首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.

Background

It has been well documented that the 5' untranslated region (5' UTR) of many positive-stranded RNA viruses contain key cis-acting regulatory sequences, as well as high-order structural elements. Little is known for such regulatory elements controlling porcine arterivirus replication. We investigated the roles of a conserved stem-loop 2 (SL2) that resides in the 5'UTR of the genome of a type II porcine reproductive and respiratory syndrome virus (PRRSV).

Results

We provided genetic evidences demonstrating that 1) the SL2 in type II PRRSV 5' UTR, N-SL2, could be structurally and functionally substituted by its counterpart in type I PRRSV, E-SL2; 2) the functionality of N-SL2 was dependent upon the G-C rich stem structure, while the ternary-loop size was irrelevant to RNA synthesis; 3) serial deletions showed that the stem integrity of N-SL2 was crucial for subgenomic mRNA synthesis; and 4) when extensive base-pairs in the stem region was deleted, an alternative N-SL2-like structure with different sequence was utilized for virus replication.

Conclusion

Taken together, we concluded that the phylogenetically conserved SL2 in the 5' UTR was crucial for PRRSV virus replication, subgenomic mRNA synthesis in particular.  相似文献   

5.
6.
The osmoregulated ompC gene of Escherichia coli was cloned and the DNA sequence of a fragment encompassing the promoter region and a portion of the coding region was determined. There were no obvious homologies in the DNA sequence of the promoter regions of the ompC and ompF genes, in contrast to those of the coding regions of the two genes, both of which code for the matrix porins (major outer membrane proteins) and form passive diffusion pores. The amino acid sequence of the signal peptide of pro-OmpC protein was also deduced from the DNA sequence  相似文献   

7.
8.
Edgar AJ 《BMC genomics》2003,4(1):18-12

Background

Overlapping sense/antisense genes orientated in a tail-to-tail manner, often involving only the 3'UTRs, form the majority of gene pairs in mammalian genomes and can lead to the formation of double-stranded RNA that triggers the destruction of homologous mRNAs. Overlapping polyadenylation signal sequences have not been described previously.

Results

An instance of gene overlap has been found involving a shared single functional polyadenylation site. The genes involved are the human alpha/beta hydrolase domain containing gene 1 (ABHD1) and Sec12 genes. The nine exon human ABHD1 gene is located on chromosome 2p23.3 and encodes a 405-residue protein containing a catalytic triad analogous to that present in serine proteases. The Sec12 protein promotes efficient guanine nucleotide exchange on the Sar1 GTPase in the ER. Their sequences overlap for 42 bp in the 3'UTR in an antisense manner. Analysis by 3' RACE identified a single functional polyadenylation site, ATTAAA, within the 3'UTR of ABHD1 and a single polyadenylation signal, AATAAA, within the 3'UTR of Sec12. These polyadenylation signals overlap, sharing three bp. They are also conserved in mouse and rat. ABHD1 was expressed in all tissues and cells examined, but levels of ABHD1 varied greatly, being high in skeletal muscle and testis and low in spleen and fibroblasts.

Conclusions

Mammalian ABHD1 and Sec12 genes contain a conserved 42 bp overlap in their 3'UTR, and share a conserved TTTATTAAA/TTTAATAAA sequence that serves as a polyadenylation signal for both genes. No inverse correlation between the respective levels of ABHD1 and Sec12 RNA was found to indicate that any RNA interference occurred.  相似文献   

9.
10.
11.
The regulatory locus ompB, consisting of 2 genes, ompR and envZ, is required for the expression of ompC and ompF genes encoding the major outer membrane porin proteins OmpC and OmpF in Escherichia coli K12. We utilized localized mutagenesis to isolate cold-sensitive mutants in the ompB operon. The isolated mutants exhibited a cold-sensitive OmpC phenotype, but remained OmpF+. Furthermore, ompC expression was still regulated by medium osmolarity. The cold-sensitive OmpC phenotype was complemented by plasmids carrying the wild-type ompB operon, but not by plasmids containing either envZ or ompR genes alone. This suggests that the mutations are in the ompB promotor. We show that the mutations can be used to control expression vectors based on the ompC promotor.  相似文献   

12.
MiRNAs are small (~22nt long) non-coding RNA sequences; binds to the complementarity target sites in 3'' Untranslated Region (UTR) of mRNA sequences but not restricted to other mRNA regions viz., 5'' UTR and Coding sequences (CDS). Complementarity binding of miRNA to mRNA target sites either results in complete degradation of the mRNA itself or it may regulate the mRNA as an oncogene or as a tumor suppressor gene. However, the exact mechanism involved in identifying a miRNA to be associated with cancer is still unclear. Further, with the outburst in the number of miRNAs sequences recorded every year in miRBase, the gap is still widening mainly due to the laborious and economically unfavorable experimental procedures associated with the functional annotation. Motivated by the fact, we constructed a two-step support vector machine-based predictive model - miRSEQ and miRINT. However, the major pitfall during the construction of the model is the class imbalance problem. Hence, in order to overcome class imbalance problem, in the present study we empirically compare the effectiveness of two different methods viz., Synthetic Minority Oversampling Technique (SMOTE) and cost-senstive learning method. Performance measures were evaluated in terms of Precision and Recall. Based on our result, it was observed that for miRNA dataset with high class imbalance utilized for predicting association of cancer, cost-sensitive method outperformed the oversampling method.  相似文献   

