首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The conversion of ATP, L-aspartate, and 5-aminoimidazole-4-carboxyribonucleotide (CAIR) to 5-aminoimidazole-4-(N-succinylcarboxamide) ribonucleotide (SAICAR), ADP, and phosphate by phosphoribosylaminoimidazolesuccinocarboxamide synthetase (SAICAR synthetase) represents the eighth step of de novo purine nucleotide biosynthesis. SAICAR synthetase and other enzymes of purine biosynthesis are targets of natural products that impair cell growth. Prior to this study, no kinetic mechanism was known for any SAICAR synthetase. Here, a rapid equilibrium random ter-ter kinetic mechanism is established for the synthetase from Escherichia coli by initial velocity kinetics and patterns of linear inhibition by IMP, adenosine 5'-(beta,gamma-imido)triphosphate (AMP-PNP), and maleate. Substrates exhibit mutual binding antagonism, with the strongest antagonism between CAIR and either ATP or L-aspartate. CAIR binds to the free enzyme up to 200-fold more tightly than to the ternary enzyme-ATP-aspartate complex, but the latter complex may be the dominant form of SAICAR synthetase in vivo. IMP is a competitive inhibitor with respect to CAIR, suggesting the possibility of a hydrogen bond interaction between the 4-carboxyl and 5-amino groups of enzyme-bound CAIR. Of several aspartate analogues tested (hadacidin, l-malate, succinate, fumarate, and maleate), maleate was by far the best inhibitor, competitive with respect to L-aspartate. Inhibition by IMP and maleate is consistent with a chemical mechanism for SAICAR synthetase that parallels that of adenylosuccinate synthetase.  相似文献   

2.
The Bratton-Marshall reaction can be used to identify patients with adenylosuccinate lyase deficiency. These patients excrete in their urine the dephosphorylated derivative of the de novo purine synthesis intermediate 5'-phosphoribosyl-4-(N-succinylcarboxamide)-5-aminoimidazole (SAICAR). The test described here depends on a coupling reaction of N-1-naphthylethylenediamine with diazotized ribosyl-4-(N-succinylcarboxamide)-5-aminoimidazole giving rise to a fast developing purple chromaphore with a maximum absorbance at 555 nm. Using the closely related compound ribosyl-5-amino-4-imidazolecarboxamide (AICA riboside) as a standard, concentrations as low as 1.0 microM produce a visible color change. The absorption at 555 nM of the azo compound increases as a linear function of the concentration of AICA riboside in the reaction. The use of a filter-paper dipstick for urine sampling and storage is also described. The two metabolites which are present in increased concentration in biological fluids of adenylosuccinate lyase deficient patients are stable on the dipstick for at least 60 days when stored at room temperature (25 degrees C).  相似文献   

3.
The inhibition of Escherichia coli strain B and strain W-11 by 6-methylpurine depended on the formation of 6-methylpurine ribonucleotide by the action of adenine phosphoribosyltransferase (AMP: pyrophosphate phosphoribosyltransferase, EC 2.4.2.7). 6-Methylpurine ribonucleotide inhibited the de novo synthesis of purines, presumably via pseudofeedback inhibition of phosphoribosylpyrophosphate amidotransferase (EC 2.4.2.14). The same mechanism accounted for its inhibition of adenylosuccinate synthetase [IMP: l-aspartate ligase (GDP), EC 6.3.4.4]. Adenine and 6-methylaminopurine prevented inhibition by competing for the action of adenine phosphoribosyltransferase. In addition, adenine reversed this inhibition by replenishing the AMP to bypass both sites of inhibition. Nonproliferating suspensions of strain B-94, which lacked adenylosuccinate lyase (EC 4.3.2.2), converted exogenous hypoxanthine and aspartate to succinoadenine derivatives which accumulated in the medium. Compounds which inhibited adenylosuccinate synthetase inhibited accumulation of the succinoadenine derivatives. A method was described for the isolation of mutants which potentially possessed an altered adenylosuccinate synthetase.  相似文献   

4.
1. Enzymes that convert IMP into adenylosuccinate (adenylosuccinate synthetase) and adenylosuccinate into AMP (adenylosuccinate lyase) were isolated from wheat germ and pea seeds and their properties are described. 2. These enzymes were purified approx. 200-fold from wheat-germ extracts. 3. A heat treatment provided adenylosuccinate lyase free of adenylosuccinate synthetase but the behaviour of the two enzymes was almost identical in a number of fractionation procedures. The two activities were finally separated by filtration on Sephadex G-100. 4. The identification of these enzymes in plant tissues is discussed in relation to the pathway of purine synthesis.  相似文献   

