首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Clones of F11 hybrid (neuroblastoma X dorsal root neuron) cells have been tested for adherence and neurite outgrowth on three different substrata on which the parental cells display some competence--plasma fibronectin (pFN) with its multiple receptors, cholera toxin subunit B(CTB) as a model ganglioside GM1-binding substratum, and platelet factor-4 (PF4) as a model proteoglycan-binding substratum. This paradigm tests for independently segregating and overlapping mechanisms of neuritogenesis via transmembrane processes in pluripotent hybrid cells based on random loss of chromosomes contributed by the parent neural cells. For the nine clones tested, attachment was significantly lower on CTB but much higher on PF4 for all clones when compared to their attachment on pFN. Supplementation of cells with GM1 stimulated attachment of only two clones (on all three substrata). Neurite outgrowth was observed in a substratum-specific pattern and varied from 0 to greater than 60% on pFN; on CTB and PF4 substrata, the patterns were similar to each other but differed markedly from the pattern on pFN. In contrast, PF4- and CTB-directed neurites differed morphologically from each other while sharing some characteristics with neurites on pFN. Supplementation with GM1 or GT1b, but not GD1a, was inhibitory for neurite outgrowth in certain clones. Cycloheximide pretreatment distinguished several classes of clones based on inhibition of neuritogenesis. While most clones on pFN were unaffected, all clones on CTB and PF4 displayed significant and comparable degrees of inhibition, suggesting the sharing of some protein intermediate(s) on these substrata. Exposure to cycloheximide only during the active period of neuritogenesis generated higher percentages and longer neurites for all clones, indicating a widely-used negative regulation mechanism. Based on substratum type and cycloheximide protocols, these data have resolved six or more different transmembrane signalling processes for generating different classes of neurites. Some mechanisms have been segregated into individual clones while others overlap in other clones, providing cell systems for biochemical and molecular biological dissection of these processes.  相似文献   

2.
The potential involvement of gangliosides in the adherence and neurite extension of human neuroblastoma cells (Platt and La-N1) was investigated on tissue culture substrata coated with the ganglioside GM1-binding protein, cholera toxin B (CTB) subunit, for comparison with similar processes on plasma fibronectin (pFN)-coated substrata. Cells attached with reduced efficiency on CTB substrata as compared with pFN substrata and required a much longer time to form neurite processes for a small percentage of cells on CTB. The specificity of these processes for GM1 binding was tested in a variety of ways. Supplementation of the cells with exogenous GM1, but not GD1a, identified a larger population of cells adherent on CTB (comparable to pFN-adherent cells) and dramatically increased the proportion of cells capable of forming neurites without reducing the time requirement. In ultrastructural studies using the scanning electron microscope (SEM) and immunofluorescence (IF) analyses to discriminate microtubule distributions, neurites of GM1-supplemented cells on CTB were virtually identical with pFN-adherent neurites, whereas unsupplemented cells on CTB generated processes with fine-structural differences. Treatment of cells during the GM1 supplementation period with cycloheximide completely abolished the ability of cells to generate neurites on CTB and decreased the adhesive capacity of cells as well; a similar treatment of cells had no adverse effect on adherence or neurite extension on pFN. The importance of one or more proteins in GM1-dependent processes was further confirmed by demonstrating the trypsin sensitivity of a cell surface component(s) required to achieve maximal attachment on CTB; in contrast, adherence and neurite extension on pFN were much more resistant to this treatment process. Therefore, these experiments demonstrate (a) that certain cell surface gangliosides are capable of mediating adherence and neurite outgrowth of human neuroblastoma cells on a suitable ganglioside-binding substratum; (b) this ganglioside dependence is cooperative with one or more cell surface proteins which can now be analysed. These results are discussed in light of the identification in ref. [16] (Exp cell res 169 (1987) 311) of a second ‘cell-binding’ domain on the pFN molecule competent for adherence and neurite extension of these neuroblastoma cells, as well as the potential role of pFN binding to a complex ganglioside on the surface of these neural tumor cells in these processes.  相似文献   

