首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding patterns of gene flow, selection and genetic diversity within and among populations is a critical element of predicting how long-term changes in environmental conditions are likely to affect species distribution. The intertidal mussel Perna perna consists of two distinct genetic lineages in South Africa, but the mechanisms maintaining these lineages remains obscure. We used regional oceanography and lineage-specific responses to environmental conditions as proxies for gene flow and local selection, respectively, to test how these mechanisms could shape population genetic structure. Laboratory experiments supported the field findings that mussels on the east coast (eastern lineage) are physiologically more tolerant of sand inundation and high temperatures than those on the south coast (western lineage). Temperature loggers mimicking mussel body temperatures revealed that mussels experience higher body temperatures during aerial exposure on the subtropical east coast than on the temperate south coast. Translocations showed that, on the east coast, the western lineage suffered higher mortality rates than local individuals, while on the south coast, mortality rates did not differ significantly between the lineages. Nearshore drogues showed remarkably little overlap between the trajectories of drifters released off the south coast and those released off the east coast. Physiological tolerances can thus explain the exclusion of western individuals from the east coast, but they cannot explain the exclusion of the eastern lineage from the south coast. In contrast, however, ocean dynamics may limit larval dispersal between the two lineages, helping to explain the absence of eastern individuals from the south coast. We emphasise the importance of a multidisciplinary approach in a macro-ecological context to understand fully the mechanisms promoting evolutionary divergence between genetic entities. Our results suggest that phylogeographic patterns of Perna perna may be maintained by a combination of local conditions and the isolating effect of the Agulhas Current that reduces gene exchange.  相似文献   

2.
The genetic population structure and genetic diversity of yellowtail kingfish Seriola lalandi from the coastal south‐eastern Pacific Ocean (SEP) were evaluated at spatiotemporal scale in order to understand the ecology of this species. Between 2012 and 2015, temporal and spatial population genetic structure and a low genetic diversity were detected in S. lalandi from SEP. These results suggest that S. lalandi specimens arriving annually from offshore to the SEP coast could come from at least two genetically distinct populations, revealing a particular life strategy (i.e. reproductive or habitat segregation) for this fish species. Therefore, the SEP coast might constitute a point of population mixing for this species. Additionally, the low genetic diversity of S. lalandi in the SEP could be a result of a founder effect or overfishing. Regardless of the process explaining the genetic diversity and structure of S. lalandi in this geographical area, this new information should be considered in order to implement successful fishery management of this resource in the South Pacific.  相似文献   

3.
This study analyzed the genetic diversity and patterns of genetic structure in Colombian populations of Avicennia germinans L. using microsatellite loci. A lower genetic diversity was found on both the Caribbean (Ho = 0.439) and the Pacific coasts (Ho = 0.277) than reported for the same species in other locations of Central American Pacific, suggesting the deterioration of genetic diversity. All the populations showed high inbreeding coefficients (0.131–0.462) indicating heterozygotes deficience. The genetic structure between the Colombian coasts separated by Central American Isthmus was high (FRT = 0.39) and the analyses of the genetic patterns of A. germinans revealed a clear differentiation of populations and no-recent gene flow evidence between coasts. Genetic structure was found within each coast (FST = 0.10 for the Caribbean coast and FST = 0.22 for the Pacific coast). The genetic patterns along the two coasts appear to reflect a forcing by local geomorphology and marine currents. Both coasts constitute a different Evolutionary Significant Unit, so we suggest for future transplantations plans that propagules or saplings of the populations of the Caribbean coast should not be mixed with those of the Pacific Colombian coast. Besides, we suggest that reforestation efforts should carefully distinguish propagules sources within each coast.  相似文献   

4.
Distinguishing natural versus anthropogenic dispersal of organisms is essential for determining the native range of a species and implementing an effective conservation strategy. For cryptogenic species with limited historical records, molecular data can help to identify introductions. Nematostella vectensis is a small, burrowing estuarine sea anemone found in tidally restricted salt marsh pools. This species’ current distribution extends over three coast lines: (i) the Atlantic coast of North America from Nova Scotia to Georgia, (ii) the Pacific coast of North America from Washington to central California, and (iii) the southeast coast of England. The 1996 IUCN Red List designates N. vectensis as “vulnerable” in England. Amplified fragment length polymorphism (AFLP) fingerprinting of 516 individuals from 24 N. vectensis populations throughout its range and mtDNA sequencing of a subsample of these individuals strongly suggest that anthropogenic dispersal has played a significant role in its current distribution. Certain western Atlantic populations of N. vectensis exhibit greater genetic similarity to Pacific populations or English populations than to other western Atlantic populations. At the same time, F-statistics showing high degrees of genetic differentiation between geographically proximate populations support a low likelihood for natural dispersal between salt marshes. Furthermore, the western Atlantic harbors greater genetic diversity than either England or the eastern Pacific. Collectively, these data clearly imply that N. vectensis is native to the Atlantic coast of North America and that populations along the Pacific coast and in England are cases of successful introduction.  相似文献   