5.
The enzyme adenylosuccinate (sAMP) synthetase has been partially purified from Dictyostelium discoideum using hadacidin-Sepharose 4B affinity chromatography, anion-exchange high-performance liquid chromatography (HPLC), and gel-filtration HPLC, resulting in a 2600-fold purification. Using a newly developed HPLC procedure to assay activity, it has been found that D. discoideum adenylosuccinate synthetase activity has apparent Km values for the substrates IMP, GTP, and aspartate of 36, 23, and 714 microM, respectively. The analog guanosine-5'-(beta, gamma-imino)triphosphate was found to be an inhibitor of GTP with a Ki of 15 microM, and IMP was competitively inhibited by its analog formycin B monophosphate with a Ki of 80 microM. An analysis of these kinetic data showed a pattern consistent with a fully random terter mechanism. Hadacidin, an analog of aspartate, was an inhibitor of that substrate at 86 microM. Other analogs of hadacidin were synthesized and examined for their effect on the sAMP synthetase activity. Compared to hadacidin, which produced 100% inhibition at 5 mM, it was observed that N-acetyl-N-hydroxyglycine, N-formylglycine, N-acetylglycine, and N-hydroxyglycine all inhibited between 50 and 75%, with N-(thiocarboxy)-L-aspartic anhydride less effective at 27%, and N-benzoylglycine at only 6%. N-Formylsarcosine, N-acetylmethionine, O-methylpyruvate oxime, and hadacidin methylester had no effect at this concentration. The adenylosuccinate synthetase activity was dependent on metal ions with maximum activity being obtained with Mg2+. The ability of the aspartate analog hadacidin to bind to the purified adenylosuccinate synthetase was demonstrated using anion-exchange HPLC and [formyl-14C]hadacidin. The radioactivity coeluted with the adenylosuccinate synthetase and the bound, radiolabeled hadacidin was displaced by excess aspartate.  相似文献   

6.
The site of action of hydantocidin was probed using Arabidopsis thaliana plants growing on agar plates. Herbicidal effects were reversed when the agar medium was supplemented with AMP, but not IMP or GMP, suggesting that hydantocidin blocked the two-step conversion of IMP to AMP in the de novo purine biosynthesis pathway. Hydantocidin itself did not inhibit adenylosuccinate synthetase or adenylosuccinate lyase isolated from Zea mays. However, a phosphorylated derivative of hydantocidin, N-acetyl-5'-phosphohydantocidin, was a potent inhibitor of the synthetase but not of the lyase. These results identify the site of action of hydantocidin and establish adenylosuccinate synthetase as an herbicide target of commercial potential.  相似文献   

7.
The present investigation evaluates the effect of AICA-Riboside on the synthesis of purine nucleotides and the growth of normal rat kidney cells in culture. Experiments in the presence and absence of various concentrations of AICA-Riboside were conducted with Dulbecco's Modified Eagle's Medium supplemented with either 1 mM [15N]aspartate or [14N]aspartate. Addition of 50 microM AICA-Riboside to the incubation medium significantly stimulated intracellular adenine nucleotide concentrations following incubation for 48 hours. This stimulation was associated with augmented cell growth and DNA concentration. In contrast, with concentrations above 100 microM of AICA-Riboside in the incubation medium, there was a remarkable inhibition of cell growth and a significant depletion of intracellular pools of adenine nucleotides and DNA. Experiments with [15N]aspartate showed that the initial rate (0-24 hours) of [6-15NH2]adenine nucleotide formation from 1 mM [15N]aspartate was 38.8 +/- 9.6, 67.9 +/- 12.5, and 20.1 +/- 3.8 pmol h-1/10(6) cells in the presence of 0 (control), 50 microM and 500 microM AICA-Riboside, respectively. These observations indicate that the main effect of AICA-Riboside is on the formation of AMP from aspartate and IMP via the sequential action of adenylosuccinate synthetase and adenylosuccinate lyase. The current studies suggest that AICA-Riboside could be used as a factor mediating renal cell mitosis in culture. AICA-Riboside has a biphasic effect on the growth of renal epithelial cells in culture and on their intracellular purine nucleotides and DNA concentration.  相似文献   

