首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Control Analysis has been carried out in the first steps of a rat liver glycolytic system. Attention has been focused on the effect of several glucose concentrations on the control, particularly regarding the role of glucokinase. From kinetic studies of the whole metabolic system we have obtained information on the flux variation under different glucose concentrations. This information together with the kinetics of glucokinase has allowed us to calculate Flux Control and Elasticity Coefficients for glucokinase and the Response Coefficient of the system with respect to glucose. The changes in of the value of Flux Control Coefficients demonstrates that in conditions of low glucose concentration, glucokinase is the main enzyme in controlling the flux through the pathway, but at high glucose concentration the control moves to phosphofructokinase. Next, we have compared our results with those obtained with the shortening and titration method, previously described (Torres, N.V., Mateo, F., Mélendez-Hevia, E. and Kacser, H., (1986) Biochem. J. 234, 169–174; Torres, N.V. and Meléndez-Hevia, E. 1991. Molec. Cell. Biochem. 101, 1–10). Furthermore, from knowledge of the enzyme kinetics of the system we have been able to build a model of the pathway that allows us computer similation of its behavior and calculation of the Flux Control Coefficient profile at different glucose concentrations. By the three methods the results correlate, supporting the use of the pathway substrate as external modulator of the metabolic system as a tool for practical application of Control Analysis.  相似文献   

2.
A method for determining Control Coefficients is proposed for systems studied in vitro and applied to a model pathway. Rat liver extract, which converts glucose into glycerol 3-phosphate, was used with the addition to the incubation mixture of fructose-bisphosphate aldolase, triose-phosphate isomerase and glycerol-3-phosphate dehydrogenase as 'auxiliary' enzymes, which leaves all the control on the first three enzymes. The flux of the metabolic pathway was recorded by assaying NADH decay. Flux Control Coefficients (CJE) of hexokinase, glucose-6-phosphate isomerase and phosphofructokinase were calculated by titration of the system with increasing quantities of extraneous enzymes. It is shown that the summation property is fulfilled. The applicability of this procedure to study the control in any metabolic pathway is discussed. Possible relevance of the method to conditions in vivo and its limitations are considered.  相似文献   

3.
1. Metabolic systems involving branched convergent pathways are analyzed under Flux Control Theory, obtaining a relationship between the contribution of every convergent pathway to the total flux and its Flux Control Coefficient. 2. An experimental model system is carried out to demonstrate the physical application of some conclusions of theoretical treatment. 3. Two different types of branched pathways are simulated by computer. 4. In both cases results are in agreement with the theoretical conclusions, showing in addition some new aspects on metabolic control.  相似文献   

4.
I have used electrical analogues for calculating the Flux Control Coefficients of metabolic pathways. An analogue circuit consists of resistances that are connected in series (or parallel) with a voltage (or current) source. In constructing the analogues, each of the enzymes in the pathway is associated with a resistance whose magnitude depends on the Elasticity Coefficients of the enzymes. These circuits can be designed in a heuristic fashion directly from the configuration of the pathway, without the necessity of writing down the governing equations with the use of Summation and Connectivity Theorems. The Flux Control Coefficients of the enzymes are represented by voltages across (or currents through) the resistances and are determined by an application of Ohm's Law. Results are given for (a) a simple linear pathway without feedback or feedforward regulation, and (b) a linear pathway with feedback inhibition. The analogue circuits are also convenient for assessing the relative importance of the various enzymes in flux control, and for simplifying the structure of a given pathway.  相似文献   

5.
Control of flux and transition time was investigated with a reconstructed rabbit muscle glycolytic system in vitro as an experimental model. The results show agreement with the summation property for the Flux Control Coefficients [Kacser & Burns (1973) Symp. Soc. Exp. Biol. 27, 65-104; Heinrich & Rapoport (1974) Eur. J. Biochem. 42, 89-95]. Control of flux is almost exclusively located at the hexokinase- and phosphofructokinase-catalysed steps, whereas control of transition time is distributed more evenly between the enzymes of the system. The summation value of the Transition Time Control Coefficients is near to -1, suggesting the existence of another Summation Theorem besides that already stated for Flux Control Coefficients. Finally, we study the effect of an external stimulator of the system (fructose 2,6-bisphosphate) on the Control Coefficient profiles. The effect appears to be greater on the Transition Time Control Coefficient distribution than on the Flux Control Coefficients.  相似文献   

