首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Estimation of left ventricular (LV) mass has both prognostic and therapeutic value independent of traditional risk factors. Unfortunately, LV mass evaluation has been underestimated in clinical practice. Assessment of LV mass can be performed by a number of imaging modalities. Despite inherent limitations, conventional echocardiography has fundamentally been established as most widely used diagnostic tool. 3-dimensional echocardiography (3DE) is now feasible, fast and accurate for LV mass evaluation. 3DE is also superior to conventional echocardiography in terms of LV mass assessment, especially in patients with abnormal LV geometry. Cardiovascular magnetic resonance (CMR) and cardiovascular computed tomography (CCT) are currently performed for LV mass assessment and also do not depend on cardiac geometry and display 3-dimensional data, as well. Therefore, CMR is being increasingly employed and is at the present standard of reference in the clinical setting. Although each method demonstrates advantages over another, there are also disadvantages to receive attention. Diagnostic accuracy of methods will also be increased with the introduction of more advanced systems. It is also likely that in the coming years new and more accurate diagnostic tests will become available. In particular, CMR and CCT have been intersecting hot topic between cardiology and radiology clinics. Thus, good communication and collaboration between two specialties is required for selection of an appropriate test.  相似文献   

2.
Obesity is considered as a strong risk factor for cardiovascular morbidity and mortality. 3D-wall motion tracking echocardiography (3D-WMT) provides information regarding different parameters of left ventricular (LV) myocardial deformation. Our aim was to assess the presence of early myocardial deformation abnormalities in nonselected obese children free from other cardiovascular risk factors. Thirty consecutive nonselected obese children and 42 healthy volunteer children were enrolled. None of them had any cardiovascular risk factor. Every subject underwent a 2D-echo examination and a 3D-WMT study. Mean age was 13.9 ± 2.56 and 13.25 ± 2.68 years in the nonobese and obese groups, respectively (59.7% and 40.3% male). Statistically significant differences were found for: interventricular septum thickness, LV posterior wall thickness, LV end-diastolic volume, LV end-systolic volume, left atrium volume, LV mass, and lateral annulus peak velocity. Regarding the results obtained by 3D-WMT assessment, all the evaluated parameters were statistically significantly different between the two groups. When the influence of obesity on the different echocardiographic variables was evaluated by means of multivariate logistic regression analysis, the strongest relationship with obesity was found for LV average circumferential strain (β-coefficient: 0.74; r(2): 0.55; P: 0.003). Thus, obesity cardiomyopathy is associated not only with structural cardiac changes, but also with myocardial deformation changes. Furthermore, this association occurs as early as in the childhood and it is independent from any other cardiovascular risk factor. The most related parameter to obesity is LV circumferential strain.  相似文献   

3.
In early diastole, pressure is lower in the apex than in the base of the left ventricle (LV). This early intraventricular pressure difference (IVPD) facilitates LV filling. We assessed how LV diastolic IVPD and intraventricular pressure gradient (IVPG), defined as IVPD divided by length, scale to the heart size and other physiological variables. We studied 10 mice, 10 rats, 5 rabbits, 12 dogs, and 21 humans by echocardiography. Color Doppler M-mode data were postprocessed to reconstruct IVPD and IVPG. Normalized LV filling time was calculated by dividing filling time by RR interval. The relationship between IVPD, IVPG, normalized LV filling time, and LV end-diastolic volume (or mass) as fit to the general scaling equation Y = kM beta, where M is LV heart size parameter, Y is a dependent variable, k is a constant, and beta is the power of the scaling exponent. LV mass varied from 0.049 to 194 g, whereas end-diastolic volume varied from 0.011 to 149 ml. The beta values relating normalized LV filling time with LV mass and end-diastolic volume were 0.091 (SD 0.011) and 0.083 (SD 0.009), respectively (P < 0.0001 vs. 0 for both). The beta values relating IVPD with LV mass and end-diastolic volume were similarly significant at 0.271 (SD 0.039) and 0.243 (SD 0.0361), respectively (P < 0.0001 vs. 0 for both). Finally, beta values relating IVPG with LV mass and end-diastolic volume were -0.118 (SD 0.013) and -0.104 (SD 0.011), respectively (P < 0.0001 vs. 0 for both). As a result, there was an inverse relationship between IVPG and normalized LV filling time (r = -0.65, P < 0.001). We conclude that IVPD decrease, while IVPG increase with decreasing animal size. High IVPG in small mammals may be an adaptive mechanism to short filling times.  相似文献   

