首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The diversity of the phytobenthonic community present in six acidophilic microbial mats from Río Tinto (Iberian Pyritic Belt, SW Spain) was analysed by optical microscopy and two molecular techniques, denaturing gradient gel electrophoresis (DGGE) and sequence analysis of 18S rDNA cloned gene fragments. Sixteen DNA isolation protocols as well as two commercial DNA extraction kits were tested and their efficiency compared. Purified DNA extracts were amplified by PCR using universal eukaryotic primers and the PCR products analysed by DGGE. Bead-mill homogenization was found to be superior to the other cell lysis methodologies assayed (sonication or freeze-thawing cycles) as it allowed efficiencies of cell disruption of over 95%. The methods combining bead-mill homogenization in the presence of SDS, treatment with chemical extractants (hexadecylmethylammonium bromide or guanidine isothiocyanate) and phenol extraction resulted in DNA preparations that amplified the same number of bands when analysed by DGGE as the two commercial kits assayed. The phylogenetic affiliations of the DGGE bands were determined by a BLAST search, and nine different species related to the Chlorophyta, Ciliophora, Kinetoplastida, Ascomycota, Streptophyta and Colcochaetales taxonomical groups were identified. Similar levels of diversity were found using cloning procedures. Although not all the species observed under the microscope were detected using molecular techniques, e.g. euglenas, heliozoan, or amoebae, DGGE fingerprints showed rather well the level of diversity present in the samples analysed, with limitations similar to cloning techniques.  相似文献   

2.
为筛选和建立风沙土中总DNA的提取和纯化方法,选取了5种直接提取法、1种间接提取法和2种纯化法分别对风沙土中总DNA进行了提取和纯化,并对其质量和产量进行了比较.结果表明:6种方法均可从风沙土中提取到大小为23 kb左右的总DNA,其中改进后的高盐提取法(用40%聚乙二醇8000和4 mol·L-1 NaCl沉淀DNA)效果最好,纯化后总DNA的纯度最高,可进行16S rDNA的PCR扩增,且产量仅稍低于试剂盒提取法;电泳加柱回收纯化法的纯化效果较好,经该方法纯化后的总DNA大部分可进行PCR扩增,可满足后续分子操作对DNA纯度的要求.  相似文献   

3.
Quantitative PCR (qPCR) enables rapid and sensitive gene quantification and is widely used in genomics, such as biological, medical, environmental, and food sciences. However, sample pretreatment requires the use of conventional DNA extraction kits which are time-consuming and labor intensive. In this study, we investigated four physical lysis only (PLO) methods which are rapid and could serve as alternatives to conventional DNA extraction kits. These PLO methods are bead mill, heating, sonication, and freeze–thaw. Using ethidium bromide-based assay, their performance was evaluated and compared. The effects of cell debris and its removal were also investigated. Bead mill method without cell debris removal appeared to yield the best qPCR results among the four PLO methods. In addition, bead mill method also performed better than conventional DNA extraction kits. It is probably due to the substantial loss of DNA material during the extensive purification of the conventional DNA extraction kits. The bead mill method has been demonstrated to successfully quantify 102 to 107 copies of the PAH-RHDα gene of Pseudomonas putida.  相似文献   

4.
高平平  赵立平 《生态学报》2002,22(11):2015-2019
活性污泥样品经液氮速冻、沸水浴融化、溶菌酶处理和 SDS裂解后 ,99%以上细胞裂解。所提取的 DNA经琼脂糖凝胶电泳检测和荧光法浓度测定 ,其片断大小在 2 0 kb左右 ,产量可达 1 .75 6± 0 .1 mg/g MLSS。样品 ABS2 6 0 nm/ABS2 80 nm的比值为 1 .96± 0 .2。以提取的总 DNA为模板 ,进行细菌核糖体小亚基 1 6Sr DNA基因 V3区和多组分苯酚羟化酶大亚基基因 (Lm PHs)的 PCR扩增 ,均获得成功 ,为活性污泥中微生物群落的分子生态学研究提供了一种简便、可靠的 DNA提取方法。  相似文献   

