首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhao YH  Shen XH  Guo XQ 《生理学报》2000,52(3):255-258
观察延髓头端腹外侧区(rVLM)微量注射血管升压素(AVP)能否影响正常大鼠的血压和血粘度,并分析rVLM内AVP能机制在清醒大鼠经悬吊加束缚引起应激性升压反应和高血粘度中的影响。结果如下:⑴正常大鼠双侧rVLM微量注射AVP(每侧0.5μg/0.5μl),可引起血压和血粘度升高;此作用可被事先在同一位置微量注射AVP-V1受体拮抗剂d(CH2)5「Tyr(Me)^2」AVP(每侧0.1μg/0.  相似文献   

2.
The plasma arginine vasopressin (AVP), ACTH, and corticosterone levels and the hypothalamic corticotropin-releasing hormone (CRH) content were measured after oral administration of 1 ml of 75% ethanol to rats, a model known to induce acute gastric erosions and stress. Elevated plasma AVP, ACTH, and corticosterone levels were detected 1 h after ethanol administration. Treatment with the vasopressin pressor (V(1)) receptor antagonist [d(CH(2))(5)Tyr(Me)-AVP] before ethanol administration significantly reduced the ACTH and corticosterone level increases. A higher hypothalamic CRH content was measured at 30 or 60 min after ethanol administration. V(1) receptor antagonist injection, 5 min before ethanol administration, inhibited the rise in hypothalamic CRH content. The protein synthesis blocker cycloheximide prevented the hypothalamic CRH content elevation after stress. The AVP-, CRH-, and AVP + CRH-induced in vitro ACTH release in normal anterior pituitary tissue cultures was also prevented by pretreatment with the V(1) receptor antagonist. The results support the hypothesis that stress-induced AVP may not only act directly on the ACTH producing anterior pituitary cells but also indirectly at the hypothalamic level via the synthesis and release of CRH.  相似文献   

3.
The aim of this study was to investigate the effects of intracerebroventricularly injected glucagon-like peptide-1 (GLP-1) on ethanol-induced gastric mucosal damage and to elucidate the mechanisms involved. Absolute ethanol was administered through an orogastric cannula 5 min before GLP-1 (1 microg/10 microl) injection. One hour later, the rats were decapitated, their stomachs were removed and scored for mucosal damage. GLP-1 inhibited the ethanol-induced gastric mucosal damage by 92%. Centrally injected atropine sulphate, a muscarinic receptor antagonist (5 microg/10 microl), prevented the gastroprotective effect of GLP-1, while mecamylamine, a nicotinic receptor antagonist (25 microg/10 microl), was ineffective. Peripherally injected atropine methyl nitrate (1 mg/kg) did not change the effect of GLP-1, but mecamylamine (5 mg/kg) blocked it. Cysteamine, a somatostatin depletor (280 mg/kg, s.c.), did not affect the protective activity of GLP-1, while inhibition of nitric oxide (NO) synthesis by L-NAME (3 mg/kg, i.v.) significantly abolished the protective effect of GLP-1 on ethanol-induced gastric mucosal lesions. We conclude that central muscarinic and peripheral nicotinic cholinergic receptors and NO, but not somatostatin, contribute to the protective effect of intracerebroventricularly injected GLP-1 on ethanol-induced gastric mucosal damage.  相似文献   