8.
Most parasitic protozoa lack the de novo purine biosynthetic pathway and rely exclusively on the salvage pathway for their purine nucleotide requirements. Enzymes of the salvage pathway are, therefore, candidate drug targets. We have cloned the Plasmodium falciparum adenylosuccinate synthetase gene. In the parasite, adenylosuccinate synthetase is involved in the synthesis of AMP from IMP formed during the salvage of the purine base, hypoxanthine. The gene was shown to code for a functionally active protein by functional complementation in a purA mutant strain of Escherichia coli, H1238. This paper reports the conditions for hyperexpression of the recombinant protein in E. coli BL21(DE3) and purification of the protein to homogeneity. The enzyme was found to require the presence of dithiothreitol during the entire course of the purification for activity. Glycerol and EDTA were found to stabilize enzyme activity during storage. The specific activity of the purified protein was 1143.6 +/- 36.8 mUnits/mg. The K(M)s for the three substrates, GTP, IMP, and aspartate, were found to be 4.8 microM, 22.8 microM, and 1.4 mM, respectively. The enzyme was a dimer on gel filtration in buffers of low ionic strength but equilibrated between a monomer and a dimer in buffers of increased ionic strength.  相似文献   

9.
An isolation procedure for phosphoribosyl succinocarboxamideaminoimidazole synthetase (SAICAR synthetase) (EC 6.3.2.6) has been developed. Pure SAICAR synthetase was found to be a monomeric protein with the apparent molecular weight of 36 kDa. The Michaelis constant for the three substrates of the reaction are 1.6 microM for CAIR, 14 microM for ATP and 960 microM for aspartic acid. The structural analogs of CAIR, 5-aminoimidazole ribotide and 5-aminoimidazole-4-carboxamide ribotide, act as competitive inhibitors of SAICAR synthetase. GTP and 2'-dATP can substitute for ATP in the reaction, while CTP and UTP inhibit the enzyme. No structural analogs of the aspartic acid were found to have affinity for SAICAR synthetase. The optimal reaction conditions for the enzyme were established to be at pH 8.0 and magnesium chloride concentration around 5 mM.  相似文献   

10.
The enzymes of the purine nucleotide cycle-AMP deaminase, adenylosuccinate synthetase, and adenylosuccinate lyase-were examined as a functional unit in an in vitro system which simulates the purine nucleotide composition of sarcoplasm. Activity of each cycle enzyme in extracts of rat skeletal muscle was observed to increase as ATP/ADP, reflecting the energy state of the system, was lowered from approximately 50 to 1. The increase in AMP deaminase activity could be attributed to effects of energy state and factors such as AMP concentration, which are obligatorily coupled to energy state. The increases in synthetase and lyase activities were accounted for by increases in the concentration of IMP and adenylosuccinate, respectively. The inhibitory influence of IMP concentration on synthetase activity reported in other systems was not observed in this system; synthetase activity progressively increased as IMP concentration was raised to approximately 4 mM, and apparent saturation occurred at concentrations above 4 mM. Also, adenylosuccinate was found to be an activator of AMP deaminase. The results of this study document that the activities of the enzymes of the purine nucleotide cycle increase in parallel at low energy states, and the components of the cycle function as a coordinated unit with individual enzyme activities linked via concentrations of cycle intermediates.  相似文献   

11.
Adenylosuccinate lyase is a homotetramer that catalyzes two discrete reactions in the de novo synthesis of purines: the cleavage of adenylosuccinate and succinylaminoimidazole carboxamide ribotide (SAICAR). Several point mutations in the gene encoding the enzyme have been implicated in human disease. Bacillus subtilis adenylosuccinate lyase was used as a model system in which mutations were constructed corresponding to those mutations associated with severe human adenylosuccinate lyase deficiency. Site-directed mutagenesis was utilized to construct amino acid substitutions in B. subtilis adenylosuccinate lyase; Met(10), Ile(123), and Thr(367) were replaced by Leu, Trp, and Arg, respectively, and the altered enzymes were expressed in Escherichia coli. These purified enzymes containing amino acid substitutions were found to have substantial catalytic activity and exhibit relatively small changes in their kinetic parameters. The major deviations from the wild-type-like behavior were observed upon biophysical characterization. All of these enzymes with amino acid replacements are associated with marked thermal instability. I123W adenylosuccinate lyase exhibits notable changes in the circular dichroism spectra, and a native gel electrophoresis pattern indicative of some protein aggregation. T367R also exhibits alterations at the quarternary level, as reflected in native gel electrophoresis. Experimental results, combined with homology modeling, suggest that the altered enzymes are primarily structurally impaired. The enzyme instability was found to be lessened by subunit complementation with the wild-type enzyme, under mild conditions; these studies may have implications for the in vivo behavior of adenylosuccinate lyase in heterozygous patients. Residues Met(10), Ile(123), and Thr(367) appear to be located in regions of the enzyme important for maintaining the structural integrity required for a stable, functional enzyme.  相似文献   