5.
On-line cell lysis of bacteria and its spores using a microfluidic biochip   总被引:1,自引:0,他引:1  
Optimal detection of pathogens by molecular methods in water samples depends on the ability to extract DNA rapidly and efficiently. In this study, an innovative method was developed using a microfluidic biochip, produced by microelectrochemical system technology, and capable of performing online cell lysis and DNA extraction during a continuous flow process. On-chip cell lysis based on chemical/physical methods was performed by employing a sufficient blend of water with the lysing buffer. The efficiency of lysis with microfluidic biochip was compared with thermal lysis in Eppendorf tubes and with two commercial DNA extraction kits: Power Water DNA isolation kit and ForensicGEM Saliva isolation kit in parallel tests. Two lysing buffers containing 1% Triton X-100 or 5% Chelex were assessed for their lysis effectiveness on a microfluidic biochip. SYBR Green real-time PCR analysis revealed that cell lysis on a microfluidic biochip using 5% Chelex buffer provided better or comparable recovery of DNA than commercial isolation kits. The system yielded better results for Gram-positive bacteria than for Gram-negative bacteria and spores of Gram-positive bacteria, within the limits of detection at 103 CFU/ml. During the continuous flow process in the system, rapid cells lysis with PCR-amplifiable genomic DNA were achieved within 20 minutes.  相似文献   

6.
We compared and statistically evaluated the effectiveness of nine DNA extraction procedures by using frozen and dried samples of two silt loam soils and a silt loam wetland sediment with different organic matter contents. The effects of different chemical extractants (sodium dodecyl sulfate [SDS], chloroform, phenol, Chelex 100, and guanadinium isothiocyanate), different physical disruption methods (bead mill homogenization and freeze-thaw lysis), and lysozyme digestion were evaluated based on the yield and molecular size of the recovered DNA. Pairwise comparisons of the nine extraction procedures revealed that bead mill homogenization with SDS combined with either chloroform or phenol optimized both the amount of DNA extracted and the molecular size of the DNA (maximum size, 16 to 20 kb). Neither lysozyme digestion before SDS treatment nor guanidine isothiocyanate treatment nor addition of Chelex 100 resin improved the DNA yields. Bead mill homogenization in a lysis mixture containing chloroform, SDS, NaCl, and phosphate-Tris buffer (pH 8) was found to be the best physical lysis technique when DNA yield and cell lysis efficiency were used as criteria. The bead mill homogenization conditions were also optimized for speed and duration with two different homogenizers. Recovery of high-molecular-weight DNA was greatest when we used lower speeds and shorter times (30 to 120 s). We evaluated four different DNA purification methods (silica-based DNA binding, agarose gel electrophoresis, ammonium acetate precipitation, and Sephadex G-200 gel filtration) for DNA recovery and removal of PCR inhibitors from crude extracts. Sephadex G-200 spin column purification was found to be the best method for removing PCR-inhibiting substances while minimizing DNA loss during purification. Our results indicate that for these types of samples, optimum DNA recovery requires brief, low-speed bead mill homogenization in the presence of a phosphate-buffered SDS-chloroform mixture, followed by Sephadex G-200 column purification.  相似文献   

7.
DNA Extraction from Activated Sludges   总被引:16,自引:0,他引:16  
To optimize the cell lysis step for DNA extraction from activated sludge samples, two floc dispersion methods (sonication versus stirring with a cation exchange resin), and three cell lysis treatments (lysozyme + SDS, sonication in a water bath, and thermal shock) were tested. For dispersion, stirring with cation exchange resin was more efficient than sonication. The cell lysis procedures were applied in two sequences, and DNA was quantified after each cell lysis treatment. Lysozyme + SDS was the most effective step in the cell lysis procedures. The cell lysis treatment sequences giving the highest DNA yields were not the same for all the sludges. The differences in sludge microbial compositions and floc structures required specifically adapted cell lysis protocols. The proposed protocols were highly efficient for DNA extraction, yielding about 50 mg DNA g−1 volatile suspended solids, and allowed PCR amplification of 16S rDNA. Received: 26 September 1998 / Accepted: 13 February 1999  相似文献   