6.
Existing, qualitative notions with respect to the way in which enzyme properties control metabolism are discussed in the light of the control analysis developed by H. Kacser and J. A. Burns ((1973) in: Rate Control of Biological Processes, Davies DD, ed., Cambridge University Press, pp. 63–104) and R. Heinrich and T. A. Rapoport ((1974) Eur. 3. Biochem.42, 89–95), and recent experimental data. Points at which the existing notions should be adjusted are: (i) Metabolic control is shared by enzymes rather than confined to one rate-limiting enzyme per pathway. (if) Whether an enzyme exercises strong control on a flux cannot be deduced solely from its own properties, nor is it directly related to its distance from equilibrium. With respect to metabolic control, enzymes should be classified into four groups, rather than two (reversible versus irreversible). (iii) The distribution of control among the enzymes depends on the metabolic conditions. (iv) Control structures of metabolic pathways probably differ with the function of that pathway.  相似文献   

7.
In a study of metabolic regulation, it is frequently useful to consider the degree to which an enzyme can influence the rate of its pathway. The most productive expression of rate-controlling influence is the fractional change in pathway rate per fractional change in enzyme activity (called control strength or sensitivity coefficient). We have developed a system for considering how a substrate-cycle enzyme's control strength depends on its flux and reaction order and on related features of other enzymes of its pathway. We have applied this system to the gluconeogenic pathway of rat liver and the glycolytic pathway of bovine sperm, where enough fluxes and reaction orders have been published to allow valid estimates of several control strengths. In normal fed animals where gluconeogenesis is slow and unidirectional substrate-to-product and product-to-substrate fluxes are comparable, all substrate-cycle limbs have very high and similar control strengths regardless of their flux rates and positions in the pathway. The activity of a step affects all substrate-cycle control strengths similarly as it affects unidirectional end-to-end fluxes relative to net rate. Control strengths of non-substrate-cycle enzymes are negligible compared to those of substrate cycles. In fasting animals, on the other hand, where unidirectional Pyr----Glc flux is much greater than Glc----Pyr flux, upstream enzymes (near Pyr) have a regulatory advantage over downstream enzymes (near Glc). In this circumstance, control strength of each substrate-cycle enzyme is inversely related to rate limitingness between its substrate and the pathway substrate. Because the Pyr/PEP cycle is significantly rate limiting, the control strength of the Pyr----PEP limb is much greater than that of pyruvate kinase and all downstream enzymes. In the glycolytic pathway of bovine sperm, strong product inhibition of hexokinase detracts greatly from its rate limitingness and control strength, which are very small despite its position at the beginning of the pathway and its large free energy. Because the glucose-transport-hexokinase segment is not rate limiting, phosphofructo 1-kinase has almost as much control strength as it would have as the first enzyme of the pathway, and because the F6P/FDP cycle is only moderately rate limiting, Fru-1,6-P2ase and enzymes further downstream have substantial control strengths. When glycolysis is accelerated by stimulation of phosphofructo 1-kinase, control strength shifts from phosphofructo-1-kinase and all downstream enzymes to the transporthesokinase segment.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
L-Serine metabolism in rat liver was investigated, focusing on the relative contributions of the three pathways, one initiated by L-serine dehydratase (SDH), another by serine:pyruvate/alanine:glyoxylate aminotransferase (SPT/AGT), and the other involving serine hydroxymethyltransferase and the mitochondrial glycine cleavage enzyme system (GCS). Because serine hydroxymethyltransferase is responsible for the interconversion between serine and glycine, SDH, SPT/AGT, and GCS were considered to be the metabolic exits of the serine-glycine pool. In vitro, flux through SDH was predominant in both 24-h starved and glucagon-treated rats. Flux through SPT/AGT was enhanced by glucagon administration, but even after the induction, its contribution under quasi-physiological conditions (1 mM L-serine and 0.25 mM pyruvate) was about (1)/(10) of that through SDH. Flux through GCS accounted for only several percent of the amount of L-serine metabolized. Relative contributions of SDH and SPT/AGT to gluconeogenesis from L-serine were evaluated in vivo based on the principle that 3H at the 3 position of L-serine is mostly removed in the SDH pathway, whereas it is largely retained in the SPT/AGT pathway. The results showed that SPT/AGT contributed only 10-20% even after the enhancement of its activity by glucagon. These results suggested that SDH is the major metabolic exit of L-serine in rat liver.  相似文献   