4.
It has been reported that hypothermia induced by arginine vasopressin (AVP) is brought about by a coordinated response of reduced thermogenesis in brown adipose tissue (BAT) and increased heat loss through the tail of rats. However, it is well known that AVP is one of the strongest peripheral vasoconstrictors. Whether the AVP-induced hypothermia is associated with an increase in heat loss through the tail is questionable. Therefore, the present study assessed the relationship between the effects of AVP on tail skin temperature and the induced hypothermic response, and to determine if peripheral AVP administration increases heat loss from the tail. Core, BAT and tail skin temperature were monitored by telemetry in male Sprague–Dawley rats before and after intraperitoneal administration of AVP or vasopressin receptor antagonist. We also analyzed simultaneously of the time-course of AVP-induced hypothermic response and its relationship with changes in BAT temperature, and effect of AVP on grooming behavior. The key observations in this study were: (1) rats dosed with AVP induced a decrease in heat production (i.e., a reduction of BAT thermogenesis) and an increase of saliva spreading for evaporative heat loss (i.e., grooming behavior); (2) AVP caused a marked decrease in tail skin temperature and this effect was prevented by the peripheral administration of the vasopressin V1a receptor antagonist, suggesting that exogenous AVP does not increase heat loss in the tail of rats; (3) the vasopressin V1a receptor antagonist could elevate core temperature without affecting tail skin temperature, suggesting that endogenous AVP is involved in suppression of thermogenesis, but not mediates heat loss in the tail of rats. Overall, the present study does not support the conclusion of previous reports that AVP increased tail heat loss in rats, because AVP-induced hypothermia in the rat is accompanied by a decrease in tail skin temperature. The data indicate that exogenous AVP-induced hypothermia attributed to the suppression of thermoregulatory heat production and the increase of saliva spreading for evaporative heat loss.  相似文献   

5.
Previous work in rats (Ader, R. and De Wied, D., Psychon. Sci., 29 (1972) 46-48) has established that subcutaneously (s.c.) injected arginine vasopressin (AVP) prolongs extinction of active avoidance and that this effect could be prevented by pretreatment with the vasopressin antagonist analog [1-deaminopenicillamine, 2-(O-methyl)tyrosine]-beta-arginine vasopressin (dPtyr(Me)AVP). The purpose of the present study was to determine if peripherally administered AVP acts via a peripheral blood pressure effect or by a direct action in the central nervous system. We therefore tested the effects of the antagonist injected intracerebroventricularly (i.c.v.) on the prolongation of active avoidance and on blood pressure effects of s.c. injected AVP. The antagonist (i.c.v.) blocked the behavioral effects of systemically injected AVP only at dose sufficient to block the peripherally mediated pressor response of systemically administered AVP. The results show that peripherally injected AVP acts on peripheral systems and support our hypothesis that the peripheral visceral action of AVP contributed significantly to its behavioral action.  相似文献   

6.
In adult male rats, vasopressin (AVP) facilitates social recognition via activation of V1a receptors within the lateral septum. Much less is known about how AVP affects social recognition in adult females or in juvenile animals of either sex. We found that administration of the specific V1a receptor antagonist d(CH(2))(5)[Tyr(Me)(2)]AVP into the lateral septum of adult rats impaired, whereas AVP extended, social discrimination in both sexes. In juveniles, however, we detected a sex difference, such that males but not females showed social discrimination. Interestingly, administration of the V1a receptor antagonist to juveniles (either intracerebroventricularly or locally in the lateral septum) did not prevent social discrimination, but instead significantly decreased the investigation of a novel as opposed to a familiar animal in both sexes, with stronger effects in males. V1a receptors were found to be abundantly expressed in the lateral septum with higher binding density in females than in males. These findings demonstrate that activation of V1a receptors in the lateral septum is important for social recognition in both sexes, and that the roles of septal V1a receptors in social recognition change during development.  相似文献   

7.
Isbil-Buyukcoskun N  Gulec G 《Peptides》2004,25(7):1179-1183
Glucagon-like peptide-1 (GLP-1) is accepted to be a peptide involved in the central regulation of gastrointestinal function, but its potential gastroprotective effect is not clear. The aim of this study was to investigate whether intracerebroventricularly injected GLP-1 has protective effects on gastric mucosal lesions induced by several models, and if yes, whether these effects are due to the gastric antisecretory effect of the peptide. GLP-1 which was injected in three different doses (1, 10, 100 ng/10 microl; i.c.v.) to conscious rats prevented the mucosal lesions induced by reserpine and ethanol, but did not prevent the gastric mucosal lesions induced by pyloric ligation. In addition, 1 ng/10 microl dose of centrally injected GLP-1 inhibited gastric acid secretion in pylorus-ligated rats. As a result, we conclude that intracerebroventricularly injected GLP-1 may play a role in the prevention of gastric mucosal lesions induced by certain experimental models and this gastroprotective effect may be independent from its antisecretory effect.  相似文献   