8.
We compared and statistically evaluated the effectiveness of nine DNA extraction procedures by using frozen and dried samples of two silt loam soils and a silt loam wetland sediment with different organic matter contents. The effects of different chemical extractants (sodium dodecyl sulfate [SDS], chloroform, phenol, Chelex 100, and guanadinium isothiocyanate), different physical disruption methods (bead mill homogenization and freeze-thaw lysis), and lysozyme digestion were evaluated based on the yield and molecular size of the recovered DNA. Pairwise comparisons of the nine extraction procedures revealed that bead mill homogenization with SDS combined with either chloroform or phenol optimized both the amount of DNA extracted and the molecular size of the DNA (maximum size, 16 to 20 kb). Neither lysozyme digestion before SDS treatment nor guanidine isothiocyanate treatment nor addition of Chelex 100 resin improved the DNA yields. Bead mill homogenization in a lysis mixture containing chloroform, SDS, NaCl, and phosphate-Tris buffer (pH 8) was found to be the best physical lysis technique when DNA yield and cell lysis efficiency were used as criteria. The bead mill homogenization conditions were also optimized for speed and duration with two different homogenizers. Recovery of high-molecular-weight DNA was greatest when we used lower speeds and shorter times (30 to 120 s). We evaluated four different DNA purification methods (silica-based DNA binding, agarose gel electrophoresis, ammonium acetate precipitation, and Sephadex G-200 gel filtration) for DNA recovery and removal of PCR inhibitors from crude extracts. Sephadex G-200 spin column purification was found to be the best method for removing PCR-inhibiting substances while minimizing DNA loss during purification. Our results indicate that for these types of samples, optimum DNA recovery requires brief, low-speed bead mill homogenization in the presence of a phosphate-buffered SDS-chloroform mixture, followed by Sephadex G-200 column purification.  相似文献   

9.
In this study, we explored methodological aspects of nucleic acid recovery from microbial communities involved in a gas biofilter filled with pine bark woodchips. DNA was recovered indirectly in two steps, comparing different methods: cell dispersion (crushing, shaking, and sonication) and DNA extraction (three commercial kits and a laboratory protocol). The objectives were (a) to optimize cell desorption from the packing material and (b) to compare the 12 combinations of desorption and extraction methods, according to three relevant criteria: DNA yield, DNA purity, and community structure representation by denaturing gradient gel electrophoresis (DGGE). Cell dispersion was not influenced by the operational parameters tested for shaking and blending, while it increased with time for sonication. DNA extraction by the laboratory protocol provided the highest DNA yields, whereas the best DNA purity was obtained by a commercial kit designed for DNA extraction from soil. After successful PCR amplification, the 12 methods did not generate the same bias in microbial community representation. Eight combinations led to high diversity estimation, independently of the experimental procedure. Among them, six provided highly similar DGGE profiles. Two protocols generated a significantly dissimilar community profile, with less diversity. This study highlighted the crucial importance of DNA recovery bias evaluation.  相似文献   

10.
DNA recovery from soils of diverse composition.   总被引:95,自引:1,他引:95       下载免费PDF全文
A simple, rapid method for bacterial lysis and direct extraction of DNA from soils with minimal shearing was developed to address the risk of chimera formation from small template DNA during subsequent PCR. The method was based on lysis with a high-salt extraction buffer (1.5 M NaCl) and extended heating (2 to 3 h) of the soil suspension in the presence of sodium dodecyl sulfate (SDS), hexadecyltrimethylammonium bromide, and proteinase K. The extraction method required 6 h and was tested on eight soils differing in organic carbon, clay content, and pH, including ones from which DNA extraction is difficult. The DNA fragment size in crude extracts from all soils was > 23 kb. Preliminary trials indicated that DNA recovery from two soils seeded with gram-negative bacteria was 92 to 99%. When the method was tested on all eight unseeded soils, microscopic examination of indigenous bacteria in soil pellets before and after extraction showed variable cell lysis efficiency (26 to 92%). Crude DNA yields from the eight soils ranged from 2.5 to 26.9 micrograms of DNA g-1, and these were positively correlated with the organic carbon content in the soil (r = 0.73). DNA yields from gram-positive bacteria from pure cultures were two to six times higher when the high-salt-SDS-heat method was combined with mortar-and-pestle grinding and freeze-thawing, and most DNA recovered was of high molecular weight. Four methods for purifying crude DNA were also evaluated for percent recovery, fragment size, speed, enzyme restriction, PCR amplification, and DNA-DNA hybridization. In general, all methods produced DNA pure enough for PCR amplification. Since soil type and microbial community characteristics will influence DNA recovery, this study provides guidance for choosing appropriate extraction and purification methods on the basis of experimental goals.  相似文献   