5.
Genetic variation and divergence among samples of Chilean hake Merluccius gayi, from three localities off the coast of Chile and one locality off the coast of northern Peru, were assessed using sequences from the control region of mitochondrial DNA. Homogeneity tests revealed occurrence of at least three distinct genetic stocks of M. gayi within the region sampled. Factors potentially contributing to genetic divergence among M. gayi probably include hydrodynamics and behaviour.  相似文献   

6.
Galleguillos  R.  Troncoso  L.  Oyarzún  C.  Astorga  M.  Peñaloza  M. 《Hydrobiologia》2000,420(1):49-54
The genetic structure of Chilean hake Merluccius gayi gayi, was analyzed using starch gel protein electrophoresis. Samples were collected from four localities along the coast off Chile. A total of 1500 specimens sampled from Coquimbo, San Antonio, Talcahuano and Puerto Montt were used in the study. Genetic information was obtained for six allozyme loci Pgi-1, Pgi-2, Pgm, Idh-1, Idh-2 and Aat. The results of the analysis showed no significant allelic differences among samples from various localities, with an average FST value of 0.007 for all loci and samples. A heterogeneity test for all loci and specimens from the four localities showed only two significant values. Thus, Chilean hake populations along the coast of Chile appear to be genetically homogeneous.  相似文献   

7.
We investigated the genetic variation of Avicennia germinans using 172 AFLP (Amplified Fragment Length Polymorphism) bands of 45 plants from four localities on the Colombian Pacific coast: 11 from Virudó (Chocó), 10 from La Plata (Valle), 12 from Tumaco (Nariño), and 12 from Chontal (Nariño). AFLP variation among localities (16.2%) was highly significant (AMOVA; P < 0.0001). All the analyses showed that Tumaco was the most genetically distinct locality of the four under study. The other three localities, La Plata, Virudó, and Chontal, apparently form a large single subpopulation with high‐to‐moderate gene flow among localities. We also found the genetic diversity of A. germinans on the Colombian Pacific coast (HE= 0.251) higher than that estimated by others over the broad geographic range of A. germinans. All these results together show that mangroves on the Colombian Pacific coast deserve a strong investigative effort to improve our ecological, evolutionary, and biogeographic knowledge of this important tropical forest type.  相似文献   

8.
The intraspecific genetic diversity of the kelp Undaria pinnatifida (Harvey) Suringar (Laminariales, Phaeophyceae) was investigated using DNA sequences of the mitochondrial cytochrome oxidase subunit 3 (cox3) gene and internal transcribed spacer 1 (ITS1) of nuclear ribosomal DNA in plants collected from 21 localities along the Japanese coast between 2001 and 2003. Morphological variation was also examined and compared with the genetic diversity. Cox3 analyses of 106 plants revealed 9 haplotypes (I–IX) that differed from each other by 1–7 bp (all synonymous substitutions). Haplotype I was distributed in Hokkaido and the northern Pacific coast of Honshu, while haplotype III was found along the Sea of Japan coast of Honshu. Other types were found along the central and southern coast of Honshu. ITS1 analyses of 42 plants revealed 0–1.7% nucleotide differences, but plants from the Sea of Japan coast and northern Japan had similar sequences. The lower genetic differentiation along the Sea of Japan and northern coasts might be due to the recent establishment (after the middle of the last glacial period) of the Sea of Japan flora. The cox3 haplotype of cultivated plants was found in natural populations occurring close to cultivation sites (Naruto, Tokushima Pref., and Hokutan, Hyogo Pref.). This suggests that cultivated plants possibly escaped and spread or crossed with plants of natural populations. Morphological analyses of variation in 10 characters were conducted using 66 plants. The results showed no significant local variation owing to the wide variation in each population and did not support any forma previously described. No correlations between the morphological characters and cox3 haplotypes were detected.  相似文献   