3.
Subclones of F11 neuronal hybrid cells (neuroblastoma x dorsal root ganglion neurons) have segregated differing and/or overlapping neuritogenic mechanisms on three substrata--plasma fibronectin (pFN) with its multiple receptor activities, cholera toxin B subunit (CTB) for binding to ganglioside GM1, and platelet factor-4 (PF4) for binding to heparan sulfate proteoglycans. In this study, specific cell surface receptor activities for the three substrata were tested for their modulation during neuritogenesis by several experimental paradigms, using F11 subclones representative of three differentiation classes (neuritogenic on pFN only, on CTB only, or on all three substrata). When cycloheximide was included in the medium to inhibit protein synthesis during the active period, neurite formation increased significantly for all subclones on all three substrata, virtually eliminating substratum selectivity for differentiation mediated by cell surface integrin, ganglioside GM1, or heparan sulfate proteoglycans. Therefore, one or more labile proteins (referred to as disintegrins) must modulate functions of matrix receptors (e.g., integrins) mediating neurite formation. To verify whether cycloheximide-induced neuritogenesis was also regulated by integrin interaction with cell surface GM1, two approaches were used. When (Arg-Gly-Asp-Ser)-containing peptide A was added to the medium, it completely inhibited cycloheximide-induced neuritogenesis on all three substrata of all subclones, indicating stringent requirement for cell surface integrin function in these mechanisms. In contrast, when CTB or a monoclonal anti-GM1 antibody was also added to the medium, cycloheximide-induced neuritogenesis was amplified further on pFN and sensitivity to peptide A inhibition was abolished. Therefore, in some contexts ganglioside GM1 must complex with integrin receptors at the cell surface to modulate their function. These results also indicate that (a) cycloheximide treatment leads to loss of substratum selectivity in neuritogenesis, (b) this negative regulation of neurite outgrowth is affected by integrin receptor association with labile regulatory proteins (disintegrins) as well as with GM1, and (c) complexing of GM1 by multivalent GM1-binding proteins shifts neuritogenesis from an RGDS-dependent integrin mechanism to an RGDS-independent receptor mechanism.  相似文献   

4.
Human neuroblastoma cells (Platt and La-N1) adhere and extend neurites on a ganglioside GM1-binding substratum provided by cholera toxin B (CTB). These adhesive responses, similar to those on plasma fibronectin (pFN), require the mediation of one or more cell-surface proteins [G. Mugnai and L. A. Culp (1987) Exp. Cell Res. 169, 328]. The involvement of two pFN receptor molecules in ganglioside GM1-mediated responses on CTB have now been tested. In order to test the role of cellular FN binding to its glycoprotein receptor integrin, a soluble peptide containing the Arg-Gly-Asp-Ser (RGDS) sequence was added to the medium. It did not inhibit attachment on CTB but completely inhibited formation of neurites; in contrast, the RGDS peptide minimally inhibited attachment or neurite formation on pFN. Once formed, neurites on CTB became resistant to the peptide. In order to test the role of cell-surface heparan sulfate proteoglycan (HS-PG), two approaches were used. First, the HS-binding protein platelet factor-4 (PF4) was used to dilute CTB or pFN on the substratum or, alternatively, added to the medium. Diluting the substratum ligand with PF4 had no effects on attachment on either CTB or pFN. However, neurite formation on CTB was readily inhibited and on pFN partially inhibited; the effects of PF4 were far greater than a similar dilution with nonbinding albumin. When PF4 was added to the medium of cells, attachment on either substratum was unaffected as was neurite outgrowth on pFN, revealing differences in PF4's inhibition as the substratum-bound or medium-borne component. In contrast, PF4 in the medium at low concentrations (1 microgram/ml) was highly inhibitory for neurite formation on CTB. The second approach utilized the addition of bovine cartilage dermatan sulfate proteoglycan (DS-PG), shown to bind to pFN as well as to substratum-bound CTB by ELISA, or cartilage chondroitin sulfate/keratan sulfate proteoglycan (CS/KS-PG) to the substratum or to the medium. At low concentrations, DS-PG but not CS/KS-PG actually stimulated neurite formation on CTB while at higher concentrations DS-PG completely inhibited attachment and neurite formation. While DS-PG partially inhibited attachment on pFN, it had no effect on neurite formation of the attached cells. Neuroblastoma cells adhered to some extent to substrata coated only with DS-PG, indicating "receptors" for PGs that permit stable interaction.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Human and rat neuroblastoma cells extend neurites over plasma fibronectin (pFN)-coated substrata. For resolution of which fibronectin binding activities (the cell-binding domain (CBD), the heparan sulfate-binding domains, or a combination of the two) are responsible for neurite outgrowth, CBD was prepared free of heparan sulfate-binding activity as described by Pierschbacher et al. (Cell 26 (1981) 259-267). Neuroblastoma cells attached and extended neurites as stably and as effectively on CBD-coated substrata as on intact pFN, while cytoplasmic spreading was more extensive on pFN-coated substrata. The structures of growth cones on CBD or pFN were virtually identical. On substrata coated with the model heparan sulfate-binding protein, platelet factor 4 (PF4), cells attached and spread somewhat but never extended neurites. When cells were challenged with substrata coated with various ratios of CBD and PF4, PF4 was found to be an effective inhibitor of CBD-mediated neurite extension. Similarly, cells grown on substrata coated at different locations with CBD or PF4 in order to evaluate topographical dependence of growth cone formation extended neurites only onto the CBD-coated region or along the interface between these two proteins, but never onto the PF4 side of cells that bridged the interface. These studies indicate that (a) the CBD activity of pFN, and not its heparan sulfate-binding activity, is the critical determinant in neurite extension of these neural tumor cells from the central nervous system; (b) under some circumstances, heparan sulfate-binding activity can be antagonistic to neurite extension; (c) the chemical nature of the substratum controls the direction of neurite extension; (d) these neuroblastoma cells respond to these binding proteins very differently than fibroblasts or neurons from the peripheral nervous system.  相似文献   