9.
The advancements in genome editing techniques over the past years have rekindled interest in rational metabolic engineering strategies. While Metabolic Control Analysis (MCA) is a well-established method for quantifying the effects of metabolic engineering interventions on flows in metabolic networks and metabolite concentrations, it does not consider the physiological limitations of the cellular environment and metabolic engineering design constraints. We report here a constraint-based framework, Network Response Analysis (NRA), for rational genetic strain design. NRA is cast as a Mixed-Integer Linear Programming problem that integrates MCA, Thermodynamically-based Flux Analysis (TFA), biologically relevant constraints, as well as genome editing restrictions into a comprehensive platform for identifying metabolic engineering targets. We show that the NRA formulation and its core constraints are equivalent to the ones of Flux Balance Analysis (FBA) and TFA, which allows it to be used for a wide range of optimization criteria and with various physiological constraints. We also show how the parametrization and introduction of biological constraints enhance the NRA formulation compared to the classical MCA approach, and we demonstrate its features and its ability to generate multiple alternative optimal strategies given several user-defined boundaries and objectives. In summary, NRA is a sophisticated alternative to classical MCA for rational metabolic engineering that accommodates the incorporation of physiological data at metabolic flux, metabolite concentration, and enzyme expression levels.  相似文献   

10.
The assumption currently considered in the Metabolic Control Theory that velocity of every isolated step is proportional to enzyme concentration, is analysed by considering that in some metabolic systems that condition could not be accomplished. Analysis of the main core of this theory is carried out removing this hypothesis, expressed as "epsilon ei vi is not necessarily equal to one". The results obtained supply a more general formulation of the main theorems of the Control Theory, extending its possible application to more complex metabolic systems.  相似文献   

11.
Variation in enzyme expression may be important in evolutionary adaptation, yet is seldom studied. Furthermore, no studies have examined the expression of all enzymes in a defined metabolic pathway. Enzyme concentration is a measure of enzyme expression and was ascertained by assaying maximal activity. Presented here is an analysis of variation of maximal enzyme activity for all the enzymes in a single metabolic pathway, glycolysis, from three clinically distributed populations of the fish,Fundulus heteroclitus. Techniques for rapidly analyzing maximal enzyme activity for all the enzymes of an entire metabolic pathway from many individuals are described. The high degree of repeatability (mean coefficient of variation for replicates, 4.4%) and sensitivity (less than 3 mg of tissue is required to measure all 10 enzymes) of these assays demonstrate the utility of such an approach for analyzing variation among populations for a large numbers of enzymes. Results from these studies indicate that (1) the average coefficient of variation for all enzyme determinations within a population is 45.3% and (2) between populations, the activity of 5 of the 10 glycolytic enzymes are significantly different. This considerable variation occurs even in populations where there is little allelic variation. These data demonstrating substantial variation in enzyme expression support the idea that changes in gene regulation may be as important as, or even more important than, changes in biochemical kinetic parameters in evolutionary processes.  相似文献   

12.
Control and Response Coefficients of transition time have been determined in a rat liver glycolytic system under different glucose concentrations. Results have been compared with the Flux Control and Flux Response Coefficients measured in the same conditions, showing that transition time and flux are different responses of the system, subject to different regulation and control. Control Coefficients of flux and transition time show a very different profile in each condition of glucose concentration assayed. Ratio of Flux Control coefficients of glucokinase over phosphofructokinase at 5 and 20 mM glucose concentration changes from 3.2 to 0.5, while the same ratio in the case of Transition Time Control Coefficients moves from 0.6 to 0.93. Moreover, the absolute values of Transition Time Control Coefficients in glycolytic conditions are one order of magnitude bigger than in gluconeogenic conditions. Values of Response Coefficients also show that the transition time has a bigger sensitivity to changes in glucose concentration than the flux in all conditions assayed, but particularly in glycolytic ones.  相似文献   

