首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reassortment of DNA recognition domains and the evolution of new specificities   总被引:26,自引:2,他引:24  
Type I restriction enzymes comprise three subunits only one of which, the S polypeptide, dictates the specificity of the DNA sequence recognized. Recombination between two different hsdS genes, SP and SB, led to the isolation of a system, SQ, which had a different specificity from that of either parent. The finding that the nucleotide sequence recognized by SQ is a hybrid containing components from both the SP and SB target sequences suggested that DNA recognition is carried out by two separable domains within each specificity polypeptide. To test this we have made the recombinant gene of reciprocal structure and demonstrate that it encodes a polypeptide whose recognition sequence, deduced in vivo, is as predicted by this model. We also report the sequence of the SB specificity gene, so that information is now available for the five known members of this family of enzymes. All show a similar organization of conserved and variable regions. Comparisons of the predicted amino acid sequences reveal large non-conserved areas which may not even be structurally similar. This is remarkable since these different S subunits are functionally identical, except for the specificity with respect to the DNA sequence with which they interact. We discuss the correlation of the variation in polypeptide sequence with recognition specificities.  相似文献   

2.
The S subunits of type I DNA restriction/modification enzymes are responsible for recognising the DNA target sequence for the enzyme. They contain two domains of approximately 150 amino acids, each of which is responsible for recognising one half of the bipartite asymmetric target. In the absence of any known tertiary structure for type I enzymes or recognisable DNA recognition motifs in the highly variable amino acid sequences of the S subunits, it has previously not been possible to predict which amino acids are responsible for sequence recognition. Using a combination of sequence alignment and secondary structure prediction methods to analyse the sequences of S subunits, we predict that all of the 51 known target recognition domains (TRDs) have the same tertiary structure. Furthermore, this structure is similar to the structure of the TRD of the C5-cytosine methyltransferase, Hha I, which recognises its DNA target via interactions with two short polypeptide loops and a beta strand. Our results predict the location of these sequence recognition structures within the TRDs of all type I S subunits.  相似文献   

3.
We have purified the type I restriction enzymes SB and SP from Salmonella typhimurium and S. potsdam, respectively, and determined the DNA sequences that they recognize. These sequences resemble those previously determined for the type I enzymes, EcoB, EcoK and EcoA, in that the specific part of the sequence is divided into two domains by a spacer of non-specific sequence that has a fixed length for each enzyme. Two main differences from the previously determined sequences are seen. Both of the new sequences are degenerate and one of them, SB, has one trinucleotide and one pentanucleotide-specific domain rather than the trinucleotide and tetranucleotide domains seen for all of the other enzymes. The only conserved features of the recognition sequences are the adenosyl residues that are methylated in the modification reaction. For all of the enzymes these are situated ten or 11 base-pairs apart, one on each strand of the DNA. This suggests that the enzymes bind to DNA along one face of the double helix making protein-DNA interaction in two successive major grooves with most of the non-specific spacer sequence in the intervening minor groove.  相似文献   

4.
Type I restriction enzymes comprise three subunits encoded by genes designated hsdR, hsdM, and hsdS; S confers sequence specificity. Three families of enzymes are known and within families, but not between, hsdM and hsdR are conserved. Consequently, interfamily comparisons of M and R sequences focus on regions of putative functional significance, while both inter- and intrafamily comparisons address the origin, nature and role of diversity of type I restriction systems. We have determined the sequence of the hsdR gene for EcoA, thus making available sequences of all three hsd genes of one representative from each family. The predicted R polypeptide sequences share conserved regions with one superfamily of putative helicases, so-called ‘DEAD box’ proteins; these conserved sequences may be associated with the ATP-dependent translocation of DNA that precedes restriction. We also present hsdM and hsdR sequences for EcoE, a member of the same family as EcoA. The sequences of the M and R genes of EcoA and EcoE are at least as divergent as typical genes from Escherichia coli and Salmonella, perhaps as the result of selection favouring diversity of restriction specificities combined with lateral transfer among different species.  相似文献   

