共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Recurrence analysis provides a useful tool for the characterisation of oligonucleotide usage along genomic tracts. While coding regions are characterised by a low-recurrence regimen (except in the case of intragenic repeats) introns and intergenic regions exhibit a high density of recurring oligos, and appear to be correlated from the point of view of oligonucleotide preference. By comparing homologous loci in Plasmodium falciparum and P. berghei, it can be seen that introns and intergenic regions, though exhibiting very low sequence similarity, do not drift without constraints, but maintain a consistent use of the same oligos in the two species. 相似文献
3.
Anomalous dinucleotide frequencies in both coding and non-coding regions from the genome of the human malaria parasite Plasmodium falciparum 总被引:5,自引:0,他引:5
We have statistically analysed the distribution of nucleotides and dinucleotides in 21 genes of the 81% A + T-rich human malaria parasite Plasmodium falciparum. The mRNA-synonymous strands of this protozoan show in general a marked excess of purines over pyrimidines, correlated with abnormally high levels of Lys and Glu. We have used the large differences in base composition between coding and non-coding regions to estimate that the parasite possesses in the range of 2700-5400 genes. The dinucleotide preference patterns are compared with consensus patterns derived from other organisms [Nussinov, Nucl. Acids Res. 12 (1984) 1749-1763]. Patterns in the coding regions surprisingly resemble those of higher, rather than lower eukaryotes, particularly with respect to TG elevation and CG suppression. The latter is correlated with an abnormally low level of Arg in these parasites. In the non-coding regions, the four dinucleotides made up of C and/or G are found with significantly higher frequencies than expected (approx. 50-150%), specifically to the 5' side of the coding regions. The possible role of these dinucleotides in control sequences is discussed. 相似文献
4.
Sequestration and rosetting are key determinants of Plasmodium falciparum pathogenesis. They are mediated by a large family of variant proteins called P. falciparum erythrocyte membrane protein 1 (PfEMP1). PfEMP1 proteins are multispecific binding receptors that are transported to parasite-induced, 'knob-like' binding structures at the erythrocyte surface. To evade immunity and extend infections, parasites clonally vary their expressed PfEMP1. Thus, PfEMP1 are functionally selected for binding while immune selection acts to diversify the family. Here, we describe a new way to analyse PfEMP1 sequence that provides insight into domain function and protein architecture with potential implications for malaria disease. 相似文献
5.
6.
7.
8.
The fact that malaria is still an uncontrolled disease is reflected by the genetic organization of the parasite genome. Efforts to curb malaria should begin with proper understanding of the mechanism by which the parasites evade human immune system and evolve resistance to different antimalarial drugs. We have initiated such a study and presented herewith the results from the in silico understanding of a seventh chromosomal region of the malarial parasite Plasmodium falciparum encompassing the antigenic var genes (coding pfemp1) and the drug-resistant gene pfcrt located at a specified region of the chromosome 7. We found 60 genes of various functions and lengths, majority (61.67%) of them were performing known functions. Almost all the genes have orthologs in other four species of Plasmodium, of which P. chabaudi seems to be the closest to P. falciparum. However, only two genes were found to be paralogous. Interestingly, the drug-resistant gene, pfcrt was found to be surrounded by seven genes coding for several CG proteins out of which six were reported to be responsible for providing drug resistance to P. vivax. The intergenic regions, in this specified region were generally large in size, majority (73%) of them were of more than 500 nucleotide bp length. We also designed primers for amplification of 21 noncoding DNA fragments in the whole region for estimating genetic diversity and inferring the evolutionary history of this region of P. falciparum genome. 相似文献
9.
10.
The important role of Hox genes in determining the regionalization of the body plan of the vertebrates makes them invaluable candidates for evolutionary analyses regarding functional and morphological innovation. Gene duplication and gene loss led to a variable number of Hox genes in different vertebrate lineages. The evolutionary forces determining the conservation or loss of Hox genes are poorly understood. In this study, we show that variable selective pressures acted on Hox7 genes in different evolutionary lineages, with episodes of positive selection occurring after gene duplications. Tests for functional divergence in paralogs detected significant differentiation in a region known to modulate HOX7 protein activity. Our results show that both positive and negative selection on coding regions are influencing Hox7 genes evolution. 相似文献
11.
