首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vitro development of bovine oocytes reconstructed with round spermatids   总被引:1,自引:0,他引:1  
Ock SA  Kwack DO  Lee SL  Cho SR  Jeon BG  Kumar BM  Choe SY  Rho GJ 《Theriogenology》2006,65(7):1242-1253
The timing between round spermatid(s) (RS) injection and oocyte activation are critical for spermatid remodeling and embryo development in intracytoplasmic injection of round spermatid (ROSI) procedure. The objective of the present study was to develop an appropriate oocyte activation method for producing developmentally competent bovine embryos reconstructed with RS. Embryos reconstructed by ROSI were compared with three activation treatments for the rates of pronuclear formation, development and ploidy. RS were isolated from bull testes by Percoll density gradients. Matured oocytes were divided into three activation groups. In Group 1, oocytes were activated with ionomycin (5 microM, 5 min) before ROSI. In Group 2, oocytes were activated with ionomycin after ROSI. In Group 3, oocytes were activated twice with ionomycin before and after ROSI. All the eggs were then incubated in cycloheximide (CHX, 10 microg/mL) for 5 h and cultured in CR1aa medium for up to 8 days. Three methods of oocyte activation were also compared for the activation and development of parthenotes. Activation rates among the groups were 70-79% and did not differ. Cleavage rates in parthenotes were significantly (P < 0.05) higher in Group 3 than in Groups 1 and 2, but blastocyst rates did not differ among the groups. In ROSI embryos, the rates of cleavage and development into blastocysts were significantly (P < 0.05) greater in Group 3 (82.3% and 13.1%) than in Groups 1 and 2 (53.7, 5.8% and 64.2, 1.7%, respectively). Ploidy analysis by examining the metaphase spreads of ROSI blastocysts displayed greater numbers of diploid chromosomal complements. These results suggest that intracytoplasmic RS injection combined with repeated ionomycin activation followed by CHX treatment is more efficient for producing developmentally competent embryos.  相似文献   

2.
3.
The injection of male haploid germ cells, such as spermatozoa and round spermatids, into preactivated mouse oocytes can result in the development of viable embryos and offspring. However, it is not clear how the timing of intracytoplasmic sperm injection (ICSI) and round spermatid injection (ROSI) affects the production of offspring. We carried out ICSI and ROSI every 20 min for up to 4 h after the activation of mouse oocytes by Sr(2+) and compared the late-stage development of ICSI- and ROSI- treated oocytes, including the formation of pronuclei, blastocyst formation, and offspring production. The rate of pronucleus formation (RPF) after carrying out ICSI started to decrease from >95% at 100 min following oocyte activation and declined to <20% by 180 min. In comparison, RPF by ROSI decreased gradually from >70% between 0 and 4 h after activation. The RPFs were closely correlated with blastocyst formation. Offspring production for both ICSI and ROSI decreased significantly when injections were conducted after 100 min, a time at which activated oocytes were in the early G1 stage of the cell cycle. These results suggest that spermatozoa and round spermatids have different potentials for inducing the formation of a male pronucleus in activated oocytes, but ICSI and ROSI are both subject to the same time constraint for the efficient production of offspring, which is determined by the cell cycle of the activated oocyte.  相似文献   

4.
The birthrate following round spermatid injection (ROSI) remains low in current and evidence suggests that factors in the germinal vesicle (GV) cytoplasm and certain substances in the GV such as the nucleolus might be responsible for genomic reprogramming and embryonic development. However, little is known whether the reprogramming factors in GV oocyte cytoplasm and/or nucleolus in GV are beneficial to the reprogramming of round spermatids and development of ROSI embryos. Here, round spermatids were treated with GV cytolysates and injected this round spermatid alone or co-injected with GV oocyte nucleolus into mature metaphase II oocytes. Subsequent embryonic development was assessed morphologically and by Oct4 expression in blastocysts. There was no significant difference between experimental groups at the zygote to four-cell development stages. Blastocysts derived from oocytes which were injected with cytolysate treated-round spermatid alone or co-injected with nucleoli injection yielded 63.6% and 70.3% high quality embryos, respectively; comparable to blastocysts derived by intracytoplasmic sperm injection (ICSI), but higher than these oocytes which were co-injected with lysis buffer-treated round spermatids and nucleoli or injected with the lysis buffer-treated round spermatids alone. Furthermore, the proportion of live offspring resulting from oocytes which were co-injected with cytolysate treated-round spermatids and nucleoli or injected with cytolysate treated-round spermatids alone was higher than those were injected with lysis buffer treated-round spermaids, but comparable with the ICSI group. Our results demonstrate that factors from the GV cytoplasm improve round spermatid reprogramming, and while injection of the extra nucleolus does not obviously improve reprogramming its potential contribution, although which cannot be definitively excluded. Thus, some reprogramming factors are evidently present in GV oocyte cytoplasm and could significantly facilitate ROSI technology, while the nucleolus in GV seems also having a potential to improve reprogramming of round spermatids.  相似文献   