11.
Aims: To evaluate six commercial DNA extraction kits for their ability to isolate PCR‐quality DNA from Bacillus spores in various soil samples. Methods and Results: Three soils were inoculated with various amounts of Bacillus cereus spores to simulate an outbreak or intentional release of the threat agent Bacillus anthracis. DNA was isolated from soil samples using six commercial DNA extraction kits. Extraction and purification efficiencies were assessed using a duplex real‐time PCR assay that included an internal positive control. The FastDNA® SPIN kit for Soil showed the highest DNA extraction yield, while the E.Z.N.A.® Soil DNA and PowerSoil® DNA Isolation kits showed the highest efficiencies in removing PCR inhibitors from loam soil extracts. Conclusions: The results of this study suggest that commercially available extraction kits can be used to extract PCR‐quality DNA from bacterial spores in soil. The selection of an appropriate extraction kit should depend on the characteristics of the soil sample and the intended downstream application. Significance and Impact of the Study: The results of this study aid in the selection of an appropriate DNA extraction kit for a given soil sample. Its application could expedite sample processing for real‐time PCR detection of a pathogen in soil.  相似文献   

12.
Molecular characterization of the microbial populations of soils and sediments contaminated with polycyclic aromatic hydrocarbons (PAHs) is often a first step in assessing intrinsic biodegradation potential. However, soils are problematic for molecular analysis owing to the presence of organic matter, such as humic acids. Furthermore, the presence of contaminants, such as PAHs, can cause further challenges to DNA extraction, quantification, and amplification. The goal of our study was to compare the effectiveness of four commercial soil DNA extraction kits (UltraClean Soil DNA Isolation kit, PowerSoil DNA Isolation kit, PowerMax Soil DNA Isolation kit, and FastDNA SPIN kit) to extract pure, high-quality bacterial and eukaryotic DNA from PAH-contaminated soils. Six different contaminated soils were used to determine if there were any biases among the kits due to soil properties or level of contamination. Extracted DNA was used as a template for bacterial 16S rDNA and eukaryotic 18S rDNA amplifications, and PCR products were subsequently analyzed using denaturing gel gradient electrophoresis (DGGE). We found that the FastDNA SPIN kit provided significantly higher DNA yields for all soils; however, it also resulted in the highest levels of humic acid contamination. Soil texture and organic carbon content of the soil did not affect the DNA yield of any kit. Moreover, a liquid-liquid extraction of the DNA extracts found no residual PAHs, indicating that all kits were effective at removing contaminants in the extraction process. Although the PowerSoil DNA Isolation kit gave relatively low DNA yields, it provided the highest quality DNA based on successful amplification of both bacterial and eukaryotic DNA for all six soils. DGGE fingerprints among the kits were dramatically different for both bacterial and eukaryotic DNA. The PowerSoil DNA Isolation kit revealed multiple bands for each soil and provided the most consistent DGGE profiles among replicates for both bacterial and eukaryotic DNA.  相似文献   

13.
Zhao F  Xu K D 《农业工程》2012,32(4):209-214
The evaluation of microbial molecular diversity has been mainly based on the extraction of total DNA from environmental samples. The indirect extraction methods, which have been used for prokaryotes, have never been used to recover soil microeukaryotic DNA. We evaluated the efficiency of an improved indirect DNA extraction protocol developed herein and the direct lysis (the sodium dodecyl sulfate (SDS)-based method and commercial DNA extraction kit) on estimating the molecular diversity of soil microbial eukaryotes. DNA quality and quantity as well as denaturing gradient gel electrophoresis (DGGE) profiles were determined using three soil samples from different stations. The indirect method detected the highest DGGE bands in spite of the low DNA yield. The commercial kit detected a lower number of DGGE bands than the indirect method. The SDS-based method produced the lowest DGGE bands and DNA purity but the highest yield. Using the indirect method, we further evaluated the effect of freezing and air-dried preservations on estimating the microeukaryotic diversity. In spite of the low DNA yield obtained from the air-dried preservation, no significant differences were found in either the number of DGGE bands or the DNA purity between two manners. Our results indicate that the improved indirect method could obtain a high purity of intracellular DNA and high efficiency in the estimation of molecular diversity of soil microbial eukaryotes.  相似文献   