6.
Human neuroblastoma cells (Platt and La-N1) have previously been shown to adhere and extend neurites on tissue-culture substrata coated with a 120K chymotryptic cell-binding fragment (CBF) of plasma fibronectin (pFN), a fragment which lacks heparan sulfate- and collagen-binding activities, and to adhere to—but not extend neurites on—substrata coated with the heparan sulfate (HS)-binding protein, platelet factor-4 (PF4) ([3.]). The mechanisms of these processes on CBF, on the intact pFN molecule, or on heparin-binding fragments of pFN have been tested using a heptapeptide (peptide A) containing the Arg---Gly---Asp---Ser (RGDS) sequence which recognizes a specific ‘receptor’ on the surface of a variety of cells or a control peptide with a single amino acid substitution. Adherence and neurite extension were completely inhibited on the 120K CBF by peptide A but not by control peptide; these results indicate that the RGDS-dependent ‘receptor’ is solely responsible for adhesive responses to the 120K CBF-containing region of the pFN molecule. When peptide A was added to cells on CBF which had already formed neuntes to test reversibility, retraction of all neurite processes was induced by 1 h and cells eventually detached. In contrast, on intact pFN, peptide A had very limited effects on either initial adherence or neurite extension, revealing a second ‘cell-binding’ domain on the fibronectin molecule outside of the 120K region competent for neurite differentiation; addition of peptide A at later times to pFN-adherent, neurite-containing cells could induce only a small subset of neurites to retract, thus supporting evidence for the presence of this second domain. A second ‘cell-binding’ domain was further confirmed by quantitation of neurite outgrowth on these substrata and by analyses of cells on substrata coated with mixtures of CBF/PF4. When substrata coated with chymotrypsin-liberated HBF were tested in a similar fashion, adherence was rapid but neurite outgrowth required much longer times and was completely sensitive to RGDS peptides; supplementation of cells with the complex ganglioside GT1b could not induce RGDS-resistant neurites on heparin-binding fragments (HBF). These latter results indicate that neurite extension on HBF is a consequence of a low concentration of RGDS-dependent activity in HBF (but not to HS-binding activity as characterized by Tobey et al. [3]) and that the second ‘cell-binding’ domain is sensitive to chymotrypsin digestion of pFN during the liberation of HBF. Possible candidate molecules for this second activity as well as its preliminary location in the pFN molecule are discussed and evidence, is provided in ref. [37] ([37.]) for the potential role for one class of molecules as a ‘receptor’. These neural tumor cells therefore have multiple and alternative mechanisms of adherence and differentiation on fibronectin matrices.  相似文献   

