首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.

Background

Identification of genes responsible for medically important traits is a major challenge in human genetics. Due to the genetic heterogeneity of hearing loss, targeted DNA capture and massively parallel sequencing are ideal tools to address this challenge. Our subjects for genome analysis are Israeli Jewish and Palestinian Arab families with hearing loss that varies in mode of inheritance and severity.

Results

A custom 1.46 MB design of cRNA oligonucleotides was constructed containing 246 genes responsible for either human or mouse deafness. Paired-end libraries were prepared from 11 probands and bar-coded multiplexed samples were sequenced to high depth of coverage. Rare single base pair and indel variants were identified by filtering sequence reads against polymorphisms in dbSNP132 and the 1000 Genomes Project. We identified deleterious mutations in CDH23, MYO15A, TECTA, TMC1, and WFS1. Critical mutations of the probands co-segregated with hearing loss. Screening of additional families in a relevant population was performed. TMC1 p.S647P proved to be a founder allele, contributing to 34% of genetic hearing loss in the Moroccan Jewish population.

Conclusions

Critical mutations were identified in 6 of the 11 original probands and their families, leading to the identification of causative alleles in 20 additional probands and their families. The integration of genomic analysis into early clinical diagnosis of hearing loss will enable prediction of related phenotypes and enhance rehabilitation. Characterization of the proteins encoded by these genes will enable an understanding of the biological mechanisms involved in hearing loss.  相似文献   

4.
5.

Background

Kinesins, a superfamily of molecular motors, use microtubules as tracks and transport diverse cellular cargoes. All kinesins contain a highly conserved ~350 amino acid motor domain. Previous analysis of the completed genome sequence of one flowering plant (Arabidopsis) has resulted in identification of 61 kinesins. The recent completion of genome sequencing of several photosynthetic and non-photosynthetic eukaryotes that belong to divergent lineages offers a unique opportunity to conduct a comprehensive comparative analysis of kinesins in plant and non-plant systems and infer their evolutionary relationships.

Results

We used the kinesin motor domain to identify kinesins in the completed genome sequences of 19 species, including 13 newly sequenced genomes. Among the newly analyzed genomes, six represent photosynthetic eukaryotes. A total of 529 kinesins was used to perform comprehensive analysis of kinesins and to construct gene trees using the Bayesian and parsimony approaches. The previously recognized 14 families of kinesins are resolved as distinct lineages in our inferred gene tree. At least three of the 14 kinesin families are not represented in flowering plants. Chlamydomonas, a green alga that is part of the lineage that includes land plants, has at least nine of the 14 known kinesin families. Seven of ten families present in flowering plants are represented in Chlamydomonas, indicating that these families were retained in both the flowering-plant and green algae lineages.

Conclusion

The increase in the number of kinesins in flowering plants is due to vast expansion of the Kinesin-14 and Kinesin-7 families. The Kinesin-14 family, which typically contains a C-terminal motor, has many plant kinesins that have the motor domain at the N terminus, in the middle, or the C terminus. Several domains in kinesins are present exclusively either in plant or animal lineages. Addition of novel domains to kinesins in lineage-specific groups contributed to the functional diversification of kinesins. Results from our gene-tree analyses indicate that there was tremendous lineage-specific duplication and diversification of kinesins in eukaryotes. Since the functions of only a few plant kinesins are reported in the literature, this comprehensive comparative analysis will be useful in designing functional studies with photosynthetic eukaryotes.  相似文献   

