly more potent antitumor effects than rituximab in this in vivo model. The detection of more abundant dense signals from C1q using 113F compared to rituximab was consistent with the concept that this reagent represented a CDC-enhancing mAb. In the near future, the efficacy of this type of CDC-enhancing antibody will be determined in clinical trials in humans.  相似文献   

16.
《MABS-AUSTIN》2013,5(8):1443-1451
ABSTRACT

Blockade of immune checkpoint pathways by programmed cell death protein 1 (PD-1) antibodies has demonstrated broad clinical efficacy against a variety of malignancies. Sintilimab, a highly selective, fully human monoclonal antibody (mAb), blocks the interaction of PD-1 and its ligands and has demonstrated clinical benefit in various clinical studies. Here, we evaluated the affinity of sintilimab to human PD-1 by surface plasmon resonance and mesoscale discovery and evaluated PD-1 receptor occupancy and anti-tumor efficacy of sintilimab in a humanized NOD/Shi-scid-IL2rgamma (null) (NOG) mouse model. We also assessed the receptor occupancy and immunogenicity of sintilimab from clinical studies in humans (9 patients with advanced solid tumor and 381 patients from 4 clinical studies, respectively). Sintilimab bound to human PD-1 with greater affinity than nivolumab (Opdivo®, MDX-1106) and pembrolizumab (Keytruda®, MK-3475). The high affinity of sintilimab is explained by its distinct structural binding mode to PD-1. The pharmacokinetic behavior of sintilimab did not show any significant differences compared to the other two anti-PD-1 mAbs. In the humanized NOG mouse model, sintilimab showed superior PD-1 occupancy on circulating T cells and a stronger anti-tumor effect against NCI-H292 tumors. The strong anti-tumor response correlated with increased interferon-γ-secreting, tumor-specific CD8+ T cells, but not with CD4+ Tregs in tumor tissue. Pharmacodynamics testing indicated a sustained mean occupancy of ≥95% of PD-1 molecules on circulating T cells in patients following sintilimab infusion, regardless of infusion dose. Sintilimab infusion was associated with 0.52% (2/381 patients) of anti-drug antibodies and 0.26% (1/381 patients) neutralizing antibodies. These data validate sintilimab as a novel, safe, and efficacious anti-PD-1 mAb for cancer immunotherapy.  相似文献   

17.
目的:原核表达EpCAM蛋白并制备抗EpCAM特异性单克隆抗体,初步鉴定相应单克隆抗体的特性。方法:PCR扩增EpCAM基因胞外区,将目的基因亚克隆至载体pET-28a(+),转化至大肠埃希菌株BL21,IPTG诱导表达,组氨酸亲和层析法纯化表达产物。纯化蛋白免疫BALB/c小鼠,将成功免疫的小鼠脾细胞与骨髓瘤SP2/0细胞融合,经ELISA筛选得到分泌特异性抗EpCAM的单克隆抗体的细胞株,免疫BALB/c小鼠进一步制备相应的单克隆抗体,并通过Western blot(蛋白质印记)和FACS(流式细胞分析)鉴定单抗的特异性及生物学活性。结果:成功构建重组表达载体pET28a-EpCAM并在大肠杆菌中获得表达,经His-tag亲和层析法获得纯化的EpCAM重组蛋白。EpCAM重组蛋白免疫的BALB/c小鼠的脾细胞与SP2/0细胞融合、筛选,获得两株稳定分泌EpCAM抗体的杂交瘤细胞株,分别命名为4B2、2F2并免疫BALB/c小鼠获得相应的单克隆抗体。Western blot结果显示4B2腹水纯化所得单抗能够识别FaDu细胞系(人咽鳞癌细胞)中的EpCAM蛋白,但2F2未能识别FaDu细胞中的变性的EpCAM蛋白。FACS结果显示两者均能和FaDu细胞中天然的EpCAM蛋白结合。讨论:成功制备了抗EpCAM的单克隆抗体,并能够识别人咽鳞癌细胞系FaDu中表达的EpCAM,为进一步研究EpCAM抗体在肿瘤治疗中的作用提供基础。  相似文献   

18.
Marasco WA  Sui J 《Nature biotechnology》2007,25(12):1421-1434
Monoclonal antibodies (mAbs) have long provided powerful research tools for virologists to understand the mechanisms of virus entry into host cells and of antiviral immunity. Even so, commercial development of human (or humanized) mAbs for the prophylaxis, preemptive and acute treatment of viral infections has been slow. This is surprising, as new antibody discovery tools have increased the speed and precision with which potent neutralizing human antiviral mAbs can be identified. As longstanding barriers to antiviral mAb development, such as antigenic variability of circulating viral strains and the ability of viruses to undergo neutralization escape, are being overcome, deeper insight into the mechanisms of mAb action and engineering of effector functions are also improving the efficacy of antiviral mAbs. These successes, in both industrial and academic laboratories, coupled with ongoing changes in the biomedical and regulatory environments, herald an era when the commercial development of human antiviral mAb therapies will likely surge.  相似文献   

19.
20.
Fas ligand (L)/CD95L, a proapoptotic member of the TNF family, is a potential target for clinical intervention in various diseases. In the present study, we generated a humanized anti-human FasL mAb and characterized the epitopes of neutralizing mAbs by extensive alanine-scanning mutagenesis of human FasL. The predicted molecular model of FasL trimer revealed that the mAbs recognize largely overlapped conformational epitopes that are composed of two clusters, one around the outer tip-forming D-E loop and another near the top of FasL. Both of these sites on FasL are critically involved in the direct interaction with the corresponding receptor, Fas. These results suggest that the mAbs efficiently neutralize FasL cytotoxicity by masking both of these FasL/Fas contact sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号