8.
An enhanced urethral closure reflex via the spinal cord is related to urethral resistance elevation during increased abdominal pressure. However, with the exception of monoamines, neurotransmitters modulating this reflex are not understood. We investigated whether the vasopressin V(?A) receptor (V(?A)R) is involved in the urethral closure reflex in urethane-anesthetized female rats. V(?A)R mRNA was highly expressed among the vasopressin receptor family in the total RNA purified from lamina IX in the spinal cord L6-S1 segment. In situ hybridization analysis of the spinal L6-S1 segment confirmed that these positive signals from the V(?A)Rs were only detected in lamina IX. Intrathecally injected Arg?-vasopressin (AVP), an endogenous ligand, significantly increased urethral resistance during an intravesical pressure rise, and its effect was blocked by the V(?A)R antagonist. AVP did not increase urethral resistance in rats in which the pelvic nerves were transected bilaterally. Urethral closure reflex responses to the intravesical pressure rise increased by up to threefold compared with the baseline response after AVP administration in contrast to no increase by vehicle. In addition, intravenously and intrathecally injected V(?A)R antagonists decreased urethral resistance. These results suggest that V(?A)R stimulation in the spinal cord enhances the urethral closure reflex response, thereby increasing urethral resistance during an abdominal pressure rise and that V(?A)R plays a physiological role in preventing urine leakage.  相似文献   

9.
精氨酸加压素对大鼠抗体产生和淋巴细胞增殖的上调作用   总被引:5,自引:0,他引:5  
Bai HB  Du JZ  Zheng XX 《生理学报》1999,51(4):435-438
大鼠侧脑室注射100ng精氨酸加压素(AVP),用ELISA法检测血中对鸡卵白 白抗原产生的IgG抗体水平。结果显示,IgG水平高于对照,而AVP的V1受体阻断剂DPAVP则可阻断此作用;icv800ngAVP,大鼠的SRBC溶血素 水平高于对照;icv100ng、800ngAVP2h后,脾淋巴细胞对MTT产生的颜色反应均比对照增加,而DPAVP可阻断之;icv800AVP2h后,脾淋巴细胞对MT  相似文献   

10.
Vasopressin antisense peptide interactions with the V1 receptor   总被引:1,自引:0,他引:1  
The molecular recognition hypothesis, that peptide ligands and their receptor binding sites are encoded by complementary nucleotide sequences, was tested for arginine vasopressin (AVP) and its V1 receptor. Binding of [125I] [d(CH2)5,Sar7]AVP (a selective V1 vasopressin antagonist radioligand) or [3H]AVP to rat liver plasma membranes was inhibited by peptides known to bind to V1 receptors but not by the AVP complementary peptide (Ser-Ser-Trp-Ala-Val-Leu-Glu-Val-Ala) (PVA). Rabbit anti-PVA antibodies were nonimmunoreactive with any protein in rat liver membranes or in a partially purified preparation from rat liver containing reconstitutable vasopressin binding activity. Furthermore, there was no suppression of the AVP pressor effect by PVA in vivo using a rat blood pressure bioassay. These findings do not support the hypothesis that the V1 receptor binding site is encoded by the antisense DNA strand to AVP.  相似文献   

11.
In the current study, we aimed to determine the cardiovascular effects of arachidonic acid and peripheral mechanisms mediated these effects in normotensive conscious rats. Studies were performed in male Sprague Dawley rats. Arachidonic acid was injected intracerebroventricularly (i.c.v.) at the doses of 75, 150 or 300 microg and it caused dose- and time-dependent increase in mean arterial pressure and decrease in heart rate in normal conditions. Maximal effects were observed 10 min after 150 and 300 microg dose of arachidonic acid and lasted within 30 min. In order to evaluate the role of main peripheral hormonal mechanisms in those cardiovascular effects, plasma adrenaline, noradrenaline, vasopressin levels and renin activity were measured after arachidonic acid (150 microg; i.c.v.) injection. Centrally injected arachidonic acid increased plasma levels of all these hormones and renin activity. Intravenous pretreatments with prazosin (0.5 mg/kg), an alpha1 adrenoceptor antagonist, [beta-mercapto-beta,beta-cyclopentamethylenepropionyl1, O-Me-Tyr2-Arg8]-vasopressin (10 microg/kg), a vasopressin V1 receptor antagonist, or saralasin (250 microg/kg), an angiotensin II receptor antagonist, partially blocked the pressor response to arachidonic acid (150 microg; i.c.v.) while combined administration of these three antagonists completely abolished the effect. Moreover, both individual and combined antagonist pretreatments fully blocked the bradycardic effect of arachidonic acid. In conclusion, our findings show that centrally administered arachidonic acid increases mean arterial pressure and decreases heart rate in normotensive conscious rats and the increases in plasma adrenaline, noradrenaline, vasopressin levels and renin activity appear to mediate the cardiovascular effects of the drug.  相似文献   

