共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Porasuphatana S Tsai P Rosen GM 《Comparative biochemistry and physiology. Toxicology & pharmacology : CBP》2003,134(3):281-289
Nitric oxide synthase (NOS) is an example of a family of heme-containing monooxygenases that, under the restricted control of a specific substrate, can generate free radicals. While the generation of nitric oxide (NO*) depends solely on the binding of L-arginine, NOS produces superoxide (O(2)*(-)) and hydrogen peroxide (H(2)O(2)) when the concentration of the substrate is low. Not surprisingly, effort has been put forth to understand the pathway by which NOS generates NO*, O(2)*(-) and H(2)O(2), including the role of substrate binding in determining the pathways by which free radicals are generated. By binding within the distal heme pocket near the sixth coordination position of the NOS heme iron, L-arginine alters the coordination properties of the heme iron that promotes formation of the perferryl complex NOS-[Fe(5+)=O](3+). This reactive iron intermediate has been shown to abstract a hydrogen atom from a carbon alpha to a heteroatom and generate carbon-centered free radicals. The ability of NOS to produce free radicals during enzymic cycling demonstrates that NOS-[Fe(5+)=O](3+) behaves like an analogous iron-oxo complex of cytochrome P-450 during aliphatic hydroxylation. The present review discusses the mechanism(s) by which NOS generates secondary free radicals that may initiate pathological events, along with the cell signaling properties of NO*, O(2)*(-) and H(2)O(2). 相似文献
3.
P. Nicotera M. Ankarcrona E. Bonfoco S. Orrenius S. A. Lipton 《Apoptosis : an international journal on programmed cell death》1996,1(1):5-10
The type of cell death encountered in neuronal cell cultures exposed to excitatory amino acids — such as glutamate, the major excitatory neurotransmitter in the central nervous system, or free radicals, such as nitric oxide (NO.) and superoxide anoin (O2.
–), which react to form peroxynitrite (ONOO–) — appears to depend on the intensity of the exposure and may involve two temporarily distinct phases. Following relatively fulminant insults, an initial phase of necrosis — associated with extreme energy depletion — may simply reflect the failure of neurons to carry out the default apoptotic death program used to efficiently dispose of aged or otherwise unwanted cells. Neurons recovering mitochondrial energy potential after an initial fulminant insult or following a more subtle inciting injury may subsequently undergo apoptosis, possibly associated with a factor released from mitochondria that triggers this death program. The maintenance of balanced energy production may be a decisive factor in detemining the degree, type, and progression of neuronal injury caused by excitotoxins and free radicals. Similar events could possibly occur in vivo after ischemia or other insults. 相似文献
4.
5.
The activity of nitric oxide synthase (NOS) during the respiratory burst in phorbol-1,2-myristate-1,3-acetate (PMA) stimulated macrophages has been the topic of much debate in the literature. To help clarify the role of NOS, we have examined the chemiluminescence arising from peroxynitrite production, nitrite/nitrate and nitric oxide production, and oxygen consumption during the respiratory burst in PMA-stimulated macrophages. The Griess reaction was used to measure nitrite/nitrate, spin trapping with N-methyl D-glucamine dithiocarbamate (MGD)2-Fe2+ was used to quantify nitric oxide, and the spin probe 2,2,6,6-tetramethylpiperidine-N-oxyl-4-ol (TEMPOL) was used to measure oxygen consumption. Oxygen free radical production (hydroxyl and superoxide free radicals) was also investigated using the spin trap 5,5-dimethyl-1-pyroline-1-oxide (DMPO). The chemiluminescence emitted by the PMA-stimulated macrophages and nitrite/nitrate in the culture system were both found to increase. However, the rate of nitric oxide release remained constant, indicating that the activity of NOS is not enhanced during the respiratory burst in PMA stimulated macrophages. 相似文献
6.
Polyunsaturated fatty acids and their esters are known to be susceptible to free-radical mediated oxidation, while cholesterol is more resistant to oxidation. The present study focused on the relative susceptibilities of linoleates and cholesterol in Jurkat cells under oxidative stress induced by selenium deficiency and free radical insult, as assessed by total hydroxyoctadecadienoic acids (tHODE) and total 7-hydroxycholesterol (t7-OHCh) measured after reduction and saponification. It was observed that the levels of tHODE and t7-OHCh significantly increased by both oxidative insults. The increased amounts of t7-OHCh were higher than those of tHODE in both selenium-deficient and free radical-treated cells. These results suggest that, in contrast to plasma oxidation where cholesterol is much more resistant to oxidation than linoleates, cellular cholesterol is more susceptible to oxidation than cellular linoleates. 相似文献
7.