5.
G M Cowan  A A Gann  N E Murray 《Cell》1989,56(1):103-109
One polypeptide, designated S, confers sequence-specificity to the multisubunit type I restriction enzymes. Two families of such enzymes, K and A, include members that recognize diverse, bipartite, target sequences. The S polypeptides of the K family, while having areas of near identity, also contain two extensive regions of variable sequence. We now show that one of these, comprising the N-terminal 150 amino acids, specifies recognition of one component of the bipartite target sequence. We have determined the sequence recognized by EcoE, a member of the A family. This sequence, 5'GAG(N7)ATGC, has the trinucleotide GAG in common with EcoA and with StySB of the K family. We determined the nucleotide sequences of the S genes of EcoA and EcoE, and compared their predicted amino acid sequences with each other and with those of the five members of the K family. There is no general sequence similarity between families, but the domain of the S polypeptide of StySB, which specifies GAG, shows nearly 50 per cent identity with the amino variable region of the S polypeptides of EcoA and EcoE. A complex domain that recognizes and directs methylation of GAG is therefore common to enzymes of generally dissimilar amino acid sequence.  相似文献   

6.
The determinants of recognition specificity of self-incompatibility in Brassica are SRK in the stigma and SP11/SCR in the pollen, respectively. In the pair of S haplotypes BrS46 (S46 in B. rapa) and BoS7 (S7 in B. oleracea), which have highly similar SRK alleles, the SP11 alleles were found to be similar, with 96.1% identity in the deduced amino acid sequence. Two other pairs of S haplotypes, BrS47 and BoS12, and BrS8 and BoS32, having highly similar SRK and SP11 alleles between the two species were also found. The haplotypes in each pair are considered to have been derived from a single S haplotype in the ancestral species. The allotetraploid produced by interspecific hybridization between homozygotes of BrS46 and BoS15 showed incompatibility with a BoS7 homozygote and compatibility with other B. oleracea S haplotypes in reciprocal crossings. This result indicates that BrS46 and BoS7 have maintained the same recognition specificity after the divergence of the two species and that amino acid substitutions found in such cases in both SRK alleles and SP11 alleles do not alter the recognition specificity. DNA blot analysis of SRK, SP11, SLG and other S-locus genes showed different DNA fragment sizes between the interspecific pairs of S haplotypes. A much lower level of sequence similarity was observed outside the genes of SRK and SP11 between BrS46 and BoS7. These results suggest that the DNA sequences of the regions intervening between the S-locus genes were diversified after or at the time of speciation. This is the first report demonstrating the presence of common S haplotypes in different plant species and presenting definite evidence of the trans-specific evolution of self-incompatibility genes.  相似文献   

7.
8.
A computer program has been developed which aids in the determination of restriction enzyme recognition sequences. This is achieved by cleaving DNAs of known sequence with a restriction endonuclease and comparing the fragmentation pattern with a computer-generated set of patterns. The feasibility of this approach has been tested using fragmentation patterns of 0X174 DNA produced by enzymes of both known and unknown specificity. Recognition sequences are predicted for two restriction endonucleases (BbvI and SfaNI) using this method. In addition, recognition sequences are predicted for two other new enzymes (PvuI and MstI) using another computer-assisted method.  相似文献   

9.
A computer program (RSITE) was developed which predicts the recognition sequence of a restriction endonuclease. The sizes of fragments experimentally determined on cleavage of a DNA of known sequence were input. Possible recognition sequences producing fragments of sizes matching those determined empirically were printed out. The program faithfully predicted the specificity of restriction enzymes of known recognition sequence and also determined the recognition sequence of a new restriction enzyme from Haemophilus influenzae GU (HinGU II).  相似文献   

10.
Summary TheRicinus communis (castor bean) 2S albumin is a heterodimer of glutamine-rich, disulphidelinked 4 and 7 kDa polypeptides. A cDNA library was constructed using mRNA from maturing castor bean endosperm as template. Clones containing sequences complementary to albumin mRNA were isolated by hybridization using as a probe a mixture of synthetic oligonucleotides representing sequences predicted for a peptide present in the 2 S albumin large subunit. The nucleotide sequence contained an open reading frame encoding a preproprotein of 258 amino acid residues. The preproprotein included both polypeptides of the previously sequenced 2S albumin. In addition, this precursor included two further glutamine-rich sequences which, in terms of their size and conserved cysteine residues typically found in seed proteins of the 2S albumin superfamily, possibly represent the small and large polypeptide subunits of a second heterodimeric storage protein. A post-translational processing scheme is proposed which would result in a single preproprotein generating two distinct heterodimeric 2S albumins. The generation of a second heterodimer seems likely since polypeptide candidates for its small and large subunits were found in theRicinus 2S albumin fraction, and N-terminal protein sequencing confirmed the existence of the putative small subunit.  相似文献   