5.
Genome-wide change of DNA methylation in preimplantation embryos is known to be important for the nuclear reprogramming process. A synthetic RNA encoding enhanced green fluorescence protein fused to the methyl-CpG-binding domain and nuclear localization signal of human MBD1 was microinjected into metaphase II-arrested or fertilized oocytes, and the localization of methylated DNA was monitored by live cell imaging. Both the central part of decondensing sperm nucleus and the rim region of the nucleolus in the male pronucleus were highly DNA-methylated during pronuclear formation. The methylated paternal genome undergoing active DNA demethylation in the enlarging pronucleus was dispersed, assembled, and then migrated to the nucleolar rim. The female pronucleus contained methylated DNA predominantly in the nucleoplasm. When the localization of methylated DNA in preimplantation embryos was examined, a configurational change of methylated chromatin dramatically occurred during the transition of 2-cell to 4-cell embryos. Moreover, retrospective analysis demonstrated that a noticeable number of the oocytes reconstructed by round spermatid injection (ROSI) possess small, bright dots of methylated chromatin in the nucleoplasm of male pronucleus. These ROSI oocytes showed a significantly low rate of 2-cell formation, thus suggesting that the poor embryonic development of the ROSI oocytes may result from the abnormal localization of methylated chromatin.  相似文献   

6.
Although both intracytoplasmic sperm injection (ICSI) and round spermatid injection (ROSI) are used in infertility treatments, the rate of offspring achieved with ROSI is low compared with that achieved with ICSI. The difficulty in correctly selecting round spermatids from testicular cells is one of the causes of this phenomenon. We easily selected live round spermatids from testicular cells stained with 20 nM MitoTracker, which visualizes mitochondria without killing the cell. Using this method, we divided round spermatids into three groups based on the polarization of their mitochondria, and performed ROSI. The rate of successful offspring achieved with MitoTracker-stained ROSI was the same in all groups. This indicates that changes in the polarization of mitochondria in round spermatids are not directly related to the developmental capacity of subsequently fertilized embryos. Because this staining has no harmful effects on embryo development, the selection of spermatids by MitoTracker under a fluorescence microscope should be useful in research into and the treatment of infertility.  相似文献   

7.
Although the round spermatid is haploid like spermatozoa, it remains an unlikely partner for the human oocyte. Only 10 children have been born since introduction of the ROSI (ROund Spermatid Injection) technique into human clinical practice in 1995, despite the large number of attempts. Analysis, in an animal model, of gene expression in the early embryo following microinjection of either spermatozoa or round spermatids provides a better understanding of the reasons for this failure. We have shown, in mice, that embryos from spermatozoa and round spermatids do not exhibit the same gene expression profile up to the 4-cell stage. Male post-meiotically expressed genes were also repressed at various times following fertilization with a round spermatid, demonstrating reprogramming of the male nucleus. This suggests the hypothesis that aberrant epigenetic reprogramming of the male nucleus may contribute to the high incidence of developmental failure when round spermatids from infertile patients are used.  相似文献   

8.
In the current widely used round spermatid injection (ROSI) protocol for the mouse, the spermatid nucleus is separated from most of the cytoplasm before ROSI by drawing a spermatid in and out of a pipette. This results in the highest rate of normal fertilization. However, this separation method is not always consistent and can be time-consuming. An alternative separation method that cuts away the cytoplasm using the tip of an injection pipette was developed. After removing the cytoplasm, ROSI was performed following both post- and pre-activation protocols and development in vitro and in vivo were examined. The new method consistently removed the bulk of the cytoplasm, as shown by quantifying mitochondria. ROSI without the cytoplasm resulted in significantly higher rates of fertilization than ROSI with the cytoplasm into either post- or pre-activated oocytes. Furthermore, the offspring production rates of ROSI without the cytoplasm were also high (50% and 49% for the post- and pre-activation protocols, respectively). This new method for separating the cytoplasm is an alternative way of producing offspring using ROSI.  相似文献   