12.
By means of spectrophotometric method there was determined the activity of three enzymes of biosynthesis of purine nucleotides: amino imidazole ribonucleotide-carboxylase (AIR-carboxylase, EC 4.1.1.21), an enzyme of biosynthesis of purine nucleotides de novo in plerocercoids of Schistocephalus pungitii and Digramma interrupta; inosine monophosphate-dehydrogenase (IMPh-dehydrogenase, EC 1.2.1.14), an enzyme of salvage path, and adenylosuccinate lyase (EC 4.3.2.2), an enzyme taking part both in biosynthesis de novo and salvage in plerocercoids of Schistocephalus pungitii. The activity of AIR-carboxylase was not determined. Specific activities of adenylosuccinate lyase and IMPh-dehydrogenase amount to (1.3 +/- 0.3) x 10(-3) and (1.2 +/- 0.4) x 10(-3) mumole/min.mg protein, respectively. The activity of the three enzymes was determined in the liver of ten-spined stickleback, a host of S. pungitii plerocercoids. The question of metabolic dependence of Ligulidae plerocercoids on hosts to provide for purine bases is discussed.  相似文献   

13.
Lee P  Gorrell A  Fromm HJ  Colman RF 《Biochemistry》1999,38(18):5754-5763
Adenylosuccinate synthetase from Escherichia coli is inactivated in a biphasic reaction by 6-(4-bromo-2,3-dioxobutyl)thioadenosine 5'-monophosphate (6-BDB-TAMP) at pH 7.0 and 25 degrees C. The initial fast-phase inactivation is not affected by the presence of active-site ligands and can be completely eliminated by blocking Cys291 of the enzyme with N-ethylmaleimide (NEM). Reaction of the NEM-treated enzyme with 6-BDB-[32P]TAMP results in 2 mol of reagent incorporated/mol of enzyme subunit. The inactivation kinetics of the slow-phase exhibit an apparent KI of 40.6 microM and kmax of 0.0228 min-1. Active-site ligands, either adenylosuccinate or IMP and GTP, completely prevent inactivation of the enzyme by 6-BDB-TAMP, whereas IMP or IMP and aspartate is much less effective in protection. 6-BDB-TAMP-inactivated enzyme has a 3-fold increase in Km for aspartate with no change in Km for IMP or GTP. Protease digestion of 6-BDB-[32P]TAMP inactivated enzyme reveals that both Arg131 and Arg303 are modified by the affinity-labeling reagent. The crystal structure [Poland, B. W., Fromm, H. J., and Honzatko, R. B. (1996) J. Mol. Biol. 264, 1013-1027] and site-directed mutagenesis [Kang, C., Sun, N., Poland, B. W., Gorrell, A., and Fromm, H. J. (1997) J. Biol. Chem. 272, 11881-11885] of E. coli adenylosuccinate synthetase show that Arg303 interacts with the carboxyl group of aspartate and the 2'-OH of the ribose of IMP and Arg131 is involved in stabilizing aspartate in the active site of the enzyme. We conclude that 6-BDB-TAMP functions as a reactive adenylosuccinate analogue in modifying both Arg131 and Arg303 in the active site of adenylosuccinate synthetase.  相似文献   

14.
Inadequate oxygenation of cardiac muscle leads to rapid loss of high energy compounds essential for contractile function. ATP can be regenerated by synthesis de novo, a route operating at a relatively slow rate in the heart. Myocytes isolated from mature rat heart have been used to measure the rate of ATP synthesis de novo from both [14C]glycine and [14C]ribose. Incorporation of glycine into ATP is accelerated 10-fold in the presence of 1 mM ribose. Myocytes also accumulate both precursors into IMP and four other metabolites on the de novo synthesis pathway. These metabolites represent 80% of the glycine entering the pathway. The potential of de novo synthesis for restoration of adenine nucleotides appears to be limited by the rates of early reactions, adenylosuccinate synthetase being only one of the enzymes operating at a sufficiently slow rate to make this pathway an inherently weak route for the restoration of normal energy status in post-ischemic myocardium. Interventions are being sought to alleviate these apparent metabolic delays.  相似文献   