4.
Previous studies have shown that small intraventricular pressure gradients (IVPG) are important for efficient filling of the left ventricle (LV) and as a sensitive marker for ischemia. Unfortunately, there has previously been no way of measuring these noninvasively, severely limiting their research and clinical utility. Color Doppler M-mode (CMM) echocardiography provides a spatiotemporal velocity distribution along the inflow tract throughout diastole, which we hypothesized would allow direct estimation of IVPG by using the Euler equation. Digital CMM images, obtained simultaneously with intracardiac pressure waveforms in six dogs, were processed by numerical differentiation for the Euler equation, then integrated to estimate IVPG and the total (left atrial to left ventricular apex) pressure drop. CMM-derived estimates agreed well with invasive measurements (IVPG: y = 0.87x + 0.22, r = 0.96, P < 0.001, standard error of the estimate = 0.35 mmHg). Quantitative processing of CMM data allows accurate estimation of IVPG and tracking of changes induced by beta-adrenergic stimulation. This novel approach provides unique information on LV filling dynamics in an entirely noninvasive way that has previously not been available for assessment of diastolic filling and function.  相似文献   

5.
One of the most debilitating effects of primary aging is the decline in aerobic exercise capacity. One of its causes is an age-related decline in peak exercise stroke volume. This study's main purpose was to determine the cardiovascular adaptations to aging that most influence peak exercise stroke volume in the elderly. We hypothesized that increased left ventricular (LV) filling and mild concentric LV remodeling would be associated with an increase in peak exercise stroke volume corrected for lean body mass (LBM) and that an increased augmentation index (AI), which is a marker of arterial stiffness, would be associated with a decrease. A second aim was to determine the adaptations to aging that most influence LV concentric remodeling in the elderly. We hypothesized that AI would be a predictor of LV mass/LBM and the LV posterior wall thickness-to-LV radius ratio (h/r). We performed a cross-sectional study of cardiac and vascular adaptations to aging in 52 sedentary, elderly subjects. LV filling [as measured by the early-to-late transmitral flow velocity ratio (E/A)] was inversely correlated with and was an independent predictor of peak exercise stroke volume/LBM and was also a predictor of LV remodeling. AI was a predictor of LV remodeling (LV mass/LBM) but not of peak exercise stroke volume/LBM. We conclude that 1) maintenance of LV filling (E/A <1) is associated with a higher peak exercise stroke volume/LBM in very elderly subjects and thus may be a useful adaptation that enhances stroke volume during peak exercise, 2) LV remodeling and AI are less influential on peak exercise stroke volume/LBM, and 3) AI was the most important predictor of LV remodeling.  相似文献   

6.
Left-ventricular (LV) remodelling, associated with diastolic heart failure, is driven by an increase in myocardial stress. Therefore, normalisation of LV wall stress is the cornerstone of many therapeutic treatments. However, information regarding such regional stress–strain for human LV is still limited. Thus, the objectives of our study were to determine local diastolic stress–strain field in healthy LVs, and consequently, to identify the regional variations amongst them due to geometric heterogeneity. Effects of LV base movement on diastolic model predictions, which were ignored in the literature, were further explored. Personalised finite-element modelling of five normal human bi-ventricles was carried out using subject-specific myocardium properties. Model prediction was validated individually through comparison with end-diastolic volume and a new shape-volume based measurement of LV cavity, extracted from magnetic resonance imaging. Results indicated that incorporation of LV base movement improved the model predictions (shape-volume relevancy of LV cavity), and therefore, it should be considered in future studies. The LV endocardium always experienced higher fibre stress compared to the epicardium for all five subjects. The LV wall near base experienced higher stress compared to equatorial and apical locations. The lateral LV wall underwent greater stress distribution (fibre and sheet stress) compared to other three regions. In addition, normal ranges of different stress–strain components in different regions of LV wall were reported for five healthy ventricles. This information could be used as targets for future computational studies to optimise diastolic heart failure treatments or design new therapeutic interventions/devices.  相似文献   