7.
Adhesion responses of fibroblasts (Balb/c 3T3 cells) and human neuron-derived (Platt neuroblastoma) cells have been examined with plasma fibronectin (pFN) adsorbed to glass surfaces derivatized with an alkyl chain and six chemical end groups interfacing with the bound pFN to test regulation of pFN function. Using new derivatization protocols, the following surfaces have been tested in order of increasing polarity: [CH3], [C = C], [Br], [CN], [Diol], [COOH], and underivatized glass [( SiOH]). For all substrata, pFN bound equivalently using either a supersaturating amount of pFN or a subsaturating amount in competition with bovine albumin. Attachment of both cell types was also equivalent on all substrata. However, spreading/differentiation responses varied considerably. F-actin reorganization was tested in 3T3 cells with rhodamine-phalloidin staining. While stress fibers formed effectively on pFN-coated [SiOH] and [Br] substrata, only small linear bundles of F-actin and a few thin stress fibers were observed on the [COOH], [Diol], and [CN] substrata; the hydrophobic substrata [( CH3] and [C = C]) gave an intermediate response. When a synthetic peptide containing the Arg-Gly-Asp-Ser sequence required for integrin binding to FNs was included in the medium as an inhibitor, additional differences were noted: Stress fiber formation was completely inhibited on [SiOH] but not on [Br] and stress fiber formation was very sensitive to inhibition on the hydrophobic substrata while the F-actin patterns on the [CN] and [COOH] substrata were unaffected. Evaluation of neurite outgrowth by neuroblastoma cells on these substrata revealed both qualitative and quantitative differences as follows: [Diol] = [COOH] greater than [SiOH] much greater than [CN] = [Br] greater than [CH3] = [C = C]. While there was poor cytoplasmic spreading and virtually no neurites formed on the hydrophobic surfaces when pFN alone was adsorbed, neurite formation could be "rescued" if a mixture of pFN with an excess of bovine albumin was adsorbed, demonstrating complex conformational interactions between substratum-bound pFN and adhesion-inert neighboring molecules. In summary, these studies demonstrate that different chemical end groups on the substratum modulate pFN functions for cell adhesion, principally by affecting the conformation of these molecules rather than the amounts bound. Furthermore, these studies confirm multiple-receptor interactions with the FN molecules in cell type-specific adhesion patterns.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Using the cholera toxin B subunit (CTB) that specifically binds to ganglioside GM1a on the plasma membrane, we investigated intracellular signaling mediated by endogenous GM1a involved in neuronal differentiation of PC12 cells. The treatment with CTB induced morphological alternations of PC12 cells, such as augmentation of the cell body, neurite extension, and branched spikes of tips of neurites. The neurite extension induced with CTB was strongly suppressed by the pretreatment of tyrosine kinase inhibitors in a dose-dependent manner. Western blotting analysis showed that CTB induced tyrosine phosphorylation of several cellular proteins with molecular masses around 120, 70, and 45-40 kDa in PC12 cells. Some of the proteins identified were extracellular-signal regulated kinase (ERKs) (ERK1 and ERK2). The peak activation of ERKs lasted for 60-90 min and gradually decreased thereafter. Immunoprecipitation analysis demonstrated that the intracellular events induced with CTB are not related with the activation of Trk proteins, suggesting that signals evoked by ligation of endogenous GM1a are unique and distinct from those induced with exogenous GM1a. Although the presence of a tyrosine kinase inhibitor, genistein, at a concentration of 10 microM diminished the neurite extension of PC12 cells induced with CTB, ERK activation was still observed. However, pretreatment with a MEK inhibitor, PD98059, abolished the activation of ERKs induced with CTB in a dose-dependent manner and only attenuated the morphological alternations of PC12 cells. Considered together, we concluded that tyrosine phosphorylation induced with CTB was responsible for neuron-like differentiation of PC12 cells and that the MEK-ERK cascade is part of the biological signals mediated by endogenous ganglioside GM1a on PC12 cells.  相似文献   