9.
Trichostatin A (TSA), a histone deacetylase inhibitor, is a known teratogen causing malformations such as vertebral fusions when applied during the postimplantation period; TSA also causes developmental arrest when applied during the preimplantation period. Regardless of these hindrances, we have succeeded in the establishment of an efficient somatic cloning method for the mouse where reconstructed embryos are treated with TSA. To elucidate this apparent discrepancy, we treated fertilized mouse embryos generated either by intracytoplasmic sperm injection (ICSI) or round spermatid injection (ROSI) with 50 nM TSA for 20 h after fertilization as well as parthenogenetic embryos and found that TSA treatment inhibited the preimplantation development of ICSI embryos but not ROSI or parthenogenetic embryos. And, although we often observed hypomorphism following TSA treatment in embryos grown to full term produced by both ICSI (av. of body weight: 1.7 g vs. 1.5 g) and ROSI (1.6 g vs. 1.2 g), TSA treatment reduced the offspring production rate for ICSI from 57% to 34% but not for ROSI from 30% to 36%. Thus, these data indicate that the effects, harmful or not, of TSA treatment on embryonic development depend on their nuclear derivations. Also, the resulting hypomorphism after TSA treatment is a caveat for this procedure in current Assisted Reproductive Technologies.  相似文献   

10.
Kim NH  Shin JS  Kim C  Jun SH  Lee HT  Chung KS 《Theriogenology》1999,51(8):1441-1449
The objective of this study was to determine fertilization rates and developmental ability of porcine oocytes following injection of round spermatid and round spermatid nucleus with artificial activation either 2 h before or immediately after injection. Electrical stimulation at 2 h before spermatid injection significantly increased the incidence of normal fertilization compared with that following injection without stimulation or with stimulation immediately after injection. Incidences of formation of 2 pronuclei and of apposition were not different in oocytes following intracytoplasmic spermatid and spermatid nucleus injection. Chromosome analysis revealed that most oocytes were diploid either following round spermatid or round spermatid nucleus injection. There was no diploid set of chromatin in oocytes at 20 h following sham injection. At 6 d following injection blastocoele formation was seen in the oocytes following round spermatid (25%) and round spermatid nucleus injection (27%). However, none of the oocytes developed to the blastocyst stage 6 d following sham injection. The average cell numbers of blastocysts 8 d after injection of spermatid and spermatid nucleus were 99 and 87, respectively. These results suggest that electrical stimulation before injection enhances the incidence of fertilization following round spermatid injection in the pig. Our study also indicates that either the round spermatid or it's nucleus can be used to produce viable embryos by injection into unfertilized porcine oocytes.  相似文献   

11.
The golden hamster is a mammal in which microinjection of round spermatids into oocytes (ROSI) was first attempted. However, no live ROSI offspring have ever been obtained in this species. This is the first report of live hamster offspring obtained by round spermatid injection. Over 90% of oocytes, injected with round spermatids, were activated without any additional stimulation. The proportion of the oocytes that were fertilized normally and that developed to morulae and blastocysts was higher when the plasma membranes of the spermatids were broken before injection, as compared with when the membranes were left intact. Five percent of 57 ROSI morulae/blastocysts developed into live offspring after transfer to foster mothers.  相似文献   

12.
The present study was designed to investigate the effect of activation regimens on full‐term development of rabbit oocytes after round spermatid injection (ROSI). In the first series, rabbit oocytes were treated with 5 µM ionomycin before ROSI, after ROSI, or before and after ROSI. In addition, non‐treated oocytes were subjected to intracytoplasmic sperm injection (ICSI) using ejaculated spermatozoa. Cleavage rate of ROSI oocytes activated before and after ROSI (55%) was comparable with that of ICSI oocytes (60%), and significantly higher than those of ROSI oocytes activated either before or after ROSI (29–39%; P < 0.05). No offspring were produced by transfer of the cleaving ROSI oocytes, while 8% of the cleaving ICSI oocytes transferred gave birth to offspring. In the second series, oocytes were exposed to 5, 10, or 20 µM ionomycin, followed by ROSI, 5 µM ionomycin treatment, and incubation with 5 µg/ml cycloheximide (CHX) + 2 mM 6‐dimethylaminopurine (DMAP). Significantly higher cleavage rates were derived from oocytes activated with 10 and 20 µM ionomycin before ROSI (91% and 82%, respectively; P < 0.05) compared to those activated with 5 µM ionomycin before ROSI (53%). Live offspring were obtained when the cleaving ROSI oocytes with the initial ionomycin treatment at 5 and 10 µM were transferred (offspring rate 2% and 4%, respectively). These activation regimens, however, were not valid for the ROSI using cryopreserved round spermatids. In conclusion, rabbit ROSI oocytes were capable of developing into full‐term when the oocytes were activated with a combined treatment of ionomycin and CHX/DMAP. Mol. Reprod. Dev. 76: 573–579, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