Sequestration of Plasmodium falciparum-infected erythrocytes in the placenta is responsible for many of the harmful effects of malaria during pregnancy. Sequestration occurs as a result of parasite adhesion molecules expressed on the surface of infected erythrocytes binding to host receptors in the placenta such as chondroitin sulphate A (CSA). Identification of the parasite ligand(s) responsible for placental adhesion could lead to the development of a vaccine to induce antibodies to prevent placental sequestration. Such a vaccine would reduce the maternal anaemia and infant deaths that are associated with malaria in pregnancy. Current research indicates that the parasite ligands mediating placental adhesion may be members of the P. falciparum variant surface antigen family PfEMP1, encoded by var genes. Two relatively well-conserved subfamilies of var genes have been implicated in placental adhesion, however, their role remains controversial. This review examines the evidence for and against the involvement of var genes in placental adhesion, and considers whether the most appropriate vaccine candidates have yet been identified. 相似文献
12.
Barry AE Leliwa-Sytek A Tavul L Imrie H Migot-Nabias F Brown SM McVean GA Day KP 《PLoS pathogens》2007,3(3):e34
Var genes encode the major surface antigen (PfEMP1) of the blood stages of the human malaria parasite Plasmodium falciparum. Differential expression of up to 60 diverse var genes in each parasite genome underlies immune evasion. We compared the diversity of the DBLalpha domain of var genes sampled from 30 parasite isolates from a malaria endemic area of Papua New Guinea (PNG) and 59 from widespread geographic origins (global). Overall, we obtained over 8,000 quality-controlled DBLalpha sequences. Within our sampling frame, the global population had a total of 895 distinct DBLalpha "types" and negligible overlap among repertoires. This indicated that var gene diversity on a global scale is so immense that many genomes would need to be sequenced to capture its true extent. In contrast, we found a much lower diversity in PNG of 185 DBLalpha types, with an average of approximately 7% overlap among repertoires. While we identify marked geographic structuring, nearly 40% of types identified in PNG were also found in samples from different countries showing a cosmopolitan distribution for much of the diversity. We also present evidence to suggest that recombination plays a key role in maintaining the unprecedented levels of polymorphism found in these immune evasion genes. This population genomic framework provides a cost effective molecular epidemiological tool to rapidly explore the geographic diversity of var genes. 相似文献
13.
The Plasmodium falciparum Maurer's clefts in 3D 总被引:1,自引:0,他引:1
In 1902, the German physician Georg Maurer discovered a dotted staining pattern within the cytoplasm of Plasmodium falciparum infected erythrocytes that, according to the tradition at the time, was named in his honour. The significance of Georg Maurer's discovery remained unrecognized for almost a century. Only recently are Maurer's clefts appreciated as a novel type of secretory organelle. Established by the malaria parasite within its host cell, Maurer's clefts play an essential role in directing proteins from the parasite to the erythrocyte surface. In this issue of Molecular Microbiology, Hanssen et al. report on the three dimensional structure of Maurer's clefts, as determined by electron tomography. The data presented suggest that Maurer's clefts are connected to both the parasitophorous vacuolar and the erythrocyte plasma membrane, however, no continuum exists that would allow lipids or proteins to freely flow between these three compartments. This seminal work, which stands in the tradition of Georg Maurer's original discovery, represents a milestone in our understanding of the structure and function of this fascinating organelle. 相似文献
14.