14.
Phototrophic biofilms are used in a variety of biotechnological and industrial processes. Understanding their structure, ie microbial composition, is a necessary step for understanding their function and, ultimately, for the success of their application. DNA analysis methods can be used to obtain information on the taxonomic composition and relative abundance of the biofilm members. The potential bias introduced by DNA extraction methods in the study of the diversity of a complex phototrophic sulfide-oxidizing biofilm was examined. The efficiency of eight different DNA extraction methods combining physical, mechanical and chemical procedures was assessed. Methods were compared in terms of extraction efficiency, measured by DNA quantification, and detectable diversity (16S rRNA genes recovered), evaluated by denaturing gradient gel electrophoresis (DGGE). Significant differences were found in DNA yields ranging from 116 ± 12 to 1893 ± 96 ng of DNA. The different DGGE fingerprints ranged from 7 to 12 bands. Methods including phenol–chloroform extraction after enzymatic lysis resulted in the greatest DNA yields and detectable diversity. Additionally, two methods showing similar yields and retrieved diversity were compared by cloning and sequencing. Clones belonging to members of the Alpha-, Beta- and Gamma- proteobacteria, Bacteroidetes, Cyanobacteria and to the Firmicutes were recovered from both libraries. However, when bead-beating was applied, clones belonging to the Deltaproteobacteria were also recovered, as well as plastid signatures. Phenol–chloroform extraction after bead-beating and enzymatic lysis was therefore considered to be the most suitable method for DNA extraction from such highly diverse phototrophic biofilms.  相似文献   

15.
The quality and yield of extracted DNA are critical for the majority of downstream applications in molecular biology. Moreover, molecular techniques such as quantitative real-time PCR (qPCR) are becoming increasingly widespread; thus, validation and cross-laboratory comparison of data require standardization of upstream experimental procedures. DNA extraction methods depend on the type and size of starting material(s) used. As such, the extraction of template DNA is arguably the most significant variable when cross-comparing data from different laboratories. Here, we describe a reliable, inexpensive and rapid method of DNA purification that is equally applicable to small or large scale or high-throughput purification of DNA. The protocol relies on a CTAB-based buffer for cell lysis and further purification of DNA with phenol : chloroform : isoamyl alcohol. The protocol has been used successfully for DNA purification from rumen fluid and plant cells. Moreover, after slight alterations, the same protocol was used for large-scale extraction of DNA from pure cultures of Gram-positive and Gram-negative bacteria. The yield of the DNA obtained with this method exceeded that from the same samples using commercial kits, and the quality was confirmed by successful qPCR applications.  相似文献   

16.
Based on the comparative study of the DNA extracts from two soil samples obtained by three commercial DNA extraction kits, we evaluated the influence of the DNA quantity and purity indices (the absorbance ratios A260/280 and A260/230, as well as the absorbance value A320 indicating the amount of humic substances) on polymerase chain reaction (PCR)-based denaturing gradient gel electrophoresis (DGGE) and a functional gene microarray used in the study of microbial communities. Numbers and intensities of the DGGE bands are more affected by the A260/280 and A320 values than by the ratio A260/230 and conditionally affected by the DNA yield. Moreover, we demonstrated that the DGGE band pattern was also affected by the preferential extraction due to chemical agents applied in the extraction. Unlike DGGE, microarray is more affected by the A260/230 and A320 values. Until now, the successful PCR performance is the mostly used criterion for soil DNA purity. However, since PCR was more influenced by the A260/280 ratio than by A260/230, it is not accurate enough any more for microbial community assessed by non-PCR-based methods such as microarray. This study provides some useful hints on how to choose effective DNA extraction method for the subsequent assessment of microbial community.  相似文献   