13.
Prospects for spermatogenesis in vitro   总被引:8,自引:0,他引:8  
In recent years, extraordinary progress has been made in a broad range of reproductive technologies, including spermatogonial transplantation in the male. However, effective procedures for the complete recapitulation of spermatogenesis in vitro, including meiosis, have remained elusive. Such procedures have the potential to facilitate (1) mechanistic studies of spermatogenesis, (2) directed genetic modification of the male germ line, and (3) treatment of male factor infertility. Early studies demonstrated the importance of germ cell-Sertoli association for germ cell survival in vitro. Recently, evidence for male germ cell survival and progression through meiosis has been reported for the rat, mouse, and man. We demonstrated the expression of spermatid-specific genes (protamine and transition protein 1) by alginate-encapsulate neonatal bull testis cells after 10 weeks in culture, suggesting that meiosis had occurred. Although identifiable germ cells in these cultures were very sparse, some indication of acrosome development was observed. Following round spermatid injection (ROSI) with presumptive spermatids produced in vitro, 50% of blastocysts produced were diploid and 37% were Y-chromosome positive. Improved culture conditions, which promote germ cell survival, differentiation, and proliferation, are essential for in vitro spermatogenesis (IVS) to become a useful technology. Other approaches to male germ cell manipulation and spermatid production are discussed.  相似文献   

14.
Although intracytoplasmic sperm injection (ICSI) is a widely used assisted reproductive technique, the fertilization rates and pregnancy rates of immature spermatids especially in round spermatid injection (ROSI) remain very low. During mammalian fertilization, the sperm typically introduces its own centrosome which then acts as a microtubule organizing center (MTOC) and is essential for the male and female genome union. In order to evaluate the function of immature germ cell centrosomes, we used the rabbit gamete model because rabbit fertilization follows paternal pattern of centrosome inheritance. First, rabbit spermatids and spermatozoa were injected into oocytes using a piezo-micromanipulator. Next, the centrosomal function to form a sperm aster was determined. Furthermore, two functional centrosome proteins (gamma-tubulin and centrin) of the rabbit spermatogenic cells were examined. Our results show that the oocyte activation rates by spermatozoa, elongated spermatids, and round spermatids were 86% (30/35), 30% (11/36), and 5% (1/22), respectively. Sperm aster formation rates after spermatozoa, elongated spermatids, and round spermatids injections were 47% (14/30), 27% (3/11), and 0% (0/1), respectively. The aster formation rate of the injected elongating/elongated spermatids was significantly lower than that of the mature spermatozoa (P = 0.0242). Moreover, sperm asters were not observed in round spermatid injection even after artificial activation. These data suggest that poor centrosomal function, as measured by diminished aster formation rates, is related to the poor fertilization rates when immature spermatogenic cells are injected.  相似文献   

15.
The injection of spermatozoa into mouse, human and rabbit oocytes at specific times and positions can result in different rates of viable embryo development. However, it is not clear how the timing and position of round spermatid injection (ROSI) affect pronucleus (PN) formation and blastocyst development of mice. First, we determined the changes in relative position of the first polar body and the spindle, carried out ROSI from 11.5 to 13 h post-hCG administration, then activated by Sr2+, and finally compared the development of ROSI zygotes, including the formation of pronuclei and development of blastocyst. Between 11.5 and 13 h post-hCG administration, the rate of 2PN formation by ROSI at 3 o'clock was the highest among all treated oocytes. Moreover, the blastocyst rate of zygotes with two pronuclei (2PN) was up to 27.41%. These results suggest that the time and position of ROSI can significantly influence the formation of 2PN, that the rates of 2PN formation are closely correlated with blastocyst formation and that the formation of 2PN is necessary for later embryo development.  相似文献   