15.
Background: Adenylosuccinate lyase is an enzyme that plays a critical role in both cellular replication and metabolism via its action in the de novo purine biosynthetic pathway. Adenylosuccinate lyase is the only enzyme in this pathway to catalyze two separate reactions, enabling it to participate in the addition of a nitrogen at two different positions in adenosine monophosphate. Both reactions catalyzed by adenylosuccinate lyase involve the beta-elimination of fumarate. Enzymes that catalyze this type of reaction belong to a superfamily, the members of which are homotetramers. Because adenylosuccinate lyase plays an integral part in maintaining proper cellular metabolism, mutations in the human enzyme can have severe clinical consequences, including mental retardation with autistic features. Results: The 1.8 A crystal structure of adenylosuccinate lyase from Thermotoga maritima has been determined by multiwavelength anomalous dispersion using the selenomethionine-substituted enzyme. The fold of the monomer is reminiscent of other members of the beta-elimination superfamily. However, its active tetrameric form exhibits striking differences in active-site architecture and cleft size. Conclusions: This first structure of an adenylosuccinate lyase reveals that, along with the catalytic base (His141) and the catalytic acid (His68), Gln212 and Asn270 might play a vital role in catalysis by properly orienting the succinyl moiety of the substrates. We propose a model for the dual activity of adenylosuccinate lyase: a single 180 degrees bond rotation must occur in the substrate between the first and second enzymatic reactions. Modeling of the pathogenic human S413P mutation indicates that the mutation destabilizes the enzyme by disrupting the C-terminal extension.  相似文献   

16.
The ability of bovine retina to synthesize purines de novo is shown for the first time. Amidophosphoribosyl transferase (EC 2.4.2.14), the enzyme controlling the rate of the process, and phosphoribosyl pyrophosphate synthetase (EC 2.7.6.1), the enzyme regulating the intracellular contents of phosphoribosyl pyrophosphate (PRPP), were purified and characterized. The molecular masses of the enzyme subunits are similar to those of the purified enzyme from the liver. The molecular masses of amidophosphoribosyl transferase, PRPP synthetase catalytic subunit, and two PRPP synthetase-associated proteins are 50, 34, 39, and 41 kD, respectively. The apparent Km values of the enzymes and coenzymes are similar to those of the purified enzymes from the liver. For amidophosphoribosyl transferase, the apparent Km for Gln and PRPP are 0.75 +/- 0.05 and 0.66 +/- 0.09 mM, respectively (the corresponding Vmax values are 59 +/- 3 and 136 +/- 12 nmoles PPi/min per mg protein). For PRPP synthetase, the apparent Km for ribose-5-phosphate and ATP are 37.9 +/- 0.5 and 53 +/- 7 microM, respectively (the corresponding Vmax values are 61 +/- 4 and 52 +/- 3 nmoles PRPP/min per mg protein). The sensitivity of the retinal PRPP synthetase to inhibition by ADP and AMP was significantly lower than that of the enzyme from the liver.  相似文献   

17.
Human peripheral lymphocytes were incubated with Phaseolus vulgaris phytohemagglutinin. The induction of glutamine-utilizing carbamyl phosphate synthetase (EC 2.7.2.5) and aspartate transcarbamylase (EC 2.1.3.2) for pyrimidine biosynthesis de novo and the induction of uridine kinase were observed as described previously (Ito, K., and Uchino, H. (1971) J. Biol. Chem. 246, 4060-4065; Ito, K., and Uchino, H. (1973) J. Biol. Chem. 248, 389-392; Lucas, Z.J. (1967) Science 156, 1237-1240). By the addition of 1 mM guanine to the culture, the induction of the former two enzymes was inhibited, while that of uridine kinase was not, and even accelerated. An increase in the rate of [14C] bicarbonate incorporation into the acid-soluble uridine nucleotides via the de novo pathway for pyrimidine biosynthesis after phytohemagglutinin stimulation was inhibited by guanine, the incorporation rate being almost at the level of the control culture without phytohemagglutinin. Guanosine had a similar effect on pyrimidine biosynthesis. The induction of the three enzymes mentioned above was completely inhibited by adenine (1 mM). Guanine and guanosine seem to have a unique inhibitory effect on the induction of glutamine-utilizing carbamyl phosphate synthetase and aspartate transcarbamylase.  相似文献   