11.
The type II restriction endonucleases are indispensible tools for molecular biology. Although enzymes recognizing nearly 300 unique sequences are known, the ability to engineer enzymes to recognize any sequence of choice would be valuable. However, previous attempts to engineer new recognition specificity have met limited success. Here we report the rational engineering of multiple new type II specificities. We recently identified a family of MmeI-like type II endonucleases that have highly similar protein sequences but different recognition specificity. We identified the amino-acid positions within these enzymes that determine position specific DNA base recognition at three positions within their recognition sequences through correlations between their aligned amino-acid residues and aligned recognition sequences. We then altered the amino acids at the identified positions to those correlated with recognition of a desired new base to create enzymes that recognize and cut at predictable new DNA sequences. The enzymes so altered have similar levels of endonuclease activity compared to the wild-type enzymes. Using simple and predictable mutagenesis in this family it is now possible to create hundreds of unique new type II restriction endonuclease specificities. The findings suggest a simple mechanism for the evolution of new DNA specificity in Nature.  相似文献   

12.
S M Halling  N Kleckner 《Cell》1982,28(1):155-163
Transposon Tn10 inserts at many sites in the bacterial chromosome, but preferentially inserts at particular hotspots. We believe we have identified the target DNA signal responsible for this specificity. We have determined the DNA sequences of 11 Tn10 insertion sites and identified a particular 6 base pair (bp) symmetrical consensus sequence (GCTNAGC) common to those sites. The sequences at some sites differ from the consensus sequence but only in limited and well defined ways. The sequences at some sites differ from the consensus sequence than do sequences at other sites, and the consensus sequence and closely related sequences are generally absent from potential target regions where Tn10 is known not to insert. Other aspects of the target DNA can significantly influence the efficiency with which a particular target site sequence is used. The 6 bp consensus sequence is symmetrically located within the 9 bp target DNA sequence that is cleaved and duplicated during Tn10 insertion. This juxtaposition of recognition and cleavage sites plus the symmetry of the perfect consensus sequence suggest that the target DNA may be both recognized and cleaved by the symmetrically disposed subunits of a single protein, as suggested for type II restriction endonucleases. There is plausible homology between the consensus sequence and the very ends of Tn10, compatible with recognition of transposon ends and target DNA by the same protein. The sequences of actual insertion sites deviate from the perfect consensus sequence in a way which suggests that the 6 bp specificity determinant may be recognized through protein-DNA contacts along the major groove of the DNA double helix.  相似文献   

13.
Squamous cell differentiation in tracheobronchial epithelial cells is accompanied by many biochemical and molecular changes. One of the molecular changes in rabbit tracheal epithelial (RbTE) cells is the differential expression of a squamous cell-specific mRNA encoded by the complementary DNA SQ10. In this study, we sequenced SQ10 complementary DNA and showed that this gene encodes a preprorelaxin-like protein. The DNA sequence of the coding region of SQ10 has 68% identity with the human preprorelaxin mRNA, whereas the deduced amino acid sequence exhibits 46% identity with human preprorelaxin. An antiserum (pepIV-Ab) was raised against a synthetic 22-amino acid oligopeptide of the protein encoded by SQ10. Immunoblot analysis of cellular extracts of squamous-differentiated cells showed that this antiserum reacted with proteins of 22 and 20 kilodaltons, possibly constituting prepro- and proforms of this protein. These proteins were undetectable in undifferentiated RbTE cells. In agreement with these observations, PepIV-Ab specifically stained the cytosol of squamous-differentiated RbTE cells but failed to stain undifferentiated cells. PepIV-Ab recognized a 20 and 16 kilodalton polypeptide in medium conditioned by squamous-differentiated RbTE cells, indicating that the prorelaxin-like protein is secreted. The amino acid sequences of three peptides that were obtained after tryptic digestion of the secreted 16 kilodalton protein were identical to sequences encoded by SQ10. Retinoids which have been shown to inhibit squamous differentiation suppressed the induction of SQ10 protein as well as mRNA in a concentration-dependent manner. The concentration at which retinoic acid caused a 50% inhibition of SQ10 mRNA levels was approximately 5 nM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Escherichia coli strains K12 and B, and a new strain designated D, each encode a characteristic restriction and modification enzyme. These enzymes (EcoK, EcoB and presumably EcoD) comprise three subunits of which one, that encoded by the so-called specificity gene (hsdS), is responsible for recognition of the DNA sequence specific to that system. The other two subunits, encoded by hsdR and hsdM, are interchangeable between systems, and the available molecular evidence suggests that the hsdR and hsdM genes are highly conserved. The DNA sequence of a segment of the hsd region that includes the hsdS gene has been determined for each of the three strains. The hsdS gene varies in length from 1335 to 1425 base-pairs and the only regions showing obvious homology, one of about 100 base-pairs and a second of about 250 base-pairs, are highly conserved. The remainder of each hsd S gene shares little, or no, homology with either of the other related specificity genes. Thus, the specificity subunits, though components of a family of closely related enzymes with very similar functions, have remarkably dissimilar primary structure.  相似文献   

