首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have determined the complete nucleotide sequence of Xenopus laevis 28S rDNA (4110 bp). In order to locate evolutionarily conserved regions within rDNA, we compared the Xenopus 28S sequence to homologous rDNA sequences from yeast, Physarum, and E. coli. Numerous regions of sequence homology are dispersed throughout the entire length of rDNA from all four organisms. These conserved regions have a higher A + T base composition than the remainder of the rDNA. The Xenopus 28S rDNA has nine major areas of sequence inserted when compared to E. coli 23S rDNA. The total base composition of these inserts in Xenopus is 83% G + C, and is generally responsible for the high (66%) G + C content of Xenopus 28S rDNA as a whole. Although the length of the inserted sequences varies, the inserts are found in the same relative positions in yeast 26S, Physarum 26S, and Xenopus 28S rDNAs. In one insert there are 25 bases completely conserved between the various eukaryotes, suggesting that this area is important for eukaryotic ribosomes. The other inserts differ in sequence between species and may or may not play a functional role.  相似文献   

2.
Conditions for the production of a complementary DNA sequence for use in studies of ribosomal RNA are described. E. coli DNA polymerase I is used to transcribe highly purified 28S ribosomal RNA from rat liver. The reaction is sensitive to the tertiary structure of the rRNA template-primer. The complementary DNA hybridizes to its rRNA template with a Rot12 of 0.02. The hybrid formed between 28S ribosomal RNA and complementary DNA has a Tm of 73°C. The probe reacts with total rat nuclear RNA with a Rot12 of 1.0.  相似文献   

3.
4.
We have determined the nucleotide sequence of Xenopus borealis 28S ribosomal DNA (rDNA) and have revised the sequence of Xenopus laevis 28S rDNA (Ware et al., Nucl. Acids Res. 11, 7795-7817 (1983)). In the regions encoding the conserved structural core of 28S rRNA (2490 nucleotides) there are only four differences between the two species, each difference being a base substitution. In the variable regions, also called eukaryotic expansion segments (ca. 1630 nucleotides) there are some 61 differences, due to substitutions, mini-insertions and mini-deletions. Thus, evolutionary divergence in the variable regions has been at least 20-fold more rapid than in the conserved core. A search for intraspecies sequence variation has revealed minimal heterogeneity in X. laevis and none in X. borealis. At three out of four sites where heterogeneity was found in X. laevis (all in variable regions) the minority variant corresponded to the standard form in X. borealis. Intraspecies heterogeneity and interspecies divergence in the 28S variable regions are much less extensive than in the transcribed spacers. The 28S sequences are from the same clones that were used previously for sequencing the 18S genes and transcribed spacers. The complete sequences of the 40S precursor regions of the two reference clones are given.  相似文献   

5.
6.
DNA sequencing of several cloned human 28S ribosomal RNA gene fragments has revealed sequence heterogeneity (1) but it was not clear whether these are inactive pseudogenes or are active genes that are transcribed and represented in ribosomes. S1 nuclease analysis allowed us to examine the population of ribosomal RNA molecules of a cell, and we found that 28S rRNA is a heterogeneous assortment of molecules in both mono- and polysomal preparations. Sequence variation, although largely concentrated in variable regions of the molecule, apparently also occurs in the conserved regions.  相似文献   