16.
Mammalian androgenetic embryos can be produced by pronuclear exchange of fertilized oocytes or by dispermic in vitro fertilization of enucleated oocytes. Here, we report a new technique for producing mouse androgenetic embryos by injection of two round spermatid nuclei into oocytes, followed by female chromosome removal. We found that injection of round spermatids resulted in high rates of oocyte survival (88%). Androgenetic embryos thus produced developed into mid‐gestation fetuses at various rates, depending on the mouse strain used. All the fetuses examined maintained paternally specific genomic imprinting memories. This technique also enabled us to produce complete heterozygous F1 embryos by injecting two spermatids from different strains. The best rate of fetal survival (12% per embryos transferred) was obtained with C57BL/6 × DBA/2 androgenetic embryos. We also generated embryonic stem cell lines efficiently with the genotype of Mus musculus domesticus × M. m. molossinus. Thus, injection of two round spermatid nuclei followed by maternal enucleation is an effective alternative method of producing androgenetic embryos that consistently develop into blastocysts and mid‐gestation fetuses. genesis 47:155–160, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
Global demethylation of DNA which marks the onset of development occurs asynchronously in the mouse; paternal DNA is demethylated at the the zygote stage, whereas maternal DNA is demethylated later in development. The biological function of such asymmetry and its underlying mechanisms are currently unknown. To test the hypothesis that the early demethylation of male DNA may be associated with protamine-histone exchange, we ,used round spermatids, whose DNA is still associated with histones, for artificial fertilization (round spermatid injection or ROSI), and compared the level of methylation of metaphase chromosomes in the resulting zygotes with the level of methylation in zygotes obtained after fertilization using mature sperm heads (intracytoplasmic sperm injection or ICSI). In contrast to ICSI-derived zygotes, ROSI-derived zygotes possessed only slightly demethylated paternal DNA. Both types of zygotes developed to term with similar rates which shows that hypomethylation of paternal DNA at the zygotic metaphase is not essential for full development in mice. Incorporation of exogenously expressed histone H2BYFP into paternal pronuclei was significantly higher in ICSI-derived zygotes than in ROSI-derived zygotes. Surprisingly, in the latter the incorporation of histone H2BYFP into the paternal pronucleus was still significantly higher than into the maternal pronucleus, suggesting that some exchange of chromatin-associated proteins occurs not only after ICSI but also after ROSI. This may explain why after ROSI, some transient demethylation of paternal DNA occurs early after fertilization, thus providing support for the hypothesis regarding the link between paternal DNA demethylation and protamine/histone exchange.  相似文献   

18.
19.
Transgene insertions in the mouse often cause mutations at chromosomal loci. Analysis of insertion mutations that cause male sterility may lead to the identification of novel molecular mechanisms implicated in male fertility. Here we show a line of transgenic mice with dominant inheritance of male sterility (DMS) that was found amid several lines that were normally fertile. Transgene-positive males from this line invariably were sterile, whereas transgenic females and transgene-negative male littermates were fertile. Histologic analysis and TUNEL staining for apoptotic cells in DMS testis showed spermatogenesis arrest at metaphase of meiosis I (M-I), accompanied by massive apoptosis of spermatocytes. Meiosis I arrest was incomplete, however, as small numbers of spermatids and spermatozoa were found. Both round spermatids and spermatozoa were evaluated for their permissiveness in the assisted reproductive technologies intracytoplasmic sperm injection (ICSI) and round spermatid injection (ROSI). Surprisingly, ROSI but not ICSI gave live offspring, suggesting that mature sperm had deteriorated by the time of recovery from the epididymis. Mapping the transgene insertion by fluorescence in situ hybridization revealed a site on chromosome 14 D3-E1. Two candidate genes, GFR alpha 2 and GnRH, that were previously mapped to that region and the functions of which in spermatogenesis are well established were not altered in DMS. As a consequence, positional cloning of the DMS locus will be essential to identify new molecules potentially involved in arrest at M-I. Furthermore, mice carrying this genetic trait might be useful for studies of assisted reproductive technologies and male contraceptives.  相似文献   

20.
It has been shown that mature oocytes injected with nuclei from round spermatids collected from mouse testis can generate normal offspring and that round spermatids can develop in vitro. An undetermined issue is whether spermatids developed in vitro are capable of generating fertile offspring by nuclear injection into oocytes. Herein, we report the production of normal and fertile offspring by nuclear injection using haploid spermatid donors derived from mouse primary spermatocyte precursors cocultured with Sertoli cells. Cocultured spermatogonia and spermatocytes were characterized by their nuclear immunoreactive patterns determined by an antibody to phosphorylated histone H2AX (gamma-H2AX), a marker for DNA double-strand breaks. Cocultured round spermatid progenies display more than one motile flagellum, whose axonemes were recognized by antitubulin immunostaining. Flagellar wavelike movement and flagellar-driven propulsion of round spermatids developed in vitro were documented by videomicroscopy (http://www.sci.ccny.cuny.edu/ approximately kier). We also show that breeding of male and female mouse offspring generated by spermatid nuclear injection produced fertile offspring. In addition to their capacity to produce fertile offspring, cocultured, flagellated round spermatids can facilitate the analysis of the mechanisms of centriolar polarity, duplication, assembly, and flagellar growth, including the intraflagellar transport of cargo proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号