15.
Proteins encoded by three genes in the DpnII restriction enzyme cassette of Streptococcus pneumoniae were purified and characterized. Large amounts of the proteins were produced by subcloning the cassette in an Escherichia coli expression system. All three proteins appear to be dimers composed of identical polypeptide subunits. One is the DpnII endonuclease, and the other two are DNA adenine methylase active at 5' GATC 3' sites. Inactivation of enzyme activity by insertions into the genes and comparison of the DNA sequence with the amino-terminal sequence of amino acid residues in the proteins demonstrated the following correspondence between genes and enzymes. The promoter-proximal gene in the operon, dpnM, encodes a 33 X 10(3) Mr polypeptide that gives rise to a potent DNA methylase. The next gene, dpnA, encodes the 31 x 10(3) Mr polypeptide of a weaker and less-specific methylase. The third gene, dpnB, encodes the 34 x 10(3) Mr polypeptide of the endonuclease. Although the endonuclease polypeptide is initiated from an ordinary ribosome-binding site, each of the methylase polypeptide begins at an atypical site with a consensus sequence entirely different from that of Shine & Dalgarno. This presumptive novel ribosome-binding site is well recognized in both S. pneumoniae and E. coli.  相似文献   

16.
17.
Fujimoto R  Okazaki K  Fukai E  Kusaba M  Nishio T 《Genetics》2006,173(2):1157-1167
The determinants of recognition specificity of self-incompatibility in Brassica are SRK in the stigma and SP11/SCR in the pollen, both of which are encoded in the S locus. The nucleotide sequence analyses of many SRK and SP11/SCR alleles have identified several interspecific pairs of S haplotypes having highly similar sequences between B. oleracea and B. rapa. These interspecific pairs of S haplotypes are considered to be derived from common ancestors and to have maintained the same recognition specificity after speciation. In this study, the genome structures of three interspecific pairs of S haplotypes were compared by sequencing SRK, SP11/SCR, and their flanking regions. Regions between SRK and SP11/SCR in B. oleracea were demonstrated to be much longer than those of B. rapa and several retrotransposon-like sequences were identified in the S locus in B. oleracea. Among the seven retrotransposon-like sequences, six sequences were found to belong to the ty3 gypsy group. The gag sequences of the retrotransposon-like sequences were phylogenetically different from each other. In Southern blot analysis using retrotransposon-like sequences as probes, the B. oleracea genome showed more signals than the B. rapa genome did. These findings suggest a role for the S locus and genome evolution in self-incompatible plant species.  相似文献   

18.
19.
REBASE - restriction enzymes and methylases   总被引:1,自引:0,他引:1  
REBASE is a comprehensive database of information about restriction enzymes and related proteins. It contains published and unpublished references, recognition and cleavage sites, isoschizomers, commercial availability, methylation sensitivity, crystal and sequence data. DNA methyltransferases, homing endonucleases, nicking enzymes, specificity subunits and control proteins are also included. Most recently, putative DNA methyltransferases and restriction enzymes, as predicted from analysis of genomic sequences, are also listed. The data is distributed via Email, ftp (ftp.neb.com), and the Web (http://rebase.neb.com).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号