8.
《Anaerobe》2009,15(3):95-98
The aim of this study was to determine the effect of exogenous nitric oxide (NO) on the induction of murine splenic immune response to Aggregatibacter actinomycetemcomitans lipopolysaccharide (LPS) in vitro. BALB/c mice were immunized with A. actinomycetemcomitans LPS and a control group was sham-immunized. Spleen cells were obtained, cultured and stimulated with A. actinomycetemcomitans LPS with or without the presence of S-nitroso acetyl-penicillamine (SNAP), a NO donor, and carboxy-PTIO, an NO scavenger. Culture supernatants were assessed for inducible nitric oxide synthase (iNOS) activity, specific IgG subclass levels, and both IFN-γ and IL-4 levels. The results showed that in A. actinomycetemcomitans LPS-stimulated cells, SNAP enhances iNOS activity but inhibits the levels of specific IgG2a and IFN-γ suggesting a Th1 response. The effect of SNAP on these immune parameters was ablated by carboxy-PTIO. These results suggest that exogenous NO may suppress the Th1-like immune response of A. actinomycetemcomitans LPS-stimulated murine spleen cells. 相似文献
9.
Nitric oxide and oxygen radicals induced apoptosis via bcl-2 and p53 pathway in hypoxia-reoxygenated cardiomyocytes 总被引:2,自引:0,他引:2
Twotypesofcellulardemisecanoccursimultaneouslyintissuesorculturedcellbynecrosisandapoptosis.Lossofmembraneintegrity,celledemaandbreak,andthecellcomponentsre-leasedoutarethecharacteristicsofnecrosis.Whilethecellapoptosisisaprogramcelldeathcodedbygeneandactivatedseriousendogenousenzymes[1].Recentstudieshavedemonstratedthatmyocardialischemia-reperfusioninjuryresultedinapoptoticcelldeathinadditiontotissuenecrosis[2—4].Oxygenstressisoneofthereasonsthatcausedcellapoptosisandtheoxygenradicalsinthest… 相似文献
10.
Neonatal rat cardiomyocytes were subjected to 24 h of hypoxia 95%N2/5%CO2 and 24 h of hypoxia plus 4 h of reoxygenation 95%O2/5%CO2. 24 h of hypoxia increased the levels of NO, TBARS and LDH. 24 h of hypoxia plus 4 h of reoxygenation decreased the levels of NO, but further increased TBARS and LDH. The hypoxia up-regulated the expression of bcl-2, p53 and p21/waf1/cip1 but the reoxygenation down-regulated the expression of bcl-2, and further up-regulated p53 and p21/waf1/cip1. The hypoxia increased cell apoptosis and reoxygenation further increased both apoptotic and necrotic cell death. NO, TBARS, DNA fragmentation and cell apoptosis were enhanced by SNP and inhibited by L-NAME respectively. In addition, SOD/catalase down-regulated the expression of p53, p21/wafl/cipl and TBARS but up-regulated bcl-2 and increased indirectly the level of NO, and inhibited DNA fragmentation. The results suggest that hypoxia-induced cell death is associated with the activation of NO, bcl-2 and p53 pathway, while hypoxia-reoxygenation induced cell death via the generation of reactive oxygen species and activation of p53 pathway. The present study clarified that NO may be an initiative signal to apoptotic cell death and the activation of bcl-2, p53 and p21/waf1/cip1 pathway in hypoxic and hypoxia-reoxygenated cardiomyocytes. 相似文献
11.
The present study was undertaken to elucidate the mechanism of hemolysis induced by ultrasound. Ar or N2O gas was used to distinguish between cavitation with or without free radical formation (hydroxyl radicals and hydrogen atoms). Free radical formation was examined by the method of spin trapping combined with ESR. After sonication of erythrocyte suspensions, several structural and functional parameters of the erythrocyte membrane--hemolysis, membrane fluidity, membrane permeability, and membrane deformability--were examined. Although free radical formation was observed in the erythrocyte suspensions sonicated in the presence of Ar, no free radical formation was observed in the presence of N2O. However, the hemolysis behavior induced by ultrasound was similar in the presence of Ar or N2O. The membrane fluidity, permeability, and deformability of the remaining unlysed erythrocytes after sonication in the presence of Ar or N2O were unchanged and identical to those of the control cells. On the other hand, after gamma irradiation (700 Gy), the hemolysis behavior was quite different from that after sonication, and the membrane properties were significantly changed. These results suggest that hemolysis induced by sonication was due to mechanical shearing stress arising from cavitation, and that the membrane integrity of the remaining erythrocytes after sonication was the same as that of control cells without sonication. The triatomic gas, N2O, may be useful for ultrasonically disrupting cells without accompanying free radical formation. 相似文献
12.