12.
刺激室旁核及加压素对大鼠胃缺血-再灌注损伤的保护作用   总被引:11,自引:1,他引:10  
Zhang JF  Zhang YM  Yan CD  Zhou XP  Qi YJ 《生理学报》2002,54(2):133-138
采用夹闭大鼠腹腔动脉30min,松开动脉夹血流复灌1h的胃缺血-再灌注损伤(gastric ischemia-reper-fusion injury,GI-RI)模型,观察了电或化学刺激室旁核(paraventricular nucleus,PVN)及外源性加压素(arginine-va-sopression,AVP)对GI-RI的影响,并对PVN的调控通路进行了初步分析。结果表明:电或化学刺激PVN后,GI-RI显著减轻;损毁双侧孤束核(nucleus tractus solitarius,NTS)或一侧NTS内注射AVP-V1受体阻断剂,均能取消电刺激PVN对GI-RI的效应;去除脑垂体后不影响PVN的作用;切断膈下迷走神经或切除腹腔交感神经节,则能加强电刺激PVN对GI-RI的影响;PVN内注射不同剂量的AVP同样能减轻大鼠GI-RI损伤。结果提示:PVN及AVP对大鼠GI-RI具有保护作用;PVN的这种作用可能是因电或化学刺激后,激活了其中的加压素能神经元,经其下行投射纤维释放AVP作用于NTS神经元的VAP-V1受体,并通过迷走和交感神经介导,从而影响GI-RI;而似与PVN-垂体通路关系不大。  相似文献   

13.
The involvement of central angiotensinergic and cholinergic mechanisms in the effects of the intracerebroventricularly injected somatostatin analog octreotide (Oct) on drinking, blood pressure, and vasopressin secretion in the rat was investigated. Intracerebroventricular Oct elicited prompt drinking lasting for 10 min. Water consumption depended on the dose of Oct (0.01, 0.1, and 0. 4 microgram). The drinking response to Oct was inhibited by pretreatments with the intracerebroventricularly injected angiotensin-converting enzyme inhibitor captopril, the AT(1)/AT(2) angiotensin receptor antagonist saralasin, the selective AT(1) receptor antagonist losartan, or the muscarinic cholinergic receptor antagonist atropine. The dipsogenic effect of Oct was not altered by prior subcutaneous injection of naloxone. Oct stimulated vasopressin secretion and enhanced blood pressure. These responses were also blocked by pretreatments with captopril or atropine. Previous reports indicate that the central angiotensinergic and cholinergic mechanisms stimulate drinking and vasopressin secretion independently. We suggest that somatostatin acting on sst2 or sst5 receptors modulates central angiotensinergic and cholinergic mechanisms involved in the regulation of fluid balance.  相似文献   