Song P Malhotra P Tuteja N Chauhan VS 《Biochemical and biophysical research communications》1999,255(2):312-316
RNA helicases play many essential roles including cell development and growth. Using degenerate oligonucleotide primers designed to amplify DNA fragments flanked by the highly conserved helicase motifs VLDEAD and YIHRIG and genomic DNAs from the malarial parasites as a template, we have cloned two putative RNA helicase genes (546 and 540 bp) from P. falciparum and one gene (546 bp) from P. cynomologi. Southern blot analysis revealed that these could be multiple and single-copy genes in P. falciparum and P. cynomolgi, respectively. Several members of the RNA helicase gene family share sequence identity with malarial parasite's helicases ranging from 30 to 76%, suggesting that they are functionally related. The discovery of such a multitude of putative RNA helicase genes in malarial parasites suggested that RNA helicase activities may be involved in many essential biological processes. Further characterization of these helicases may also help in designing parasite-specific inhibitors/drugs which specifically inhibit the parasite's growth without affecting the host. 相似文献
15.
Expression of var genes located within polymorphic subtelomeric domains of Plasmodium falciparum chromosomes. 总被引:2,自引:0,他引:2 下载免费PDF全文
K Fischer P Horrocks M Preuss J Wiesner S Wünsch A A Camargo M Lanzer 《Molecular and cellular biology》1997,17(7):3679-3686
Plasmodium falciparum var genes encode a diverse family of proteins, located on the surfaces of infected erythrocytes, which are implicated in the pathology of human malaria through antigenic variation and adhesion of infected erythrocytes to the microvasculature. We have constructed a complete representative telomere-to-telomere yeast artificial chromosome (YAC) contig map of the P. falciparum chromosome 8 for studies on the chromosomal organization, distribution, and expression of var genes. Three var gene loci were identified on chromosome 8, two of which map close to the telomeres at either end of the chromosome. Analysis of the previously described chromosome 2 contig map and random P. falciparum telomeric YAC clones revealed that most, if not all, 14 P. falciparum chromosomes contain var genes in a subtelomeric location. Mapping the chromosomal location of var genes expressed in a long-term culture of the P. falciparum isolate Dd2 revealed that four of the five different expressed var genes identified map within subtelomeric locations. Expression of var genes from a chromosomal domain known for frequent rearrangements has important implications for the mechanism of var gene switching and the generation of novel antigenic and adhesive phenotypes. 相似文献
16.
ABSTRACT: BACKGROUND: Severe malaria has been attributed to the expression of a restricted subset of the var multigene family, which encodes for Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1). PfEMP1 mediates cytoadherence and sequestration of infected erythrocytes into the post-capillary venules of the vital organs such as the brain, lung or placenta. Var genes are highly diverse and can be classified in three major groups (ups A, B and C) and two intermediate groups (B/A and B/C) based on the genomic location, gene orientation and upstream sequences. The genetic diversity of expressed var genes in relation to severity of disease in Tanzanian children was analysed. METHODS: Children with defined severe (SM) and asymptomatic malaria (AM) were recruited. Fulllength var mRNA was isolated and reversed transcribed into var cDNA. Subsequently, the DBL and N-terminal domains, and up-stream sequences were PCR amplified, cloned and sequenced. Sequences derived from SM and AM isolates were compared and analysed. RESULTS: The analysis confirmed that the var family is highly diverse in natural Plasmodium falciparum populations. Sequence diversity of amplified var DBL-1alpha and upstream regions showed minimal overlap among isolates, implying that the var gene repertoire is vast and most probably indefinite in endemic areas. var DBL-1alpha sequences from AM isolates were more diverse with more singletons found (p<0.05) than those from SM infections. Furthermore, few var DBL-1alpha sequences from SM patients were rare and restricted suggesting that certain PfEMP1 variants might induce severe disease. CONCLUSIONS: The genetic sequence diversity of var genes of P. falciparum isolates from Tanzanian children is large and its relationship to disease severity has been studied. Observed differences suggest that different var genes might have fundamentally different roles in the host-parasite interaction. Further research is required to examine clear disease-associations of var gene subsets in different geographical settings. The importance of very strict clinical definitions and appropriate large control groups needs to be emphasized for future studies on disease associations of PfEMP1. 相似文献
17.