18.
Adenylosuccinate lyase catalyzes two separate reactions in the de novo purine biosynthetic pathway. Through its dual action in this pathway, adenylosuccinate lyase plays an integral part in cellular replication and metabolism. Mutations in the human enzyme can result in severe neurological disorders, including mental retardation with autistic features. The crystal structure of adenylosuccinate lyase from the hyperthermophilic archaebacterium Pyrobaculum aerophilum has been determined to 2.1 A resolution. Although both the fold of the monomer and the architecture of the tetrameric assembly are similar to adenylosuccinate lyase from the thermophilic eubacterium Thermotoga maritima, the archaebacterial lyase contains unique features. Surprisingly, the structure of adenylosuccinate lyase from P. aerophilum reveals that this intracellular protein contains three disulfide bonds that contribute significantly to its stability against thermal and chemical denaturation. The observation of multiple disulfide bonds in the recombinant form of the enzyme suggests the need for further investigations into whether the intracellular environment of P. aerophilum, and possibly other hyperthermophiles, may be compatible with protein disulfide bond formation. In addition, the protein is shorter in P. aerophilum than it is in other organisms. This abbreviation results from an internal excision of a cluster of helices that may be involved in protein-protein interactions in other organisms and may relate to the observed clinical effects of human mutations in that region.  相似文献   

19.
Adenylosuccinate lyase (ADL) catalyzes the breakdown of 5-aminoimidazole- (N-succinylocarboxamide) ribotide (SAICAR) to 5-aminoimidazole-4-carboxamide ribotide (AICAR) and fumarate, and of adenylosuccinate (ADS) to adenosine monophosphate (AMP) and fumarate in the de novo purine biosynthetic pathway. ADL belongs to the argininosuccinate lyase (ASL)/fumarase C superfamily of enzymes. Members of this family share several common features including: a mainly alpha-helical, homotetrameric structure; three regions of highly conserved amino acid residues; and a general acid-base catalytic mechanism with the overall beta-elimination of fumarate as a product. The crystal structures of wild-type Escherichia coli ADL (ec-ADL), and mutant-substrate (H171A-ADS) and -product (H171N-AMP.FUM) complexes have been determined to 2.0, 1.85, and 2.0 A resolution, respectively. The H171A-ADS and H171N-AMP.FUM structures provide the first detailed picture of the ADL active site, and have enabled the precise identification of substrate binding and putative catalytic residues. Contrary to previous suggestions, the ec-ADL structures implicate S295 and H171 in base and acid catalysis, respectively. Furthermore, structural alignments of ec-ADL with other superfamily members suggest for the first time a large conformational movement of the flexible C3 loop (residues 287-303) in ec-ADL upon substrate binding and catalysis, resulting in its closure over the active site. This loop movement has been observed in other superfamily enzymes, and has been proposed to be essential for catalysis. The ADL catalytic mechanism is re-examined in light of the results presented here.  相似文献   

20.
Phosphoribosylaminoimidazole-succinocarboxamide synthetase (SAICAR synthetase) converts 4-carboxy-5-aminoimidazole ribonucleotide (CAIR) to 4-(N-succinylcarboxamide)-5-aminoimidazole ribonucleotide (SAICAR). The enzyme is a target of natural products that impair cell growth. Reported here are the crystal structures of the ADP and the ADP.CAIR complexes of SAICAR synthetase from Escherichia coli, the latter being the first instance of a CAIR-ligated SAICAR synthetase. ADP and CAIR bind to the active site in association with three Mg(2+), two of which coordinate the same oxygen atom of the 4-carboxyl group of CAIR; whereas, the third coordinates the alpha- and beta-phosphoryl groups of ADP. The ADP.CAIR complex is the basis for a transition state model of a phosphoryl transfer reaction involving CAIR and ATP, but also supports an alternative chemical pathway in which the nucleophilic attack of l-aspartate precedes the phosphoryl transfer reaction. The polypeptide fold for residues 204-221 of the E. coli structure differs significantly from those of the ligand-free SAICAR synthetase from Thermatoga maritima and the adenine nucleotide complexes of the synthetase from Saccharomyces cerevisiae. Conformational differences between the E. coli, T. maritima, and yeast synthetases suggest the possibility of selective inhibition of de novo purine nucleotide biosynthesis in microbial organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号