9.
Attachment and neurite extension have been measured when Platt or La-N1 human neuroblastoma cells respond to tissue culture substrata coated with a panel of complementary fragments from the individual chains of human plasma (pFN) or cellular fibronectins (cFN) purified from thermolysin digests. A 110-kD fragment (f110), which contains the Arg-Gly-Asp-Ser sequence (RGDS)-dependent cell-binding domain but no heparin-binding domains and whose sequences are shared in common by both the alpha- and beta-subunits of pFN, facilitated attachment of cells that approached the level observed with either intact pFN or the heparan sulfate-binding platelet factor-4 (PF4). This attachment on f110 was resistant to RGDS-containing peptide in the medium. Neurite outgrowth was also maximal on f110, and half of these neurites were also resistant to soluble RGDS peptide. Treatment of cells with glycosaminoglycan lyases failed to alter these responses on f110. Therefore, there is a second "cell-binding" domain in the sequences represented by f110 that is not RGDS- or heparan sulfate-dependent and that facilitates stable attachment and some neurite outgrowth; this domain appears to be conformation-dependent. Comparisons were also made between two larger fragments generated from the two subunits of pFN-f145 from the alpha-subunit and f155 from the beta-subunit--both of which contain the RGDS-dependent cell-binding domain and the COOH-terminal heparin-binding domain but which differ in the former's containing some IIICS sequence at its COOH terminus and the latter's having an additional type III homology unit. Heparin-binding fragments (with no RGDS activity) of f29 and f38, derived from f145 or f155 of pFN, respectively, and having the same differences in sequence, were also compared with f44 + 47 having the "extra domain" characteristic of cFN. Attachment on f145 was slightly sensitive to soluble RGDS peptide; attachment on f155 was much more sensitive. There were also differences in the percentage of cells with neurites on f145 vs. f155 but neurites on either fragment were completely sensitive to RGDS peptide. Mixing of f29, f38, or PF4 with f110 could not reconstitute the activities demonstrated in f145 or f155, demonstrating that covalently linked sequences are critical in modulating these responses. However, mixing of f44 + 47 from cFN with f110 from pFN increased the sensitivity to RGDS peptide.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
BACKGROUND: On the basis of experiments suggesting that Notch and Delta have a role in axonal development in Drosophila neurons, we studied the ability of components of the Notch signaling pathway to modulate neurite formation in mammalian neuroblastoma cells in vitro. RESULTS: We observed that N2a neuroblastoma cells expressing an activated form of Notch, Notch1(IC), produced shorter neurites compared with controls, whereas N2a cell lines expressing a dominant-negative Notch1 or a dominant-negative Delta1 construct extended longer neurites with a greater number of primary neurites. We then compared the effects on neurites of contacting Delta1 on another cell and of overexpression of Delta1 in the neurite-extending cell itself. We found that N2a cells co-cultured with Delta1-expressing quail cells produced fewer and shorter neuritic processes. On the other hand, high levels of Delta1 expressed in the N2a cells themselves stimulated neurite extension, increased numbers of primary neurites and induced expression of Jagged1 and Notch1. CONCLUSIONS: These studies show that Notch signals can antagonize neurite outgrowth and that repressing endogenous Notch signals enhances neurite outgrowth in neuroblastoma cells. Notch signals therefore act as regulators of neuritic extension in neuroblastoma cells. The response of neuritic processes to Delta1 expressed in the neurite was opposite to that to Delta1 contacted on another cell, however. These results suggest a model in which developing neurons determine their extent of process outgrowth on the basis of the opposing influences on Notch signals of ligands contacted on another cell and ligands expressed in the same cell.  相似文献   

11.
Wisp2/CCN5 belongs to CCN family proteins which are involved in cell proliferation, angiogenesis, tumorigenesis and wound healing. Although a number of studies on the roles of Wisp2/CCN5 in cancers have been reported, no study on the expression and function of Wisp2/CCN5 in the central nervous system has been reported. In this study, we focused on Wisp2/CCN5 that was up-regulated in nervous tissues in GM3-only mice. Over-expression of Wisp2/CCN5 enhanced neurite outgrowth potently after serum withdrawal with increased phosphorylation levels of Akt and ERKs. When cells were cultured with recombinant Wisp2/CCN5 proteins, more and longer neurites were formed than in the controls. Thus, we demonstrated for the first time that Wisp2/CCN5 facilitates neurite formation in a mouse neuroblastoma cell line, Neuro2a. Akt phosphorylation induced by recombinant Wisp2/CCN5 was suppressed after knockdown of integrin β1. Moreover, Wisp2/CCN5-over-expressing cells were resistant to apoptosis induced by H2O2. These results suggested that secreted Wisp2/CCN5 induces Akt and ERK phosphorylation via integrins, and consequently facilitates neurite formation and conferred resistance to apoptosis. Up-regulation of Wisp2/CCN5 in GM3-only mice should be, therefore, a reaction to protect nervous tissues from neurodegeneration caused by ganglioside deficiency.  相似文献   

12.
Lipid rafts and the formation of an immunological synapse are crucial for T-cell activation. Binding of cholera toxin B subunit (CTB) to ganglioside GM1 is a marker to identify lipid rafts. Primary human T cells were isolated from healthy donors and were stimulated with superantigen staphylococcus enterotoxin B (SEB) and stained with cholera toxin B-fluorescein isothiocyanate (CTB-FITC). An optimized staining procedure is required to stain lipid rafts exclusively on the cell surface. Unstimulated T cells show a few CTB binding spots on the cell surface. The size and number of CTB-binding lipid rafts are strongly upregulated during T-cell activation in SEB-stimulated CD4(+) T cells. However, our data show that the specificity of CTB for GM1 ganglioside is limited, because the binding capacity is partly resistant to inhibition of ganglioside synthesis and sensitive to trypsin digestion. Our results indicate that the binding of FITC-labeled CTB can be divided into at least three different categories: a specific binding of CTB to ganglioside GM1, a nonspecific binding of CTB probably to glycosylated surface proteins and a nonspecific binding of FITC to the cell surface.  相似文献   

13.