14.
While the roles of glutamic acid(Glu), arginine vasopressin(AVP) and their respective receptors in anxiety have been thoroughly investigated, the effects of interactions among Glu, N-methyl-D-aspartic acid(NMDA) receptor, AVP and a-amino-3-hydroxy-5-methylisoxazole-4-propionic acid(AMPA) receptor on anxiety are still unclear. In the present study, the agonist and antagonist of the NMDA receptor and AMPA receptor, as well as the antagonist of AVP V1 receptor(V1aR) were introduced into BALB/cJ mice by intracerebroventricular microinjection, and the anxiety-like behaviors of the mice were evaluated by open field and elevated plus-maze tests. Compared with C57BL/6 mice, BALB/cJ mice displayed higher levels of anxiety-like behavior. Significant anxiolytic effects were found in the NMDA receptor antagonist(MK-801) and the AMPA receptor or V1 aR antagonist(SSRI49415), as well as combinations of AVP/MK-801 and SSRI49415/DNQX. These results indicated that anxiety-like behaviors expressed in BALB/CJ mice may be due to a coordination disorder among glutamate, NMDA receptor, AMPA receptor, AVP and V1 aR, resulting in the up-regulation of the NMDA receptor and V1 aR and down-regulation of the AMPA receptor. However, because the AMPA receptor can execute its anxiolytic function by suppressing AVP and V1 aR, we cannot exclude the possibility of the NMDA receptor being activated by AVP acting on V1 aR.  相似文献   

15.
We examined the effects of arginine-vasopressin (AVP) C-terminal fragment 4-9, which facilitates learning and memory, on the extracellular acetylcholine (ACh) release in hippocampus of freely-moving rats using the microdialysis technique. Following administration of AVP4-9, p-Glu-Asn-Cys[Cys]-Pro-Arg-Gly-NH2, through the dialysis probe into the hippocampus, ACh levels in dialysates from the hippocampus increased markedly in dose and time dependent manner at 2-2.5 and 2.5-3 hr. AVP1-9, the parent peptide, has a similar enhancing effect on ACh release as AVP4-9. Stimulated ACh release by AVP4-9 was significantly inhibited by V1-selective receptor antagonist ([1-(beta-mercapto-beta,beta-cyclopentamethylenepropionic acid), 2-(O-methyl)-tyrosine]AVP), but not by V2-selective antagonist ([1-(beta-mercapto-beta,beta-cyclopentamethylenepropionic acid), 2-D-Ile, 4-Ile]AVP). From these observations, it is demonstrated that AVP4-9 stimulates the ACh release in rat hippocampus via mediating V1-like vasopressin receptors.  相似文献   

16.
The aim of the study was to find out whether vasopressin (AVP) modifies hypotensive and heart rate accelerating effects of atrial natriuretic peptide (ANP) in normotensive (WKY) and spontaneously hypertensive (SHR) conscious rats. The effect of i.v. administration of 1; 2 and 4 micrograms of ANP on blood pressure (MP) and heart rate (HR) was compared during i.v. infusion of 0.9% NaCl (NaCl), NaCl+AVP (1.2 ng kg-1 min-1) and NaCl+dEt2AVP (V1 receptors antagonist, 0.5 microgram kg-1 min-1). AVP increased MP in SHR and WKY and decreased HR in SHR. V1 antagonist decreased MP and increased HR only in SHR. In SHR ANP decreased MP and increased HR during NaCl, AVP and V1 antagonist infusion. In WKY these effects were observed only during AVP administration. In each experimental situation hypotension and tachycardia induced by ANP were greater in SHR than in WKY. In both strains ANP induced changes in MP and HR were enhanced during AVP in comparison to NaCl infusion. V1 antagonist did not modify effects of ANP in WKY and SHR. The results indicate that ANP abolishes hypertensive response induced by blood AVP elevation and that the basal levels of endogenous vasopressin acting through V1 receptors does not interfere with hypotensive action of ANP neither in WKY nor in SHR.  相似文献   

17.
Wang HD  Wang YP  Hu CF  Qi RB  Yan YX  Lu DX  Li CJ 《生理学报》2001,53(6):465-468
实验对大鼠进行第三脑室和脑腹中隔区插管,用数字体温计测量大鼠的结肠温度,用放射免疫分析法测定脑中隔区精氨酸加压素(arginine vasopressin,AVP)含量,观察脑中隔区AVP在大鼠促肾上腺皮质激素释放激素(corticotrophin releasing hormone,CRH)性发热机制中的作用。结果发现:脑室注射CRH(5.0μg)引起大鼠结肠温度明显升高,同时明显增高脑中隔区AVP的含量。脑腹中隔区注射AVP V1受体拮抗剂本身并不导致大鼠结肠温度明显改变,但能显著增强脑室注射CRH引起的发热反应。而且,腹中隔区注射AVP显著抑制大鼠CRH性发热。结果提示:发热时CRH是引起脑腹中隔区AVP释放的因素之一,脑腹中隔区内源性AVP抑制中枢注射CRH引起的体温升高。  相似文献   