Ramos E Olivos-García A Nequiz M Saavedra E Tello E Saralegui A Montfort I Pérez Tamayo R 《Experimental parasitology》2007,116(3):257-265
Apoptosis has been described in some parasites like Leishmania, Trypanosoma, and Trichomonas. This phenomenon has not been observed yet in Entamoeba histolytica. This work analyzed the in vitro effect of sodium nitroprusside, sodium nitrite and sodium nitrate (NOs) on E. histolytica apoptosis. Parasites incubated for 1h with NOs revealed apoptosis 6h later (95% viability), demonstrated by YOPRO-1, TUNEL, DNA fragmentation and low ATP levels. The caspase inhibitor Z-VAD-FMK inhibited total intracellular cysteine protease activity (CPA) but had no effect on apoptosis. When treated with NOs some amebic functions like complement resistance and hemolytic activity decreased but CPA and erythrophagocytosis remained unchanged. After treatment in vitro with NOs, parasite death was almost complete at 24h; but when injected into hamster livers they disappeared in less than 6h. These results show that apoptosis is induced in vitro by NOs in E. histolytica and renders them incapable of surviving in hamster's livers. 相似文献
13.
The oxidation of free methionine to methionine sulfoxide by chemically or enzymatically generated oxygen free radicals is presented. The physiological significance of this process in living cells is suggested. 相似文献
14.
15.
Cu,Zn-superoxide dismutase-dependent apoptosis induced by nitric oxide in neuronal cells 总被引:9,自引:0,他引:9
Ciriolo MR De Martino A Lafavia E Rossi L Carrì MT Rotilio G 《The Journal of biological chemistry》2000,275(7):5065-5072
Nitric oxide (NO) challenge to human neuroblastoma cells (SH-SY5Y) ultimately results in apoptosis. Tumor suppressor protein p53 and cell cycle inhibitor p21 accumulate as an early sign of S-nitrosoglutathione-mediated toxicity. Cytochrome c release from mitochondria and caspase 3 activation also occurred. Cells transfected with either wild type (WT) or mutant (G93A) Cu, Zn-superoxide dismutase (Cu,Zn-SOD) produced comparable amounts of nitrite/nitrate but showed different degree of apoptosis. G93A cells were the most affected and WT cells the most protected; however, Cu, Zn-SOD content of these two cell lines was 2-fold the SH-SY5Y cells under both resting and treated conditions. We linked decreased susceptibility of the WT cells to higher and more stable Bcl-2 and decreased reactive oxygen species. Conversely, we linked G93A susceptibility to increased reactive oxygen species production since simultaneous administration of S-nitrosoglutathione and copper chelators protects from apoptosis. Furthermore, G93A cells showed a significant decrease of Bcl-2 expression and, as target of NO-derived radicals, showed lower cytochrome c oxidase activity. These results demonstrate that resistance to NO-mediated apoptosis is strictly related to the level and integrity of Cu,Zn-SOD and that the balance between reactive nitrogen and reactive oxygen species regulates neuroblastoma apoptosis. 相似文献
16.
Mycobacterium tuberculosis is an intracellular pathogen of macrophages and escapes the macrophages' bactericidal effectors by interfering with phagosome-lysosome fusion. IFN-γ activation renders the macrophages capable of killing intracellular mycobacteria by overcoming the phagosome maturation block, nutrient deprivation and exposure to microbicidal effectors including nitric oxide (NO). While the importance about NO for the control of mycobacterial infection in murine macrophages is well documented, the underlying mechanism has not been revealed yet. In this study we show that IFN-γ induced apoptosis in mycobacteria-infected macrophages, which was strictly dependent on NO. Subsequently, NO-mediated apoptosis resulted in the killing of intracellular mycobacteria independent of autophagy. In fact, killing of mycobacteria was susceptible to the autophagy inhibitor 3-methyladenine (3-MA). However, 3-MA also suppressed NO production, which is an important off-target effect to be considered in autophagy studies using 3-MA. Inhibition of caspase 3/7 activation, as well as NO production, abolished apoptosis and elimination of mycobacteria by IFN-γ activated macrophages. In line with the finding that drug-induced apoptosis kills intracellular mycobacteria in the absence of NO, we identified NO-mediated apoptosis as a new defense mechanism of activated macrophages against M. tuberculosis. 相似文献
17.