13.
Influence of the concentration of internal metabolites on the control coefficient (defined as fractional change in flux per fractional change in enzyme activity) and regulatory properties of a given enzyme have been studied theoretically using a cyclic model of three enzymes. This model is useful to investigate the properties of the flux control coefficient for an enzyme following different rate equations. Enzymes can have high or low values of control coefficient irrespective of the type of kinetic equation, but the results obtained show that the sensitivity of these values to substrate variations is strongly dependent on its rate equation. These results help identify which kinetic equation allows the best control of a given metabolic pathway. These results have been applied to the purine nucleotide cycle. It is demonstrated that the best control of the cycle is reached when the irreversible reaction catalyzed by AMP deaminase follows a rate law that corresponds to a rational function of 2:2 degree with respect to AMP concentration.  相似文献   

14.
In order to explain the mechanisms of Calvin-cycle regulation, the general properties of metabolic systems under homeostatic flux control are analyzed. It is shown that the main characteristic point for an enzyme in such a system can be the value of a sharp transition from some constant homeostatic flux to a limitation by this enzyme. A special method for the quantitative treatment of the experimental dependence of a metabolic flux such as photosynthesis on enzyme content is developed. It is pointed out that reactions close to a thermodynamic equilibrium under normal conditions can considerably limit the homeostatic fluxes with a decrease of the enzyme content. Calvin-cycle enzymes are classified as non-limiting, near-limiting and limiting. The deduced rules for the regulation of a homeostatic metabolic pathway are used to explain the data obtained for transgenic plants with reduced activities of Calvin-cycle enzymes. The role of compensating mechanisms that maintain the photosynthesis rate constant upon the changes of enzyme contents is analyzed for the Calvin cycle. The developed analysis explains the sharp transitions between limiting and non-limiting conditions that can be seen in transgenic plants with reduced content of some Calvin-cycle enzymes, and the limiting role of such reversible enzymes as aldolase, transketolase and others. The attempt is made to predict the properties of plants with increased enzyme contents in the Calvin cycle.  相似文献   

15.
The cellular concentration of enzymes of some major metabolic pathways, such as glycolysis, can approach millimolarity. This concentration of enzyme can catalyze in vitro rates which are 100-fold higher than maximum pathway flux. In an attempt to understand the need for such high enzyme concentration, an artificial metabolic pathway of five enzymes (apropos the central enzymes of glycolysis) has been modeled. Numerical methods were then used to determine the effect of enzyme concentration on: (1) the change in total free metabolite concentration as the pathway changes from low flux to high flux, (2) the time lag (transient time) in the rate of final product formation upon the transition from low flux to high flux. Both the changes in metabolite pool size and the transient time decreased with increased enzyme concentrations. When all enzymatic reactions were assigned Keq of unity, a concentration for each enzyme of 25 microM is sufficient to provide a transient time of 1 sec. When Keq different from unity are introduced, more enzyme is required to provide comparably short transient times. Under the latter condition, a pathway of sufficiently low transient time would require all the enzyme available in mammalian muscle. It is shown that there is little scope for further increases in either enzyme concentration or of catalytic efficiency of independent enzymes. Therefore, an alternative method of increasing efficiency is considered in which enzyme-bound metabolites can serve directly as substrates for subsequent enzymes in a metabolic pathway.  相似文献   