7.
One of the earliest applications of clinical echocardiography is evaluation of left ventricular (LV) function and size. Accurate, reproducible and quantitative evaluation of LV function and size is vital for diagnosis, treatment and prediction of prognosis of heart disease. Early three-dimensional (3D) echocardiographic techniques showed better reproducibility than two-dimensional (2D) echocardiography and narrower limits of agreement for assessment of LV function and size in comparison to reference methods, mostly cardiac magnetic resonance (CMR) imaging, but acquisition methods were cumbersome and a lack of user-friendly analysis software initially precluded widespread use. Through the advent of matrix transducers enabling real-time three-dimensional echocardiography (3DE) and improvements in analysis software featuring semi-automated volumetric analysis, 3D echocardiography evolved into a simple and fast imaging modality for everyday clinical use. 3DE provides the possibility to evaluate the entire LV in three spatial dimensions during the complete cardiac cycle, offering a more accurate and complete quantitative evaluation the LV. Improved efficiency in acquisition and analysis may provide clinicians with important diagnostic information within minutes. The current article reviews the methodology and application of 3DE for quantitative evaluation of the LV, provides the scientific evidence for its current clinical use, and discusses its current limitations and potential future directions.  相似文献   

8.
Real-time three-dimensional (3D) ultrasound imaging has been proposed as an alternative for two-dimensional stress echocardiography for assessing myocardial dysfunction and underlying coronary artery disease. Analysis of 3D stress echocardiography is no simple task and requires considerable expertise. In this paper, we propose methods for automated analysis, which may provide a more objective and accurate diagnosis. Expert knowledge is incorporated via statistical modelling of patient data. Methods for identifying anatomical views, detecting endocardial borders, and classification of wall motion are described and shown to provide favourable results. We also present software developed especially for analysis of 3D stress echocardiography in clinical practice. Interobserver agreement in wall motion scoring is better using the dedicated software (96%) than commercially available software not dedicated for this purpose (79%). The developed tools may provide useful quantitative and objective parameters to assist the clinical expert in the diagnosis of left ventricular function.  相似文献   

9.
We sought to examine the hemodynamic determinants and clinical application of the peak acceleration rate of early (Ea) diastolic velocity of the mitral annulus by tissue Doppler. Simultaneous left atrial and left ventricular (LV) catheterization and Doppler echocardiography were performed in 10 dogs. Preload was altered using volume infusion and caval occlusion, whereas myocardial lusitropic state was altered with dobutamine and esmolol. The clinical application was examined in 190 consecutive patients (55 control, 41 impaired relaxation, 46 pseudonormal, and 48 restrictive LV filling). In addition, in 60 consecutive patients, we examined the relation between it and mean wedge pressure with simultaneous Doppler echocardiography and right heart catheterization. In canine studies, a significant positive relation was present between peak acceleration rate of Ea and transmitral pressure gradient only in the stages with normal or enhanced LV relaxation, but with no relation in the stages where the time constant of LV relaxation (tau) was > or =50 ms. Its hemodynamic determinants were tau, LV minimal pressure, and transmitral pressure gradient. In clinical studies, peak acceleration rate of Ea was significantly lower in patients with impaired LV relaxation irrespective of filling pressures (P < 0.001) and with similar accuracy to peak Ea velocity (area under the curve for septal and lateral peak acceleration rates: both 0.78) in identifying these patients. No significant relation was observed between peak acceleration rate and mean wedge pressure. Peak acceleration rate of Ea appears to be a useful index of LV relaxation but not of filling pressures and can be applied to identify patients with impaired LV relaxation irrespective of their filling pressures.  相似文献   

10.
We hypothesized that minimally invasive injections of a softening agent at strategic locations in stiff myocardium could de-stiffen the left ventricle (LV) globally. Physics-based finite element models of the LV were created from LV echocardiography images and pressures recorded during experiments in four swine. Results confirmed animal models of LV softening by systemic agents. Regional de-stiffening of myocardium led to global de-stiffening of LV. The mathematical set up was used to design LV global de-stiffening by regional softening of myocardium. At an end diastolic pressure of 23 mmHg, when 8 ml of the free wall was covered by intramyocardial injections, end diastolic volume (EDV) increased by 15.0%, whereas an increase up to 11 ml due to intramyocardial injections in the septum and free wall led to a 26.0% increase in EDV. Although the endocardial intramyocardial injections occupied a lower LV wall volume, they led to an EDV (44 ml) that was equal compared to intramyocardial injections in the mid-wall (44 ml) and larger compared to intramyocardial injections in the epicardium (41 ml). Using an in silico set up, sites of regional myocardium de-stiffening could be planned in order to globally soften overly stiff LV in heart failure with preserved ejection fraction. This novel treatment is built on subject-specific data. Hypothesis-testing of these simulation findings in animal models is warranted.  相似文献   

11.