9.
A simple method developed for genomic DNA isolation from fungus was tested on the red alga, Gelidium sesquipedale (Clem.) Born et Thur., which is commercially exploited for its high sulfated polysaccharide (agar) content. This method is faster, cheaper, and less toxic than conventional phenol/chloroform methods. Random amplified polymorphic DNA (RAPD) amplifications were performed successfully without the necessity of purifying the DNA. RAPD markers were used to investigate the genetic similarity among three natural populations of G. sesquipedale from southern Portugal. Bulked-genomic DNA samples of 15 different individuals were made in each population. These can be conceived of as a sample of the population DNA. Of the 62 primers screened, 41 produced bands and 22 revealed polymorphisms. Genetic similarities among populations were high. Populations that are further away from each other have the lowest similarity coefficients, whereas the intermediate Ingrina population, located on the south coast, showed higher genetic similarity with the Odeceixe population located on the southwest coast, than with the São Rafael southern population. This suggests a higher genetic flow between Odeceixe and Ingrina or the result may be a founder effect in the sense that the species has propagated from the east coast to the south coast of Portugal. We conclude that the use of this isolation method with RAPD analysis is appropriate to characterize the genetic variability of this commercial species along its geographical distribution. Large sample sizes can be screened at a relatively low cost. Finding genetic markers for commercial populations of G. sesquipedale may be of industrial interest.  相似文献   

10.
The possible origin of the Scarlet ibis population of Cubat?o in southern Brazil, and its levels of genetic diversity and differentiation in relation to populations from the country’s northern coast were investigated through the sequences of 980 base pairs of β-fibrinogen intron 7 from a sample of 37 specimens. A total of 19 haplotypes were recorded in the three populations. Despite observed discrepancies in the levels of genetic diversity (π = 0.0017–0.0033; h = 0.60–0.95), AMOVA, K*st and Fst values all indicated that genetic differentiation among the populations was relatively low. This suggests that the Cubat?o population was isolated recently from the panmictic population that was once distributed all along the Brazilian coast, although it does not totally refute its possible derivation from a specific population on the north coast. Given our results, genetic management should focus on the minimization of inbreeding, especially in the smaller populations, such as Cubat?o. However, a more definitive study, including markers with higher evolutionary rates (e.g. microsatellites) and a much larger sample, would be required before any such actions can be taken.  相似文献   

11.
Aim We investigate the geographical genetic structure of two coastal plant species, Cakile maritima Scop. (Brassicaceae) and Eryngium maritimum L. (Apiaceae), through three sea straits and along one continuous stretch of coast using amplified fragment length polymorphisms (AFLPs). The two species have a similar ecology in that they grow in sandy habitats, but differ in life‐form (annual vs. perennial) and dispersability of seeds by sea water as inferred from floating experiments. The sea straits differ in their geological history and their modern current systems. The primary goal of our study was to test the hypothesis that sea straits have an influence on the geographical patterns of genetic variation at the population level. Location The areas around the Strait of Gibraltar, the Dardanelles, the Bosporus and the Atlantic coast of western France. Methods For both species we investigated AFLP variation in several populations from each area. Bayesian clustering and diversity and differentiation measures were used to analyse the genetic data. Results In most areas the spatial genetic structure was similar between the two species. They share the presence of distinct genetic gaps along the coast through the Strait of Gibraltar and the Bosporus, and these genetic gaps coincide with the straits. Both species show genetic continuity along the coast of western France. A distinct genetic gap was found through the Dardanelles for C. maritima but not for E. maritimum. Main conclusions The study shows that sea straits have an influence on the geographical patterns of genetic variation. Sea currents are inferred to cause the genetic gap through the Strait of Gibraltar. In the Bosporus and, for C. maritima, through the Dardanelles, the genetic gaps found are explained by the past closure of these two straits as well as by present‐day factors. Simulations indicate that the lower differentiation of C. maritima through the Dardanelles than through the Bosporus cannot be explained by the difference in geological history of these two straits. The difference in seed dispersability between the two species is argued to be responsible for the observation that differentiation among genetic clusters is higher in E. maritimum than in C. maritima where a direct comparison is possible.  相似文献   

12.
The Baja California peninsula represents a biogeographical boundary contributing to regional differentiation among populations of marine animals. We investigated the genetic characteristics of perennial and annual populations of the marine angiosperm, Zostera marina, along the Pacific coast of Baja California and in the Gulf of California, respectively. Populations of Z. marina from five coastal lagoons along the Pacific coast and four sites in the Gulf of California were studied using nine microsatellite loci. Analyses of variance revealed significant interregional differentiation, but no subregional differentiation. Significant spatial differentiation, assessed using θST values, was observed among all populations within the two regions. Z. marina populations along the Pacific coast are separated by more than 220 km and had the greatest θST (0.13–0.28) values, suggesting restricted gene flow. In contrast, lower but still significant genetic differentiation was observed among populations within the Gulf of California (θST = 0.04–0.18), even though populations are separated by more than 250 km. This suggests higher levels of gene flow among Gulf of California populations relative to Pacific coast populations. Direction of gene flow was predominantly southward among Pacific coast populations, whereas no dominant polarity in the Gulf of California populations was observed. The test for isolation by distance (IBD) showed a significant correlation between genetic and geographical distances in Gulf of California populations, but not in Pacific coast populations, perhaps because of shifts in currents during El Niño Southern Oscillation (ENSO) events along the Pacific coast.  相似文献   