7.
3H-rRNA obtained from Xenopus laevis tissue cultured cells, or a 3H-cRNA made from Xenopus ribosomal DNA, was used for heterologous in situ hybridisation with human lymphocyte metaphase chromosomes. Prior to hybridisation, chromosome spreads were stained with Quinacrine and selected cells showing good Q-banding photographed; the same cells were then rephotographed after autoradiography and pairs of photographs for each cell were used to make dual karyotypes. The chromosomes within each karyotype were divided into equal sized segments (approx. 0.7 μ), with a fixed number of segments for each chromosome type. The distribution of silver grains between segments showed that the 3H-RNAs hybridised specifically to the nucleolar organising regions of the D and G group chromosomes with no other sites of localised labelling in the complement. Control experiments showed no localisation, with insignificant labelling, when metaphase spreads were incubated in a mixture containing Xenopus 3H-rRNA and competing cold human (HeLa) rRNA. Filter hybridisation experiments on isolated human DNA showed that the Xenopus derived 3H-RNAs hybridised to a fraction of human DNA which was on the heavy side of the main DNA peak and that these RNAs were competed out in the presence of excess cold human rRNA, confirming the specificity of the heterologous hybridisation. In situ hybridisation experiments were also carried out on cells from individuals with one chromosome pair showing heteromorphism for either a very long stalk (nucleolar constriction) subtending a satellite, or a large satellite. It was shown that the chromosome with the large stalk hybridised four times as much 3H-rRNA as its homologue, whereas differences in the sizes of the subtended satellites did not materially affect hybridisation levels indicating that rDNA is located in the stalks and not the satellites. The amount of 3H-rRNA hybridised differs between chromosomes and individuals; these differences are heritable and rDNA can be detected by in situ hybridisation in all three chromosomes number 21 in cells from Down's patients and in translocated chromosomes conta.ining a nucleolar constriction. Different D and G group chromosomes which hybridised equal amounts of 3H-rRNA participated in rosette associations at metaphase in a random fashion in some individuals and in a non-random fashion in others. In all individuals studied chromosomes with large amounts of rDNA were not found to be preferentially involved in association. It was therefore concluded that the probability of a chromosome being involved in the formation of a common nucleolus is not a simple function of its rDNA content and other possible factors are considered.  相似文献   

8.
Abstract Leptophlebiidae is among the largest and most diverse groups of extant mayflies (Ephemeroptera), but little is known of family‐level phylogenetic relationships. Using two nuclear genes (the D2 + D3 region of 28S ribosomal DNA and histone H3) and maximum parsimony (MP), maximum likelihood (ML) and Bayesian inference (BI), we inferred the evolutionary relationships of 69 leptophlebiids sampled from six continents and representing 30 genera plus 11 taxa of uncertain taxonomic rank from Madagascar and Papua New Guinea. Although we did not recover monophyly of the Leptophlebiidae, monophyly of two of the three leptophlebiid subfamilies, Habrophlebiinae and Leptophlebiinae, was recovered with moderate to strong support in most analyses. The Atalophlebiinae was rendered paraphyletic as a result of the inclusion of members of Ephemerellidae or the Leptophlebiinae clade. For the species‐rich Atalophlebiinae, four groups of taxa were recovered with moderate to strong branch support: (i) an endemic Malagasy clade, (ii) a Paleoaustral group, a pan‐continental cluster with members drawn from across the southern hemisphere, (iii) a group, uniting fauna from North America, southeast Asia and Madagascar, which we call the Choroterpes group and (iv) a group uniting three New World genera, Thraulodes, Farrodes and Traverella. Knowledge of the phylogenetic relationships of the leptophlebiids will aid in future studies of morphological evolution and biogeographical patterns in this highly diverse and speciose family of mayflies.  相似文献   

9.
M A Peters  T A Walker  N R Pace 《Biochemistry》1982,21(10):2329-2335
Limited digestion of mouse 5.8S ribosomal RNA (rRNA) with RNase T2 generates 5'- and 3'-terminal "half-molecules". These fragments are capable of independently and specifically binding to 28S rRNA, so there exist at least two contacts in the 5.8S rRNA for the 28S rRNA. The dissociation constants for the 5.8S/28S, 5' 5.8S fragment/28S, and 3' 5.8S fragment/28S complexes are 9 x 10(-8) M, 6 x 10(-8) M, and 13 x 10(-8) M, respectively. Thus, each of the fragment binding sites contributes about equally to the overall binding energy of the 5.8S/28S rRNA complex, and the binding sites act independently, rather than cooperatively. The dissociation constants suggest that the 5.8S rRNA termini from short, irregular helices with 28S rRNA. Thermal denaturation data on complexes containing 28S rRNA and each of the half-molecules of 5.8S rRNA indicate that the 5'-terminal binding site(s) exist(s) in a single conformation while the 3'-terminal site exhibits two conformational alternatives. The functional significance of the different conformational states is presently indeterminate, but the possibility they may represent alternative forms of a conformational switch operative during ribosome function is discussed.  相似文献   