Background  

Myocardial motion is an important observable for the assessment of heart condition. Accurate estimates of ventricular (LV) wall motion are required for quantifying myocardial deformation and assessing local tissue function and viability. Harmonic Phase (HARP) analysis was developed for measuring regional LV motion using tagged magnetic resonance imaging (tMRI) data. With current computer-aided postprocessing tools including HARP analysis, large motions experienced by myocardial tissue are, however, often intractable to measure. This paper addresses this issue and provides a solution to make such measurements possible.  相似文献   

12.
Two apparently different types of mechanisms have emerged to explain diastolic suction (DS), that property of the left ventricle (LV) that tends to cause it to refill itself during early diastole independent of any force from the left atrium (LA). By means of the first mechanism, DS depends on decreased elastance [e.g., the relaxation time constant (tau)] and, by the second, end-systolic volume (V(LVES)). We used wave-intensity analysis (WIA) to measure the total energy transported by the backward expansion wave (I(W-)) during LV relaxation in an attempt to reconcile these mechanisms. In six anesthetized, open-chest dogs, we measured aortic, LV (P(LV)), LA (P(LA)), and pericardial pressures and LV volume by orthogonal ultrasonic crystals. Mitral velocity was measured by Doppler echocardiography, and aortic velocity was measured by an ultrasonic flow probe. Heart rate was controlled by pacing, V(LVES) by volume loading, and tau by isoproterenol or esmolol administration. I(W-) was found to be inversely related to tau and V(LVES). Our measure of DS, the energy remaining after mitral valve opening, I(W-DS), was also found to be inversely related to tau and V(LVES) and was approximately 10% of the total "aspirating" energy generated by LV relaxation (i.e., I(W-)). The size of the Doppler (early filling) E wave depended on I(W-DS) in addition to I(W+), the energy associated with LA decompression. We conclude that the energy of the backward-going wave generated by the LV during relaxation depends on both the rate at which elastance decreases (i.e., tau) and V(LVES). WIA provides a new approach for assessing DS and reconciles those two previously proposed mechanisms. The E wave depends on DS in addition to LA decompression.  相似文献   

13.
Murine models of cardiac disease are becoming an important tool for studying pathophysiological processes. Development of methods to accurately assess ventricular function are therefore important. The purpose of this study was to evaluate the feasibility of echocardiographic assessment of segmental wall motion abnormalities in a murine model of myocardial infarction. Two-dimensional contrast (C+) and noncontrast (C-) echocardiography were performed in 76 awake mice 2 days before and 2 days after left coronary ligation. The short-axis images obtained with two-dimensional echocardiography and corresponding postmortem cross-sectional histological samples stained with Evans blue dye were each divided into 16 segments, and all matched segments were examined for correlation between wall motion abnormalities and myocardial hypoperfusion. With the use of contrast enhancement, the number of visualized segments was significantly increased (base: C- 86%, C+ 98%; midpapillary: C- 57%, C+ 89%; apex: C- 30%, C+ 74%). Agreement between echocardiographically assessed regional wall motion abnormalities and pathologically determined hypoperfusion in basal, midpapillary, and apical levels were 90%, 93%, and 93%, respectively. Agreement between echocardiographically normal wall motion and pathologically normal findings in basal, midpapillary, and apical levels were 99%, 88%, and 71%, respectively. Thus echocardiographic assessment of segmental wall motion in awake mice was feasible and the accuracy was improved with the use of a contrast agent.  相似文献   