13.
Understanding the factors that influence larval dispersal and connectivity among marine populations is critical to the conservation and sustainable management of marine resources. We assessed genetic subdivision among ten populations of copper rockfish (Sebastes caurinus) representing paired samples of outer coast and the heads of inlets in five replicate sounds on the west coast of Vancouver Island, British Columbia, using 17 microsatellite DNA loci. Overall, subdivision (FST) was low (FST = 0.031, < 0.001), but consistently higher between paired coast and head of inlet sites (mean FST = 0.047, < 0.001) compared to among the five coast sites (mean FST = ?0.001, > 0.5) or among the five head of inlet sites (mean FST = 0.026, < 0.001). Heterozygosity, allelic richness and estimates of effective population size were also lower in head of inlet sites than in coast sites. Bayesian analysis identified two genetic groups across all samples, a single genetic group among only coast samples, two genetic groups among head of inlet samples and two genetic groups within each sound analysed separately. Head of inlet copper rockfish tended to be shorter with lower condition factors and grew more slowly than coast sites fish. Reduced physical connectivity and selection against immigrants in contrasting outer coast–head of inlet environments likely contribute to the evolution of population structure of copper rockfish. Based on genetic connectivity, coast sites appear to be better served by existing marine protected areas than are head of inlet sites.  相似文献   

14.
Aim The European green crab (Carcinus maenas) expanded dramatically after its introduction to the west coast of North America, spreading over 1000 km in < 10 years. We use samples of Carcinus maenas collected over time and space to investigate the genetic patterns underlying the species’ initial establishment and spread, and discuss our findings in the context of the species’ life history characteristics and demography. Location The central west coast of North America, encompassing California, Oregon, and Washington (USA) and British Columbia (Canada). Methods We collected 1040 total samples from 21 sites representing the major episodes of population establishment and expansion along the west coast of North America. Microsatellite markers were used to assess genetic diversity and structure at different time points in the species’ spread, to investigate connectivity between embayments and to estimate both short‐term effective population sizes and the number of original founders. Assignment testing was performed to determine the likely source of the introduction. Results Carcinus maenas in western North America likely derived from a single introduction of a small number of founders to San Francisco Bay, CA from the east coast of North America. Throughout its western North American range, the species experiences periodic migration between embayments, resulting in a minor loss of genetic diversity in more recently established populations versus the populations in the area of initial establishment. Main conclusions Low genetic diversity has not precluded the ability of C. maenas to successfully establish and spread on the west coast of North America. An efficient oceanographic transport mechanism combined with highly conducive life history traits are likely the major drivers of C. maenas spread. Evidence for a single introduction underscores the potential utility of early detection and eradication of high‐risk invasive species.  相似文献   

15.
While numerous studies have documented patterns of invasion by non-indigenous plant species, few have considered the invasive properties of non-native genotypes of native species. Characteristics associated with specific genotypes, such as tolerance to disturbance, may mistakenly be applied to an entire species in the absence of genetic information, which consequently may affect management decisions. We report here on the incidence and growth of an introduced lineage of Phragmites australis in the Gulf of Mexico coastal zone of Louisiana. P. australis was collected from nine separate locations for inclusion in a series of growth experiments. Chloroplast DNA analysis indicated that specimens collected from four locations in the Mississippi River Delta represented the introduced Eurasian haplotype; the remainder represented the gulf coast haplotype. Three distinct genotypes, or clones, were identified within each haplotype via analysis using amplified fragment length polymorphisms, which also revealed reduced genetic diversity of the gulf coast clones compared to the Eurasian clones. Clones of each haplotype were planted along with three other native macrophytes at similar densities in a restored brackish marsh and monitored for growth. After 14 months, the Eurasian haplotype had spread vegetatively to cover about 82% of the experimental plots, more than four times the coverage (18%) of the gulf coast haplotype. Thus, the use of P. australis plantings for wetland restoration should consider the genetic lineage of plants used since our results indicate the potential of the Eurasian haplotype to grow rapidly at newly restored sites. This rapid growth may limit the establishment of more slowly growing native species.  相似文献   