13.
ATP-synthase assembly requires coordinated control of ATP mRNA translation; this may e.g. occur through the formation of mRNA–protein complexes. In this study we aim to identify sequences in the 3'UTR of the β-subunit F1-ATPase mRNA necessary for RNA–protein complex formation. We examined the interaction between a brain cytoplasmic protein extract and in vitro-synthesized β-subunit 3'UTR probes containing successive accumulative 5'- and 3'-deletions, as well as single subregion deletions, with or without poly(A) tail. Using electrophoretic mobility shift assays we found that two major RNA–protein complexes (here called RPC1 and RPC2) were formed with the full-length 3'UTR. The RPC2 complex formation was fully dependent on the presence of both the poly(A) tail and one subregion directly adjacent to it. For RPC1 complex formation, a 3'UTR sequence stretch (experimentally divided into three subregions) adjacent to but not including the poly(A) tail was necessary. This sequence stretch includes a conserved 40-nucleotide region that, according to the structure prediction program mfold, is able to fold into a characteristic stem–loop structure. Since the formation of the RPC1 complex was not dependent on a conventional sequence motif in the 3'UTR of the β-subunit mRNA but rather on the presence of the predicted stem–loop-forming region as such, we hypothetize that this RNA region, by forming a stem–loop in the 3'UTR β-subunit mRNA, is necessary for formation of the RNA–protein complex.  相似文献   

14.
15.
Local translation of oskar (osk) mRNA at the posterior pole of the Drosophila oocyte is essential for axial patterning of the embryo, and is achieved by a program of translational repression, mRNA localization, and translational activation. Multiple forms of repression are used to prevent Oskar protein from accumulating at sites other than the oocyte posterior. Activation is mediated by several types of cis-acting elements, which presumably control different forms of activation. We characterize a 5'' element, positioned in the coding region for the Long Osk isoform and in the extended 5'' UTR for translation of the Short Osk isoform. This element was previously thought to be essential for osk mRNA translation, with a role in posterior-specific release from repression. From our work, which includes assays which separate the effects of mutations on RNA regulatory elements and protein coding capacity, we find that the element is not essential, and conclude that there is no evidence supporting a role for the element only at the posterior of the oocyte. The 5'' element has a redundant role, and is only required when Long Osk is not translated from the same mRNA. Mutations in the element do disrupt the anchoring function of Long Osk protein through their effects on the amino acid sequence, a confounding influence on interpretation of previous experiments.  相似文献   

16.
17.
《Gene》1997,189(1):127-134
We have analyzed the promoter and the coding sequences of the two homologous histone H1°-encoding genes from Xenopus laevis, here termed H1°-1 and H1°-2. Both genes encode proteins of 193 amino acids and differ at just 16 amino-acid residues. Putative regulatory sequences identified in the promoter region are the same and are highly conserved. However, significant differences exist in the 5′ untranslated regions (UTR) of the transcribed sequences of these two genes, such as several deletions in the 5′-UTR of the H1°-2 gene in comparison with the H1°-1 gene 5′-UTR. The 3′-UTR is a short sequence of about 200 bp which is unexpected compared with the long 3′-UTR of mammalian H1° mRNA, but it is in the same size range as in avian H5 mRNA. Thus, the main differences between these two genes are observed in sequences potentially involved in the regulation of the H1° gene expression such as the 5′-UTR. The two genes are expressed during embryogenesis and in several adult tissues. We discuss these findings in terms of the evolution of histone H1° genes in vertebrates and the appearance of histone H5 in avian species.© 1997 Elsevier Science B.V. All rights reserved.  相似文献   

18.
The 5′ untranslated regions (UTR) of chloroplast mRNAs often contain regulatory sequences that control RNA stability and/or translation. The petD chloroplast mRNA in Chlamydomonas reinhardtii has three such essential regulatory elements in its 362-nt long 5′ UTR. To further analyze these elements, we compared 5′ UTR sequences from four Chlamydomonas species (C. reinhardtii, C. incerta, C. moewusii and C. eugametos) and five independent strains of C. reinhardtii. Overall, these petD 5′ UTRs have relatively low sequence conservation across these species. In contrast, sequences of the three regulatory elements and their relative positions appear partially conserved. Functionality of the 5′ UTRs was tested in C. reinhardtii chloroplasts using β-glucuronidase reporter genes, and the nearly identical C. incerta petD functioned for mRNA stability and translation in C. reinhardtii chloroplasts while the more divergent C. eugametos petD did not. This identified what may be key features in these elements. We conclude that these petD regulatory elements, and possibly the corresponding trans-acting factors, function via mechanisms highly specific and surprisingly sensitive to minor sequence changes. This provides a new and broader perspective of these important regulatory sequences that affect photosynthesis in these algae.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号