10.
Human S3 protein (hS3) is a structural component of the ribosome, which, in addition to its role in translation, possesses activities typical of some DNA repair enzymes. Recombinant hS3 purified from inclusion bodies and refolded under different conditions was investigated for its ability to bind and cleave oligodeoxyribonucleotide substrates containing different lesions abundant in cellular DNA (apurine/apyrimidine sites, uracil, 8-oxoguanine, 8-oxoadenine, 5,6-dihydrouracil, hypoxanthine). hS3 catalyzed cleavage of apurine/apyrimidine sites through beta-elimination mechanism forming a transient Schiff base covalent intermediate, but did not cleave substrates containing other lesions. Refolding of hS3 in the presence of Fe2+ and S2- ions did not increase its activity, despite the earlier suggestions that this protein could contain an iron-sulfur cluster. Binding of hS3 to DNA ligands containing oxidized and deaminated bases was less efficient than its binding to undamaged DNA. Therefore, the activity of hS3 on apurine/apyrimidine sites is not likely to be involved in the global in vivo DNA repair but could have a role in the repair in some specific locations in the genome.  相似文献   

11.
Human S3 (hS3) is a structural component of the ribosome and, in addition to its role in translation, possesses apurinic/apyrimidinic (AP) lyase activity, characteristic of DNA repair enzymes. Recombinant hS3 was isolated from inclusion bodies, refolded under different conditions, and tested for the ability to bind and cleave oligodeoxyribonucleotide substrates with various lesions abundant in genomic DNA: AP sites, uracil, 8-oxoguanine, 8-oxoadenine, 5,6-dihydrouracil, and hypoxanthine. It was found that hS3 is capable of cleaving AP sites via the β-elimination mechanism, producing a Schiff base covalent intermediate, but cannot cleave substrates with the other lesions. Refolding in the presence of Fe2+ and S2? did not increase hS3 activity, suggesting the absence of an iron-sulfur cluster. The binding of hS3 with DNA ligands containing oxidized or deaminated bases was less efficient than with intact DNA. It was assumed that the catalytic activity of hS3 towards AP sites is most likely unimportant for global DNA repair in vivo, but is possibly involved in repairing DNA sites in certain genome regions.  相似文献   

12.
Characterization of cloned rat ribosomal DNA fragments   总被引:4,自引:0,他引:4  
Summary Two Charon 4A lambda bacteriophage clones were characterized which contain all and part of the 18S ribosomal DNA of the rat. One clone contained two Eco RI fragments which include the whole 18S ribosomal RNA region and part of 28S ribosomal RNA region. The other clone contained an Eco RI fragment which covers part of 18S ribosomal RNA region. There were differences between the two clones in the non-transcribed spacer regions suggesting that there is heterogeneity in the non-transcribed spacer regions of rat ribosomal genes. The restriction map of the cloned mouse ribosomal DNA. Eco RI, Hind III, Pst I, and Bam HI sites in 18S ribosomal RNA region were in the same places in mouse and rat DNA but the restriction sites in the 5-spacer regions were different.  相似文献   

13.
The primary structure of 28S ribosomal RNA constitutes a conserved core which is similar among most 23S-like rRNAs and expansion segments which occur at specific positions in the sequence. The expansion segments account for most of the size difference between prokaryotic (archaeal and eubacterial) and eukaryotic rRNAs and they exhibit a sequence variation which is unique among rRNAs. We have investigated the sequence variation of one of the expansion segments, V8, by sequencing a total of 111 V8 segments from 9 different human cell lines and tissues and have found 35 different variants. The variation occur mainly at two 'hot spots' which are separated by 170 nucleotides in the primary sequence but are neighbours in the secondary structure. The sequence of V8 segments varies both within and between human cell lines and tissues. The implications for the evolution of the eukaryotic 28S rRNA are discussed together with possible functions of the expansion segments. We also present a secondary structure model for the V8 segment based on comparative sequence analysis and chemical and enzymatic foot printing.  相似文献   

14.
Discrete cleavages within 28S rRNA divergent domains have previously been found to coincide with DNA fragmentation during apoptosis. Here we show that rRNA and DNA cleavages can occur independently in apoptotic cells, i.e. that the previously observed correlation is likely to be coincidental. In HL-60 cells, apoptosis with massive DNA fragmentation could be induced without any signs of rRNA cleavage. The opposite situation; rRNA cleavage without concomitant internucleosomal DNA fragmentation, was found in okadaic acid-treated Molt-4 cells. Other leukemia cell lines underwent apoptosis either without (K562 and Molt-3) or with (U937) both forms of polynucleotide cleavage. In K562 cells transfected with a temperature-sensitive p53 mutant, internucleosomal DNA fragmentation but not 28S rRNA cleavage was inducible by wild-type p53 expression. The absence of apoptotic rRNA cleavage in some cell types suggests that this phenomenon is tightly regulated and unrelated to DNA fragmentation or a presumed scheme for general macromolecular degradation in apoptotic cells.  相似文献   