18.
Highly reiterated non-coding sequence in the genome of Plasmodium falciparum is composed of 21 base-pair tandem repeats 总被引:8,自引:0,他引:8
L Aslund L Franzén G Westin T Persson H Wigzell U Pettersson 《Journal of molecular biology》1985,185(3):509-516
Clones containing highly reiterated DNA sequences were isolated from a Plasmodium falciparum genomic library. One clone, Rep2, was selected for further characterization by nucleotide sequence analysis. The results revealed that the insert of this clone is composed of tandemly arranged 21 base-pair imperfect repeats. These repeats are estimated to comprise approximately 1% of the P. falciparum genome and there are 10(4) to 2 X 10(5) copies, depending on the genome size estimate used for calculation. Moreover, the repeats are organized in clusters and do not appear to be transcribed in non-synchronized P. falciparum cultures. 相似文献
19.
Identification of a conserved sequence in the non-coding regions of many human genes. 总被引:1,自引:3,他引:1 下载免费PDF全文
We have analyzed a sequence of approximately 70 base pairs (bp) that shows a high degree of similarity to sequences present in the non-coding regions of a number of human and other mammalian genes. The sequence was discovered in a fragment of human genomic DNA adjacent to an integrated hepatitis B virus genome in cells derived from human hepatocellular carcinoma tissue. When one of the viral flanking sequences was compared to nucleotide sequences in GenBank, more than thirty human genes were identified that contained a similar sequence in their non-coding regions. The sequence element was usually found once or twice in a gene, either in an intron or in the 5' or 3' flanking regions. It did not share any similarities with known short interspersed nucleotide elements (SINEs) or presently known gene regulatory elements. This element was highly conserved at the same position within the corresponding human and mouse genes for myoglobin and N-myc, indicating evolutionary conservation and possible functional importance. Preliminary DNase I footprinting data suggested that the element or its adjacent sequences may bind nuclear factors to generate specific DNase I hypersensitive sites. The size, structure, and evolutionary conservation of this sequence indicates that it is distinct from other types of short interspersed repetitive elements. It is possible that the element may have a cis-acting functional role in the genome. 相似文献
20.
The global emergence and spread of malaria parasites resistant to antimalarial drugs is the major problem in malaria control. The genetic basis of the parasite's resistance to the antimalarial drug chloroquine (CQ) is well-documented, allowing for the analysis of field isolates of malaria parasites to address evolutionary questions concerning the origin and spread of CQ-resistance. Here, we present DNA sequence analyses of both the second exon of the Plasmodium falciparum CQ-resistance transporter (pfcrt) gene and the 5' end of the P. falciparum multidrug-resistance 1 (pfmdr-1) gene in 40 P. falciparum field isolates collected from eight different localities of Odisha, India. First, we genotyped the samples for the pfcrt K76T and pfmdr-1 N86Y mutations in these two genes, which are the mutations primarily implicated in CQ-resistance. We further analyzed amino acid changes in codons 72-76 of the pfcrt haplotypes. Interestingly, both the K76T and N86Y mutations were found to co-exist in 32 out of the total 40 isolates, which were of either the CVIET or SVMNT haplotype, while the remaining eight isolates were of the CVMNK haplotype. In total, eight nonsynonymous single nucleotide polymorphisms (SNPs) were observed, six in the pfcrt gene and two in the pfmdr-1 gene. One poorly studied SNP in the pfcrt gene (A97T) was found at a high frequency in many P. falciparum samples. Using population genetics to analyze these two gene fragments, we revealed comparatively higher nucleotide diversity in the pfcrt gene than in the pfmdr-1 gene. Furthermore, linkage disequilibrium was found to be tight between closely spaced SNPs of the pfcrt gene. Finally, both the pfcrt and the pfmdr-1 genes were found to evolve under the standard neutral model of molecular evolution. 相似文献