Aims

In the present study, we found that saccharin, an artificial calorie-free sweetener, promotes neurite extension in the cultured neuronal cells. The purposes of this study are to characterize the effect of saccharine on neurite extension and to determine how saccharin enhances neurite extension.

Main methods

The analyses were performed using mouse neuroblastoma N1E-115 cells and rat pheochromocytoma PC12 cells. Neurite extension was evaluated by counting the cells bearing neurites and measuring the length of neurites. Formation, severing and transportation of the microtubules were evaluated by immunostaining and western blotting analysis.

Key findings

Deprivation of glucose increased the number of N1E-115 cells bearing long processes. And the effect was inhibited by addition of glucose. Saccharin increased the number of these cells bearing long processes in a dose-dependent manner and total neurite length and longest neurite length in each cell. Saccharin also had a similar effect on NGF-treated PC12 cells. Saccharin increased the amount of the microtubules reconstructed after treatment with nocodazole, a disruptor of microtubules. The effect of saccharin on microtubule reconstruction was not influenced by dihydrocytochalasin B, an inhibitor of actin polymerization, indicating that saccharin enhances microtubule formation without requiring actin dynamics. In the cells treated with vinblastine, an inhibitor of microtubule polymerization, after microtubule reorganization, filamentous microtubules were observed more distantly from the centrosome in saccharin-treated cells, indicating that saccharin enhances microtubule severing and/or transportation.

Significance

These results suggest that saccharin enhances neurite extension by promoting microtubule organization.  相似文献   

14.
BALB/c 3T3 cells make both close contacts and tight-focal contacts (with associated microfilament stress fibers) on plasma fibronectin (pFN)-coated substrata. To resolve the importance of the heparan sulfate-binding or cell-binding activities of the pFN molecule in these adhesive responses, a cell-binding fragment (120K) (CBF) free of any heparan sulfate-binding activity was prepared from human pFN by chymotrypic digestion and isolated as described by Pierschbacher et al. (Cell 26 (1981) 259). These adhesive responses to CBF were also compared to those of the model heparan sulfate-binding protein, platelet factor-4 (PF4), or heparin-binding fragments (HBF) of pFN. On intact pFN, greater than 70% of the cells formed tight-focal contacts and associated stress fibers by 4 h, the latter staining with NBD-phallacidin. In contrast, cells spread differently on CBF and failed to form tight-focal contacts; staining with NBD-phallacidin was localized to spiky projections at the cell margin with no detectable stress fiber formation. On PF4 or HBF, cells failed to form tight-focal contacts but did spread well and formed long microfilament bundles in peripheral lamellae. Spreading on CBF, HBF, or PF4 was paralleled by formation of close contacts. Spreading and to some extent attachment of cells on CBF was inhibited with a small peptide containing the Arg-Gly-Asp-Ser sequence; responses on HBF were unaffected by this peptide. When mixtures of CBF and PF4 were tested, cells still failed to form tight-focal contacts and stress fibers. These results demonstrate that the binding of CBF to its probable receptor under conditions routinely used to assay spreading activity results in an incomplete adhesive response compared with intact pFN. While this partial response may result from quantitative differences in the density of active cell-binding domains on the substratum, the pattern of microfilament reorganization produced by the binding of PF4 to cell surface heparan sulfate proteoglycans suggests that the ability of pFN to promote formation of tight-focal contacts and stress fibers may reside in the coordinate interaction of two or more binding activities in the intact molecule.  相似文献   