15.
Cloning of an Arabidopsis ribosomal protein S28 cDNA.   总被引:2,自引:2,他引:0       下载免费PDF全文
I Hwang  H M Goodman 《Plant physiology》1993,102(4):1357-1358
  相似文献   

16.
The amino acid sequence of the rat 40S ribosomal subunit protein S28 was deduced from the sequence of nucleotides in a recombinant cDNA. Ribosomal protein S28 has 69 amino acids and has a molecular weight of 7,836. Hybridization of the cDNA to digests of nuclear DNA suggests that there are 8-10 copies of the S28 gene. The mRNA for S28 is about 450 nucleotides in length. Rat S28 is homologous to Saccharomyces cerevisiae S33.  相似文献   

17.
Malygin AA  Karpova GG 《FEBS letters》2010,584(21):4396-4400
After resolving the crystal structure of the prokaryotic ribosome, mapping the proteins in the eukaryotic ribosome is a challenging task. We applied RNase H digestion to split the human 40S ribosomal subunit into head and body parts. Mass spectrometry of the proteins in the 40S subunit head revealed the presence of eukaryote-specific ribosomal protein S28e. Recombinant S28e was capable of specific binding to the 3′ major domain of the 18S rRNA (Ka = 8.0 ± 0.5 × 109 M−1). We conclude that S28e has a binding site on the 18S rRNA within the 40S subunit head.

Structured summary

MINT-8044084: S8 (uniprotkb:P62241) and S19 (uniprotkb:P39019) colocalize (MI:0403) by cosedimentation through density gradient (MI:0029)MINT-8044095: S8 (uniprotkb:P62241), S19 (uniprotkb:P39019) and S13 (uniprotkb:P62277) colocalize (MI:0403) by cosedimentation through density gradient (MI:0029)MINT-8044024: S29 (uniprotkb:P62273), S28 (uniprotkb:P62857), S21 (uniprotkb:P63220), S20 (uniprotkb:P60866), S26 (uniprotkb:P62854), S25 (uniprotkb:P62851), S12 (uniprotkb:P25398), S17 (uniprotkb:P08708), S19 (uniprotkb:P39019), S14 (uniprotkb:P62263), S16 (uniprotkb:P62249) and S11 (uniprotkb:P62280) colocalize (MI:0403) by cosedimentation through density gradient (MI:0029)MINT-8044065: S29 (uniprotkb:P62273), S28 (uniprotkb:P62857), S19 (uniprotkb:P39019), S14 (uniprotkb:P62263) and S16 (uniprotkb:P62249) colocalize (MI:0403) by cosedimentation through density gradient (MI:0029)  相似文献   

18.
19.
Turnover of ribosomal 28S and 18S rRNA during rat liver regeneration   总被引:1,自引:0,他引:1  
The turnover of 28S and 18S rRNA was studied in the course of 12 d after partial hepatectomy, including the proliferative (1st to 5th d) and post-proliferative (6th to 12th d) phases of liver regeneration. Turnover data, as the day-to-day rates of synthesis and degradation of 28S and 18S rRNA, were obtained by employing a suitable experimental procedure for the estimation of the increase of the amount of rRNA in the regenerating liver. It was found that 28S and 18S rRNA are accumulated into the cytoplasm and degraded at identical rates both in the proliferative and post proliferative phases. The turnover of both rRNA moieties is markedly slower during the first 3 d of liver regeneration.  相似文献   

20.
Complementarity between ferritin H mRNA and 28 S ribosomal RNA   总被引:4,自引:0,他引:4  
We have found an interesting complementarity in sequences of human ferritin H mRNA and 28 S ribosomal RNA. Immediately upstream of the initiating AUG in the ferritin mRNA is a stretch of 67 nucleotides which contains sequences complementary to several regions in 28 S RNA. One such region can form 55 base pairings with the 5' noncoding region of the ferritin H mRNA. Most of the complementarity is due to repeats of CCG in the ferritin mRNA and GGC in the ribosomal RNA. The regions of complementarity in the 28 S RNA appear to be expansion sequences that have arisen in the evolution of eukaryotic ribosomal RNA. We suggest that interaction of ferritin mRNA and 28 S RNA may function to regulate the stability and/or translatability of ferritin mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号