6.
7.
8.
9.
10.
The homologous gene of D-amino acid oxidase (DAO) in prokaryotic organisms is predominantly found in a group of bacteria called the Actinobacteria. We have analyzed the DAO of the model actinomycete Streptomyces coelicolor and the effect of D-amino acids on this bacterium. When expressed in Escherichia coli, the translated product of the putative dao gene of this bacterium exhibited oxidase activity against neutral and basic D-amino acids, with a higher activity toward D-valine and D-isoleucine, but not to their corresponding L-amino acids. This substrate specificity was largely different from that of the DAO of the actinobacterium Arthrobacter protophormiae. The gene message and DAO activity were constitutively detected in S. coelicolor cells, and unlike eukaryotic DAOs, the presence of a D-amino acid did not significantly induce expression. The D-amino acids that were a good substrate for S. coelicolor DAO inhibited cell growth, delayed morphological development and affected cell morphology, but they did not inhibit biofilm formation. Disruption of the dao gene had no effect on the morphology and morphological development of S. coelicolor cells, the assimilation of D-valine or the sensitivity to growth inhibition by D-valine under the experimental conditions, showing that in this bacterium DAO does not play a significant role in either morphological development or the assimilation and detoxification of D-amino acids.  相似文献   

11.

Background

Mammalian genomes are repositories of repetitive DNA sequences derived from transposable elements (TEs). Typically, TEs generate multiple, mostly inactive copies of themselves, commonly known as repetitive families or families of repeats. Recently, we proposed that families of TEs originate in small populations by genetic drift and that the origin of small subpopulations from larger populations can be fueled by biological innovations.

Results

We report three distinct groups of repetitive families preserved in the human genome that expanded and declined during the three previously described periods of regulatory innovations in vertebrate genomes. The first group originated prior to the evolutionary separation of the mammalian and bird lineages and the second one during subsequent diversification of the mammalian lineages prior to the origin of eutherian lineages. The third group of families is primate-specific.

Conclusions

The observed correlation implies a relationship between regulatory innovations and the origin of repetitive families. Consistent with our previous hypothesis, it is proposed that regulatory innovations fueled the origin of new subpopulations in which new repetitive families became fixed by genetic drift.

Reviewers

Eugene Koonin, I. King Jordan, Jürgen Brosius.  相似文献   

12.

Background

During the lifetime of a fermenter culture, the soil bacterium S. coelicolor undergoes a major metabolic switch from exponential growth to antibiotic production. We have studied gene expression patterns during this switch, using a specifically designed Affymetrix genechip and a high-resolution time-series of fermenter-grown samples.

Results

Surprisingly, we find that the metabolic switch actually consists of multiple finely orchestrated switching events. Strongly coherent clusters of genes show drastic changes in gene expression already many hours before the classically defined transition phase where the switch from primary to secondary metabolism was expected. The main switch in gene expression takes only 2 hours, and changes in antibiotic biosynthesis genes are delayed relative to the metabolic rearrangements. Furthermore, global variation in morphogenesis genes indicates an involvement of cell differentiation pathways in the decision phase leading up to the commitment to antibiotic biosynthesis.

Conclusions

Our study provides the first detailed insights into the complex sequence of early regulatory events during and preceding the major metabolic switch in S. coelicolor, which will form the starting point for future attempts at engineering antibiotic production in a biotechnological setting.  相似文献   

13.

Key message

Highly variable regions of chloroplast genome were found to be useful in the detection of plant genetic diversity at micro-evolution level. Our methodology will improve understanding and conservation of plant diversity.

Abstract

Tree peonies are famous flowers with about 2,000 cultivars in the world, belonging to Paeonia sect. Moutan of the Paeoniaceae. They are traditionally classified based on flower forms and colors. Due to the limited number of DNA and morphological markers, and the existence of synonyms and homonyms, evaluation on genetic diversity of so many cultivars remains a challenge. In most cases, it is difficult and even impossible to discriminate tree peony cultivars when they are not in flower. In this study, single nucleotide polymorphism detected from the hyper-variable regions of chloroplast genome was employed to separate tree peony cultivars into different maternal lineages which can be expressed briefly by a nucleotide molecular formula. Our approach enabled a much higher resolution of cultivar identification and classification that has not been obtained before. The newly developed hyper-variable chloroplast markers, as an independent source of taxonomic characteristics, provided novel evidences and higher resolution ability that are helpful in building an effective classification system for evaluation, conservation, and utilization of the tree peony germplasm resources at cultivar level.  相似文献   

14.
15.
16.