15.
E A Chernoff 《Tissue & cell》1988,20(2):165-178
Some phases of dorsal root ganglion (DRG) substratum attachment and growth cone morphology are mediated through endogenous cell surface heparan sulfate proteoglycan. The adhesive behavior of intact embryonic chicken DRG (spinal sensory ganglia) is examined on substrata coated with fibronectin, fibronectin treated with antibody to the cell-binding site (anti-CBS), and the heparan sulfate-binding protein platelet factor four. DRG attach to fibronectin, anti-CBS-treated fibronectin, and platelet factor four. The ganglia extend an extensive halo of unfasciculated neurites on fibronectin and produce fasciculated neurite outgrowth on platelet factor four and anti-CBS antibody-treated FN. Treatment with heparinase, but not chondroitinase, abolishes adhesion to fibronectin and platelet factor four. Growth cones of DRG on fibronectin have well-spread lamellae and microspikes. On platelet factor four, and anti-CBS-treated FN, growth cones exhibit microspikes only. Isolated Schwann cells adhere equally well to fibronectin and platelet factor four, spreading more rapidly on fibronectin. Isolated DRG neurons adhere equally well on both substrata, but only 10% of the neurons extend long neurites on platelet factor four. The majority of the isolated neurons on platelet factor four exhibit persistent microspike production resembling that of the early stages of normal neurite extension. Endogenous heparan sulfate proteoglycan supports the adhesion of whole DRG, isolated DRG neurons, and Schwann cells, as well as extensive microspike activity by DRG neurons, one important part of growth cone activity.  相似文献   

16.
The cell-surface expression of GM1 ganglioside was studied using various cultured cells, including brain-derived endothelial cells, astrocytes, neuroblastoma cells (SH-SY5Y), and pheochromocytoma cells (PC12). GM1 ganglioside was detected only on the surface of native and nerve-growth-factor (NGF)-treated PC12 cells. We investigated whether GM1 ganglioside on the surface of these cells is sufficiently potent to induce the assembly of an exogenous soluble amyloid beta-protein (Abeta). A marked Abeta assembly was observed in the culture of NGF-treated PC12 cells. Notably, immunocytochemical study revealed that, despite the ubiquitous surface expression of GM1 ganglioside throughout cell bodies and neurites, Abeta assembly initially occurred at the terminals of SNAP25-immunopositive neurites. Abeta assembly in the culture was completely suppressed by the coincubation of Abeta with the subunit B of cholera toxin, a natural ligand for GM1 ganglioside, or 4396C, a monoclonal antibody specific to GM1-ganglioside-bound Abeta (GAbeta). In primary neuronal cultures, Abeta assembly initially occurred at synaptophysin-positive sites. These results suggest that the cell-surface expression of GM1 ganglioside is strictly cell-type-specific, and that expression of GM1 ganglioside on synaptic membranes is unique in terms of its high potency to induce Abeta assembly through the generation of GAbeta, which is an endogenous seed for Abeta assembly in Alzheimer brain.  相似文献   

17.
The cell-surface expression of GM1 ganglioside was studied using various cultured cells, including brain-derived endothelial cells, astrocytes, neuroblastoma cells (SH-SY5Y), and pheochromocytoma cells (PC12). GM1 ganglioside was detected only on the surface of native and nerve-growth-factor (NGF)-treated PC12 cells. We investigated whether GM1 ganglioside on the surface of these cells is sufficiently potent to induce the assembly of an exogenous soluble amyloid β-protein (Aβ). A marked Aβ assembly was observed in the culture of NGF-treated PC12 cells. Notably, immunocytochemical study revealed that, despite the ubiquitous surface expression of GM1 ganglioside throughout cell bodies and neurites, Aβ assembly initially occurred at the terminals of SNAP25-immunopositive neurites. Aβ assembly in the culture was completely suppressed by the coincubation of Aβ with the subunit B of cholera toxin, a natural ligand for GM1 ganglioside, or 4396C, a monoclonal antibody specific to GM1-ganglioside-bound Aβ (GAβ). In primary neuronal cultures, Aβ assembly initially occurred at synaptophysin-positive sites. These results suggest that the cell-surface expression of GM1 ganglioside is strictly cell-type-specific, and that expression of GM1 ganglioside on synaptic membranes is unique in terms of its high potency to induce Aβ assembly through the generation of GAβ, which is an endogenous seed for Aβ assembly in Alzheimer brain.  相似文献   

18.
By examining microtubule regrowth using immunofluorescence with antibody to tubulin, we have studied the structure and intracellular localization of microtubule initiation sites in undifferentiated and differentiated mouse neuroblastoma cells. The undifferentiated cells are round and lack cell processes. They contain an average of 12 initiation sites per cell. Each of these sites, which are located near the cell nucleus, initiates the growth of several microtubules in a radial formation. In contrast to the undifferentiated cells, neuroblastoma cells stimulated to differentiate by serum deprivation are asymmetrical, containing one or two very long neurites. These cells have a single, large microtubule initiation center which can be visualized not only by immunofluorescence but by phase-contrast and differential interference microscopy as well. The initiation site measures 3-4 mu in diameter and is located in the cell body along a line defined by the neurite. During cell differentiation, the large initiation, the large initiation center seems to be formed by the aggregation of many smaller sites. This process procedes neurite extension by about 24 hr. The growth of microtubules from this center appears to be highly oriented, since most microtubules initially grow into the neurite processes rather than into the cell interior. Thus major changes in the structure and location of microtubule initiation sites occur during the differentiation of neuroblastoma cells. Similar changes are likely to be involved in alterations in the morphology of other cell types.  相似文献   