14.
Description of the deformation of the left ventricle by a kinematic model.   总被引:2,自引:0,他引:2  
A model of left ventricular (LV) kinematics is essential to identify the fundamental physiological modes of LV deformation during a complete cardiac cycle as observed from the motion of a finite number of markers embedded in the LV wall. Kinematics can be described by a number of modes of motion and deformation in succession. An obvious mode of LV deformation is the ejection of cavity volume while the wall thickens. In the more sophisticated model of LV kinematics developed here, seven time-dependent parameters were used to describe not only volume change but also torsion and shape changes throughout the cardiac cycle. Rigid-body motion required another six parameters. The kinematic model employed a deformation field that had no singularities within the myocardium, and all parameters describing the modes of deformation were dimensionless. Note that torsion, volume and symmetric shape changes all require the definition of a cardiac coordinate system, which has generally been related to the measured cardiac geometry by reference to approximate anatomical landmarks. However, in the present study the coordinate system was positioned objectively by a least-squares fit of the kinematic model to the measured motion of markers. Theoretically, at least five markers are needed to find a unique set of parameters.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
16.
The mitral annulus (MA) has a complex shape and motion, and its excursion has been correlated to left ventricular (LV) function. During the cardiac cycle the annulus' excursion encompasses a volume that is part of the total LV volume change during both filling and emptying. Our objective was to evaluate the contribution of MA excursion and shape variation to total LV volume change. Nine healthy subjects aged 56 +/- 11 (means +/- SD) years underwent transesophageal echocardiography (TEE). The MA was outlined in all time frames, and a four-dimensional (4-D) Fourier series was fitted to the MA coordinates (3-D+time) and divided into segments. The annular excursion volume (AEV) was calculated based on the temporally integrated product of the segments' area and their incremental excursion. The 3-D LV volumes were calculated by tracing the endocardial border in six coaxial planes. The AEV (10 +/- 2 ml) represented 19 +/- 3% of the total LV stroke volume (52 +/- 12 ml). The AEV correlated strongly with LV stroke volume (r = 0.73; P < 0.05). Peak MA area occurred during middiastole, and 91 +/- 7% of reduction in area from peak to minimum occurred before the onset of LV systole. The excursion of the MA accounts for an important portion of the total LV filling and emptying in humans. These data suggest an atriogenic influence on MA physiology and also a sphincter-like action of the MA that may facilitate ventricular filling and aid competent valve closure. This 4-D TEE method is the first to allow noninvasive measurement of AEV and may be used to investigate the impact of physiological and pathological conditions on this important aspect of LV performance.  相似文献   

17.
Elderly female hypertensives with arterial stiffening constitute a majority of patients with heart failure with preserved ejection fraction (HFpEF), a condition characterized by inability to increase cardiac stroke volume (SV) with physical exercise. As SV is determined by the interaction between the left ventricle (LV) and its load, we wished to study the role of arterial hemodynamics for exertional SV reserve in patients at high risk of HFpEF. Twenty-one elderly (67 ± 9 yr) female hypertensive patients were studied at rest and during supine bicycle stress using echocardiography including pulsed-wave Doppler to record flow in the LV outflow tract and arterial tonometry for central arterial pressure waveforms. Arterial compliance was estimated based on an exponential relationship between pressure and volume. The ratio of aortic pressure-to-flow in early systole was used to derive characteristic impedance, which was subsequently subtracted from total resistance (mean arterial pressure/cardiac output) to yield systemic vascular resistance (SVR). It was found that patients with depressed SV reserve (NoRes; reserve <15%; n = 10) showed decreased arterial compliance during exercise, while patients with SV reserve ≥15% (Res; n = 11) showed increased compliance. Exercise produced parallel increases in LV end-diastolic volume and arterial volume in Res patients while NoRes patients exhibited a lesser decrease in SVR and a drop in effective arterial volume. Poor SV reserve in elderly female hypertensives is due to simultaneous failure of LV preload and arterial vasodilatory reserves. Abnormal arterial function contributes to a high risk of HFpEF in these patients.  相似文献   