16.
In marine species, population diversity and differentiation is affected by the population history and by the complex interaction between oceanographic dynamics and ecological traits. In the present study, we examined two species of marine gastropods (the mangrove periwinkle Littoraria scabra and the rocky shore Littoraria glabrata) along the East African coast, using both genetic and geometric morphometric methods. We report a greater variation of shell shape in L. scabra compared to the slightly smaller variation in L. glabrata. This variation was probably associated with variation of environmental factors along the coast, such as temperature and hydrodynamics. Despite morphological variation, we found low mitochondrial genetic differentiation among samples from different localities for both species, which is probably a consequence of the ongoing gene flow during the free‐swimming larval stage of these gastropods. Additionally, high levels of haplotype diversity, low nucleotide diversity, and ‘star‐like’ genealogies were found in both species. These observations and the results from mismatch distributions, indicate a possible signature of recent population expansions in both species, which probably started during interglacial periods of the Pleistocene and led to the colonization of the Indian Ocean coast. © 2013 The Linnean Society of London  相似文献   

17.
Synopsis The genetic and morphological features ofGasterosteus aculeatus were investigated for 29 populations around Japan. Allozyme analyses recognized two groups (Pacific Ocean group and Japan Sea group) that had distinct characteristic features, and showed high genetic differentiation between them (D = 0.482). The Pacific Ocean group had a wide range, from North America to Japan, along the Pacific coast. The distribution of the Japan Sea group was limited around the Sea of Japan and the Sea of Okhotsk. The distribution of these groups were found to be sympatric on the Pacific coast of Hokkaido Island, Japan. From this area, genetic analyses demonstrated that the sympatric populations of the two groups formed independent breeding stocks, and it is considered that the two groups were reproductively isolated from each other. Additionally, each group had distinctive morphological features of lateral plates and caudal keels in the sympatric area. These results suggested that these two groups of the threespine stickleback comprise different species and that the Japan Sea group is taxonomically distinguishable fromG. aculeatus.  相似文献   

18.
We investigated the geographical distribution of genetic variation in 67 individuals of Triglochin maritima from 38 localities across Europe using AFLP markers. Analysis of genetic variation resulted in the recognition of two major genetic groups. Apart from few geographical outliers, these are distributed (1) along the Atlantic coasts of Portugal, Spain and France and (2) in the North Sea area, the Baltic Sea area, at central European inland localities, the northern Adriatic Sea coast and the Mediterranean coast of southwest France. Considering possible range shifts of T. maritima in reaction to Quaternary climatic changes as deduced from the present-day northern temperature limit of the species, Quaternary changes of coastline in the North Sea area and the very recent origin of the Baltic Sea, we conclude that the coastal populations of T. maritima in the North Sea and Baltic Sea areas originated from inland populations.  相似文献   

19.
The taxonomic classification of large head hairtail (Trichiurus lepturus) is controversial because of similar body appearance and silvery coloration. Ten samples of T. lepturus caught off the west coast of Africa and 43 samples of T. lepturus caught off the western Atlantic coast and Indo-Pacific waters were used for sequence comparison of mitochondrial DNA encoded partial 16S ribosomal RNA(16S rRNA) gene. Ten samples of T. japonicus (obtained from various parts of southern Japan) were also included in the comparative analysis. For the 509 bp sequence determined, 58 sites were variable, of which 53 were parsimony informative. Phylogenetic analyses using maximum parsimony, maximum likelihood and Bayesian algorithm with Eupleurogrammus muticus as outgroup, showed that the haplotypes of T. lepturus obtained from the West coast of Africa, Indo-Pacific and Western Atlantic coast constituted clearly distinct and well supported lineages without any sharing and overlapping between them. Previous morphological analyses and this genetic study strongly indicate that the morphotypes of T. lepturus obtained from the West African coast are genetically distinct and probably represents a separate species.  相似文献   

20.
Aplysia californica is a species widely used in neurobiology, and specimens are collected from a wide range of places along its distribution range. A. californica is endemic to the coast of California and the Gulf of California. On the west coast, this is an unusual distribution range relative to other benthic species from that region. Four polymorphic nuclear Mendelian markers were identified (three single-copy nuclear DNA loci and one microsatellite) for an initial survey of genetic variation of wild populations. F ST values not significantly different from 0 (overall F ST= 0.0148) suggest there was no geographic genetic population subdivision in 177 individuals examined. Received December 3, 1999; accepted March 3, 2000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号