Analysis of the effects of nitric oxide and oxygen on nitric oxide production by macrophages 总被引:2,自引:0,他引:2
The interactions between NO and O(2) in activated macrophages were analysed by incorporating previous cell culture and enzyme kinetic results into a novel reaction-diffusion model for plate cultures. The kinetic factors considered were: (i) the effect of O(2) on NO production by inducible NO synthase (iNOS); (ii) the effect of NO on NO synthesis by iNOS; (iii) the effect of NO on respiratory and other O(2) consumption; and (iv) the effects of NO and O(2) on NO consumption by a possible NO dioxygenase (NOD). Published data obtained by varying the liquid depth in macrophage cultures provided a revealing test of the model, because varying the depth should perturb both the O(2) and the NO concentrations at the level of the cells. The model predicted that the rate of NO(2)(-) production should be nearly constant, and that the net rate of NO production should decline sharply with increases in liquid depth, in excellent agreement with the experimental findings. In further agreement with available results for macrophage cultures, the model predicted that net NO synthesis should be more sensitive to liquid depth than to the O(2) concentration in the headspace. The main reason for the decrease in NO production with increasing liquid depth was the modulation of NO synthesis by NO, with O(2) availability playing only a minor role. The model suggests that it is the ability of iNOS to consume NO, as well as to synthesize it, that creates very sensitive feedback control, setting an upper bound on the NO concentration of approximately 1 microM. The effect of NO consumption by other possible pathways (e.g., NOD) would be similar to that of iNOS, in that it would help limit net NO production. The O(2) utilized during enzymatic NO consumption is predicted to make the O(2) demands of activated macrophages much larger than those of unactivated ones (where iNOS is absent); this remains to be tested experimentally. 相似文献
18.
The purpose of this study was to evaluate the direct effect of oxygen free radicals produced by ultrasonic irradiation on ubiquinone and to compare the efficiency with which the antioxidant can compete with these radicals when it is both in aqueous solution and within the lipid bilayer. The main product obtained after insonation of aqueous solutions of ubiquinone-0 was ubiquinol, moreover some degradation occurred. The direct electron donor responsible for most of the ubiquinol generated by ultrasonic irradiation appeared to be superoxide radical. Addition reactions of hydroxyl radicals with aromatic ring structure led probably to degradation products of ubiquinone, which were not identified. Experiments were also performed to evaluate the efficiency with which ubiquinone-3 could react with oxygen radicals when it was within the lipid bilayer. The effect of presence or absence of a net surface charge was studied selecting a suitable bilayer including dimyristylphosphatidic acid or stearylamine in uncharged dimyristylphosphatidylcholine vesicles. In these systems hydroxyl radicals did not represent a potential danger for the antioxidant, the reaction between superoxide and ubiquinone-3 instead was significant only in positively charged membranes and gave rise to ubiquinol. It is suggested that ubiquinone acts as an antioxidant by stopping the propagation reaction. 相似文献
19.
20.
The effects of ethanol administered as a 15% solution in drinking fluid on weight gain, soluble liver protein and the activity of the three enzymes of oxygen radical metabolism (i.e., superoxide dismutase, catalase, and glutathione peroxidase) were studied in five inbred strains of mice (129/ReJ, BALB/c, C3H/HeSnJ, C57BL/6J, Csb) and Sprague Dawley rats, relative to age, sex, and genotype matched controls. Animals maintained on ethanol exhibited lower weight gains and elevation of soluble liver protein than controls. Total superoxide dismutase, catalase and glutathione peroxidase activity in ethanol-treated animals were in general reduced in comparison to that of their matched controls, with each strain showing genotype specific enzyme activity. Such ethanol feeding results are attributed to the direct and indirect effects of this treatment protocol and raise the possibility that ethanol-fed animals may be susceptible to free radical damage and at least some of the cellular damages observed following ethanol challenges could be attributed to the reduced level of these protective enzymes. 相似文献