16.
Several strains of Sphingobium chlorophenolicum have been isolated from soil that was heavily contaminated with pentachlorophenol (PCP), a toxic pesticide introduced in the 1930s. S. chlorophenolicum appears to have assembled a poorly functioning pathway for degradation of PCP by patching enzymes recruited via two independent horizontal gene transfer events into an existing metabolic pathway. Flux through the pathway is limited by PCP hydroxylase. PCP hydroxylase is a dimeric protein that belongs to the family of flavin-dependent phenol hydroxylases. In the presence of NADPH, PCP hydroxylase converts PCP to tetrachlorobenzoquinone (TCBQ). The k(cat) for PCP (0.024 s(-1)) is very low, suggesting that the enzyme is not well evolved for turnover of this substrate. Structure-activity studies reveal that substrate binding and activity are enhanced by a low pK(a) for the phenolic proton, increased hydrophobicity, and the presence of a substituent ortho to the hydroxyl group of the phenol. PCP hydroxylase exhibits substantial uncoupling; the C4a-hydroxyflavin intermediate, instead of hydroxylating the substrate, can decompose to produce H(2)O(2) in a futile cycle that consumes NADPH. The extent of uncoupling varies from 0 to 100% with different substrates. The extent of uncoupling is increased by the presence of bulky substituents at position 3, 4, or 5 and decreased by the presence of a chlorine in the ortho position. The effectiveness of PCP hydroxylase is additionally hindered by its promiscuous activity with tetrachlorohydroquinone (TCHQ), a downstream metabolite in the degradation pathway. The conversion of TCHQ to TCBQ reverses flux through the pathway. Substantial uncoupling also occurs during the reaction with TCHQ.  相似文献   

17.
Simulation models of the evolution of genes in a branched metabolic pathway subject to stabilizing selection on flux are described and analyzed. The models are based either on metabolic control theory (MCT), with the assumption that enzymes are far from saturation, or on Michaelis–Menten kinetics, which allows for saturation and near saturation. Several predictions emerge from the models: (1) flux control evolves to be concentrated at pathway branch points, including the first enzyme in the pathway. (2) When flux is far from its optimum, adaptive substitutions occur disproportionately often in branching enzymes. (3) When flux is near its optimum, adaptive substitutions occur disproportionately often in nonbranching enzymes. (4) Slightly deleterious substitutions occur disproportionately often in nonbranching enzymes. (5) In terms of both flux control and patterns of substitution, pathway branches are similar to those predicted for linear pathways. These predictions provide null hypotheses for empirical examination of the evolution of genes in metabolic pathways.  相似文献   

18.
Saghatelian A  Cravatt BF 《Life sciences》2005,77(14):1759-1766
Of primary interest for every enzyme is the identification of its physiological substrates. However, the vast structural diversity of endogenous metabolites, coupled with the overlapping activities of numerous enzymes, makes it difficult to deduce the identity of natural substrates for a given enzyme based on in vitro experiments. To address this challenge, we recently introduced an LC-MS based analytical method termed discovery metabolite profiling (DMP) to evaluate the global metabolic effects of enzyme inactivation in vivo. We have applied DMP to study mice lacking the enzyme fatty acid amide hydrolase (FAAH), which degrades the endocannabinoid family of signaling lipids. DMP identified several previously uncharacterized FAAH substrates, including a structurally novel class of brain lipids that represent conjugates of very long chain fatty acids with the amino acid derivative taurine [N-acyl taurines (NATs)]. These findings show that DMP can establish direct connections between the proteome and metabolome and thus offers a powerful strategy to assign physiological functions to enzymes in the post-genomic era.  相似文献   

19.
Estimations of enzyme activity in vivo have been or can often only be done at unphysiological conditions. A main biochemical goal is to correlate in vivo and in vitro measurements. A possible approach to this problem is presented based on forcing metabolic activity in vivo to the maximum for a certain metabolic sequence. Since the urea synthesis system, including maximal rates of enzyme activities, is well known, we have compared in vitro maximum rates for the individual enzymes of urea synthesis with in vivo rates as judged by urea levels in blood of rats given large amounts of protein. The excellent agreement found between the calculated maximum activities from in vitro measurements to the time needed to metabolize a protein overload is presented and comments made on its significance and on the importance of maintaining protein intake at moderate levels, for the capacity of the urea system is limited. Since the intake of large quantities of protein increases the urea level in blood and in other tissues and since high urea levels are somewhat deleterious "per se" and particularly due to equilibrium with cyanate, ingestion of excessive amounts of protein is at best expensive and possibly hazardous.  相似文献   

20.
Summary Control of glucose metabolism in rat liver under different glucose concentrations was studied. Flux Control Coefficients of glucokinase, glucose 6-phosphate isomerase and phosphofructokinase were determined by the shortening and enzyme titration method. Results obtained show that glucose concentration in liver can play an important role in control of liver glycolysis by enhancing the Flux Control Coefficient of phosphofructokinase. Possible physiological significance of this fact is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号