17.
高温环境样品总DNA直接和间接提取方法的比较   总被引:6,自引:0,他引:6  
分别采用两种环境总DNA直接提取法和一种间接提取法从6种温泉菌席样品中提取总DNA,以DNA粗产物的纯度、能否用于后续PCR扩增及PCR-DGGE(变性梯度凝胶电泳)所反映的微生物多样性为评价指标对两类方法进行比较和评价。研究发现,虽然间接提取法效率低下,但对于高温极端环境中生物量较小的样品,间接法能得到有研究价值的、纯度较高的环境样品总DNA,而直接法得到的DNA量小且不适于PCR扩增操作。在使用这2类方法都能得到可用于研究操作的DNA的情况下,间接提取法能更好的体现环境样品中微生物的多样性。  相似文献   

18.
Cost-effectiveness, quality, time-effectiveness and ease of the methodology are the most crucial factors in isolating quality DNA from wide variety of samples. Thus, research efforts focusing on the development of an efficient DNA extraction protocol is the need of the hour. The present study therefore, focuses on development of an efficient, rapid and free of inhibitory substances based methodology for extracting metagenomic DNA from diverse environmental samples viz. anaerobic biogas digesta, ruminant stomach, human feces, soil, and microbial starter cultures used for preparation of fermented food. PCR–DGGE based analysis and quality metagenomic library preparation, using DNA extraction methodology, validates the developed protocol. The developed protocol is cost effective, capable of isolating DNA from small sample size (100–1000 µl), time efficient (1.5–2.0 h protocol) and results in significantly higher DNA yield (4–8 times increased yield) when compared to previously available DNA extraction method and a commercial DNA extraction kit. The DNA extracted from the samples using different protocols was evaluated based on its ability to identify diverse microbial species using PCR–DGGE profiles targeting variable region within the 16S rRNA gene. The results of microbial community analysis revealed comparability of the developed protocol to commercial kits, in effectively identifying dominant representatives of the microbial community in different samples. Using the DNA extracted from the presented methodology, metagenomic libraries were prepared, which were found suitable for sequencing on Illumina platform.  相似文献   

19.
Yu Z  Morrison M 《BioTechniques》2004,36(5):808-812
Several DNA extraction methods have been reported for use with digesta or fecal samples, but problems are often encountered in terms of relatively low DNA yields and/or recovering DNA free of inhibitory substances. Here we report a modified method to extract PCR-quality microbial community DNA from these types of samples, which employs bead beating in the presence of high concentrations of sodium dodecyl sulfate (SDS), salt, and EDTA, and with subsequent DNA purification by QIAamp columns [referred to as repeated bead beating plus column (RBB + C) method]. The RBB + C method resulted in a 1.5- to 6-fold increase in DNA yield when compared to three other widely used methods. The community DNA prepared with the RBB + C method was also free of inhibitory substances and resulted in improved denaturing gradient gel electrophoresis (DGGE) profiles, which is indicative of a more complete lysis and representation of microbial diversity present in such samples.  相似文献   

20.
通过比较4种小鼠粪便细菌总DNA提取方法对基于PCR-DGGE检测的肠道菌群多样性分析的影响,旨在建立适于PCR—DGGE的小鼠肠道微生物宏基因组提取的稳定、经济、快捷的方法。采用SDS裂解法、某国产市售粪便DNA提取试剂盒、改进的化学裂解法、改进的溶菌酶法4种方法提取小鼠粪便细菌总DNA,通过琼脂糖凝胶电泳、紫外分光光度法、细菌16S rRNAV3区PCR扩增结合DGGE对提取结果进行比较分析。SDS裂解法和国产市售试剂盒2种方法提取粪便细菌总DNA均未得到理想结果,另2种方法均能够检测到粪便中20种左右的细菌。改进的化学裂解法和改进的溶菌酶提取法的建立为基于PCR—DGGE进行肠道菌群结构的定量及定性分析提供了可靠的前提基础和实验保障。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号