Background

The recent determination of the complete nucleotide sequence of several Mycobacterium tuberculosis (MTB) genomes allows the use of comparative genomics as a tool for dissecting the nature and consequence of genetic variability within this species. The multiple alignment of the genomes of clinical strains (CDC1551, F11, Haarlem and C), along with the genomes of laboratory strains (H37Rv and H37Ra), provides new insights on the mechanisms of adaptation of this bacterium to the human host.

Findings

The genetic variation found in six M. tuberculosis strains does not involve significant genomic rearrangements. Most of the variation results from deletion and transposition events preferentially associated with insertion sequences and genes of the PE/PPE family but not with genes implicated in virulence. Using a Perl-based software islandsanalyser, which creates a representation of the genetic variation in the genome, we identified differences in the patterns of distribution and frequency of the polymorphisms across the genome. The identification of genes displaying strain-specific polymorphisms and the extrapolation of the number of strain-specific polymorphisms to an unlimited number of genomes indicates that the different strains contain a limited number of unique polymorphisms.

Conclusion

The comparison of multiple genomes demonstrates that the M. tuberculosis genome is currently undergoing an active process of gene decay, analogous to the adaptation process of obligate bacterial symbionts. This observation opens new perspectives into the evolution and the understanding of the pathogenesis of this bacterium.  相似文献   

17.
18.
19.
Proteomic analysis of the EhV-86 virion   总被引:1,自引:0,他引:1  

Background

Emiliania huxleyi virus 86 (EhV-86) is the type species of the genus Coccolithovirus within the family Phycodnaviridae. The fully sequenced 407,339 bp genome is predicted to encode 473 protein coding sequences (CDSs) and is the largest Phycodnaviridae sequenced to date. The majority of EhV-86 CDSs exhibit no similarity to proteins in the public databases.

Results

Proteomic analysis by 1-DE and then LC-MS/MS determined that the virion of EhV-86 is composed of at least 28 proteins, 23 of which are predicted to be membrane proteins. Besides the major capsid protein, putative function can be assigned to 4 other components of the virion: two lectin proteins, a thioredoxin and a serine/threonine protein kinase.

Conclusion

This study represents the first steps toward the identification of the protein components that make up the EhV-86 virion. Aside from the major capsid protein, whose function in the virion is well known and defined, the nature of the other proteins suggest roles involved with viral budding, caspase activation, signalling, anti-oxidation, virus adsorption and host range determination.  相似文献   

20.

Background

The human malaria parasite Plasmodium falciparum survives pressures from the host immune system and antimalarial drugs by modifying its genome. Genetic recombination and nucleotide substitution are the two major mechanisms that the parasite employs to generate genome diversity. A better understanding of these mechanisms may provide important information for studying parasite evolution, immune evasion and drug resistance.

Results

Here, we used a high-density tiling array to estimate the genetic recombination rate among 32 progeny of a P. falciparum genetic cross (7G8 × GB4). We detected 638 recombination events and constructed a high-resolution genetic map. Comparing genetic and physical maps, we obtained an overall recombination rate of 9.6 kb per centimorgan and identified 54 candidate recombination hotspots. Similar to centromeres in other organisms, the sequences of P. falciparum centromeres are found in chromosome regions largely devoid of recombination activity. Motifs enriched in hotspots were also identified, including a 12-bp G/C-rich motif with 3-bp periodicity that may interact with a protein containing 11 predicted zinc finger arrays.

Conclusions

These results show that the P. falciparum genome has a high recombination rate, although it also follows the overall rule of meiosis in eukaryotes with an average of approximately one crossover per chromosome per meiosis. GC-rich repetitive motifs identified in the hotspot sequences may play a role in the high recombination rate observed. The lack of recombination activity in centromeric regions is consistent with the observations of reduced recombination near the centromeres of other organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号