18.
目的:检测不同性别大鼠旋转刺激后脑内相关区域精氨酸加压素(AVP)含量及V1b受体表达的变化,探讨AVP及受体参与运动病的可能机制。方法:给予SD大鼠30 min绕水平轴的旋转刺激,然后采用放免法检测相关脑区AVP含量,并通过荧光免疫组化方法测定相应脑区V1b受体的表达情况。结果:①在雌性大鼠,旋转刺激组各脑区AVP含量无显著性改变;对于雄性大鼠,对照组各检测脑区AVP含量高于雌性,旋转刺激组小脑、延髓内AVP含量的变化无显著性意义,但前脑、间脑、脑桥内AVP含量较对照组明显降低(P〈0.05)。②雌性大鼠视上核AVP的V1b受体表达阳性神经元数量旋转刺激组显著低于对照组(P〈0.05),而前庭核、最后区V1b受体表达阳性神经元数量明显多于对照组(P〈0.05);在雄性大鼠,旋转刺激组视上核与前庭核V1b受体表达阳性神经元数量无显著性改变,而最后区V1b受体表达阳性神经元数量有所增加(P〈0.05),但增加幅度没有雌性大鼠明显。结论:前脑、间脑、脑桥内AVP含量与前庭核和最后区V1b受体表达及对旋转刺激反应的差异可能与运动病敏感性性别差异有关,并且前庭核、最后区可能是AVP-V1受体拮抗剂抗运动病作用的靶点。  相似文献   

19.
We determined the cellular free calcium concentration [Ca2+]i in response to arginine vasopressin (AVP) using single cells of cultured rat renal papillary collecting tubule cells. AVP at a concentration of 1 x 10(-10) M or higher significantly increased [Ca2+]i in a dose-dependent manner. The prompt increase in [Ca2+]i induced by AVP was completely blocked by the V1V2 antagonist, but not by the V1 antagonist. Also, an antidiuretic agonist of 1-deamino-8-D-arginine vasopressin (dDAVP) increased [Ca2+]i, which was blocked by the pretreatment with the V1 V2 antagonist. An AVP-induced increase in [Ca2+]i was still demonstrable in cells pretreated with Ca2(+)-free medium containing 1 x 10(-3) M EGTA, or a blocker of cellular Ca2+ uptake, 5 x 10(-5) M verapamil. These results indicate that AVP increases [Ca2+]i through the V2 receptor in renal papillary collecting tubule cells where cAMP is a well-known second messenger for AVP, and that cellular free Ca2+ mobilization depends on both the intracellular and extracellular Ca2+.  相似文献   

20.
Hypoxic stimulation of the carotid body receptors (CBR) results in a rapid hyperglycemia with an increase in brain glucose retention. Previous work indicates that neurohypophysectomy inhibits this hyperglycemic response. Here, we show that systemic arginine vasopressin (AVP) induced a transient, but significant, increase in blood glucose levels and increased brain glucose retention, a response similar to that observed after CBR stimulation. Comparable results were obtained after intracerebral infusion of AVP. Systemic AVP-induced changes were maintained in hypophysectomized rats but were not observed after adrenalectomy. Glycemic changes after CBR stimulation were inhibited by pharmacological blockage of AVP V1a receptors with a V1a-selective receptor antagonist ([beta-Mercapto-beta,beta-cyclopentamethylenepropionyl1,O-me-Tyr2, Arg8]-vasopressin). Importantly, local application of micro-doses of this antagonist to the liver was sufficient to abolish the hyperglycemic response after CBR stimulation. These results suggest that AVP is a mediator of the hyperglycemic reflex and cerebral glucose retention following CBR stimulation. We propose that hepatic activation of AVP V1a receptors is essential for this hyperglycemic response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号