18.
To clarify whether or not systolic and diastolic function of the human left ventricle (LV) were decreased during acute hypoxia, at rest and with exercise, 14 healthy male volunteers [age 25.9 (SD 3.0) years, height 182.9 (SD 7.1) cm, body mass 75.9 (SD 6.9)kg] were examined using M-mode and 2D-mode echocardiography to determine the systolic LV function as well as Doppler-echocardiography for the assessment of diastolic LV function on 2 separate test days. In random order, the subjects breathed either air on 1 day (N) or a gas mixture with reduced oxygen content on the other (H; oxygen fraction in inspired gas 0.14). Measurements on either day were made at rest, several times during incremental cycle exercise in a supine position (6-min increments of 50 W, maximal load 150 W) and in 6th min of recovery. Corresponding measurements during N and H were compared statistically. Arterial O2 tension (P aO2) was normal on N-day. All subjects showed a marked acute hypoxia at rest [P aO2, 54.5 (SD 4.6) mmHg], during exercise and recovery on H-day. The latter was associated with tachycardia compared to N-day. All echocardiographic measurements at rest were within the limits of normal values on both test days. Ejection time, end-systolic and end-diastolic left ventricular dimensions as well as the thickness of left posterior wall and of interventricular septum showed no statistically significant influence of H either at rest or during exercise. Stroke volume and cardiac output were always higher on H-day, which could be attributed to a slight reduction in end-systolic volume with unaffected end-diastolic volume as well as to increased heart rates. Among the indices of systolic LV function the fractions of thickening in the left ventricular posterior wall and interventricular septum showed no differences between H and N at rest or during exercise. However, fibre shortening, ejection fraction and mean circumferential fibre shortening were increased on H-day on all occasions. The mitral-valve-Doppler ratio, the index of diastolic LV function, was decreased with H at rest, showed a more pronounced reduction during exercise and was still lower in 6th min of recovery compared to N-day. It was concluded that with acute hypoxia of the severity applied in this study left ventricular systolic function in our healthy subjects showed a pronounced improvement and left ventricular diastolic function was reduced, both at rest and with exercise.  相似文献   

19.

A computationally efficient method is described for simulating the dynamics of the left ventricle (LV) in three dimensions. LV motion is represented as a combination of a limited number of deformation modes, chosen to represent observed cardiac motions while conserving volume in the LV wall. The contribution of each mode to wall motion is determined by a corresponding time-dependent deformation variable. The principle of virtual work is applied to these deformation variables, yielding a system of ordinary differential equations for LV dynamics, including effects of muscle fiber orientations, active and passive stresses, and surface tractions. Passive stress is governed by a transversely isotropic elastic model. Active stress acts in the fiber direction and incorporates length–tension and force–velocity properties of cardiac muscle. Preload and afterload are represented by lumped vascular models. The variational equations and their numerical solutions are verified by comparison to analytic solutions of the strong form equations. Deformation modes are constructed using Fourier series with an arbitrary number of terms. Greater numbers of deformation modes increase deformable model resolution but at increased computational cost. Simulations of normal LV motion throughout the cardiac cycle are presented using models with 8, 23, or 46 deformation modes. Aggregate quantities that describe LV function vary little as the number of deformation modes is increased. Spatial distributions of stress and strain change as more deformation modes are included, but overall patterns are conserved. This approach yields three-dimensional simulations of the cardiac cycle on a clinically relevant time-scale.

  相似文献   

20.
Accurately estimating left atrial (LA) volume with Doppler echocardiography remains challenging. Using angiography for validation, Marino et al. (Marino P, Prioli AM, Destro G, LoSchiavo I, Golia G, and Zardini P. Am Heart J 127: 886-898, 1994) determined LA volume throughout the cardiac cycle by integrating the velocity-time integrals of Doppler transmitral and pulmonary venous flow, assuming constant mitral valve and pulmonary vein areas. However, this LA volume determination method has never been compared with three-dimensional LA volume data from cardiac MRI, the gold standard for cardiac chamber volume measurement. Previously, we determined that the effective mitral valve area is not constant but varies as a function of time. Therefore, we sought to determine whether the effective pulmonary vein area (EPVA) might be time varying as well and also assessed Marino's method for estimating LA volume. We imaged 10 normal subjects using cardiac MRI and concomitant transthoracic Doppler echocardiography. LA and left ventricular (LV) volumes were measured by MRI, transmitral and pulmonary vein flows were measured by Doppler echocardiography, and time dependence was synchronized via the electrocardiogram. LA volume, estimated using Marino's method, was compared with the MRI measurements. Differences were observed, and the discrepancy between the echocardiographic and MRI methods was used to predict EPVA as a function of time. EPVA was also directly measured from short-axis MRI images and was found to be time varying in concordance with predicted values. We conclude that because EPVA and LA volume time dependence are in phase, LA filling in systole and LV filling in diastole are both facilitated. Application to subjects in select pathophysiological states is in progress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号