19.
1-Phenyl-2-decanolyamino-3-morpholino-1-propanol (PDMP), an effective inhibitor of UDP-glucose:ceramide glucosyltransferase, caused inhibition of cell growth in murine neuroblastoma cell lines. Metabolic labeling of glycosphingolipids with [14C]galactose in NS-20Y, Neuro2a, and N1E-115 cells showed reduced incorporation of radioactivity into gangliosides and neutral glycosphingolipids when threo-PDMP was present in the medium. Treatment of NS-20Y cells with threo-PDMP resulted in a time-dependent decrease in mass levels of gangliosides and neutral glycosphingolipids. After 24 h in the presence of 50 microM threo-PDMP, neutral glycosphingolipid mass was reduced to 32%, where glucosylceramide was the most affected (90% decrease). The ganglioside mass was reduced to 57% of the original content. Neurite outgrowth from neuroblastoma cells in serum-free medium was significantly inhibited by threo-PDMP in a dose-dependent manner. Threo-PDMP also caused retraction of neurites which had been induced to extend in serum-free medium. Pretreatment of cells with GM1 partially restored the ability of NS-20Y cells for neurite outgrowth in the medium containing threo-PDMP. These results suggest a possible role for glycosphingolipids in neurite outgrowth of murine neuroblastoma cells.  相似文献   

20.
Neurite extension from developing and/or regenerating neurons is terminated on contact with their specific synaptic partner cells. However, a direct relationship between the effects of target cell contact on neurite outgrowth suppression and synapse formation has not yet been demonstrated. To determine whether physical/synaptic contacts affect neurite extension from cultured cells, we utilized soma-soma synapses between the identified Lymnaea neurons. A presynaptic cell (right pedal dorsal 1, RPeD1) was paired either with its postsynaptic partner cells (visceral dorsal 4, VD4, and Visceral dorsal 2, VD2) or with a non-target cell (visceral dorsal 1, VD1), and the interactions between their neurite outgrowth patterns and synapse formation were examined. Specifically, when cultured in brain conditioned medium (CM, contains growth-promoting factors), RPeD1, VD4, and VD2 exhibited robust neurite outgrowth within 12-24 h of their isolation. Synapses, similar to those seen in vivo, developed between the neurites of these cells. RPeD1 did not, however, synapse with its non-target cell VD1, despite extensive neuritic overlap between the cells. When placed in a soma-soma configuration (somata juxtaposed against each other), appropriate synapses developed between the somata of RPeD1 and VD4 (inhibitory) and between RPeD1 and VD2 (excitatory). Interestingly, pairing RPeD1 with either of its synaptic partner (VD4 or VD2) resulted in a complete suppression of neurite outgrowth from both pre- and postsynaptic neurons, even though the cells were cultured in CM. A single cell in the same dish, however, extended elaborate neurites. Similarly, a postsynaptic cell (VD4) contact suppressed the rate of neurite extension from a previously sprouted RPeD1. This suppression of the presynaptic growth cone motility was also target cell contact specific. The neurite suppression from soma-soma paired cells was transient, and neuronal sprouting began after a delay of 48-72 h. In contrast, when paired with VD1, both RPeD1 and this non-target cell exhibited robust neurite outgrowth. We demonstrate that this neurite suppression from soma-soma paired cells was target cell contact/synapse specific and Ca(2+) dependent. Specifically, soma-soma pairing in CM containing either lower external Ca(2+) concentration (50% of its control level) or Cd(2+) resulted in robust neurite outgrowth from both cells; however, the incidence of synapse formation between the paired cells was significantly reduced. Taken together, our data show that contact (physical and/or synaptic) between synaptic partners strongly influence neurite outgrowth patterns of both pre- and postsynaptic neurons in a time-dependent and cell-specific manner. Moreover, our data also suggest that neurite outgrowth and synapse formation are differentially regulated by external Ca(2+) concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号