首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Members of the Rhodophyta present different carotenoid profiles. In a majority of the species, lutein constitutes >50% of the total carotenoid content, while in other species, it is replaced by zeaxanthin or antheraxanthin. Given that carotenoids have specific roles in photoprotection, different carotenoid profiles of red algae species could be related to their capacity to cope with photoinhibitory stress. Therefore, in the present work, the sensitivity to light stress of red algal species with different carotenoid profiles was investigated. Photoinhibition of photosynthesis induced by high‐light stress and the subsequent recovery in dim‐light conditions was measured using maximal PSII quantum efficiency (Fv/Fm). The degree of decrease and recovery of Fv/Fm and their respective kinetics were related to the carotenoid profile of the species. Although no relationship between sensitivity to high‐light stress and the carotenoid profile was observed, there were clear carotenoid profile‐related differences in the decrease and recovery kinetics. In species with zeaxanthin or antheraxanthin as the major carotenoid, Fv/Fm reduction and recovery was principally associated with slowly activated and relaxed processes. In contrast, in species with lutein as the major carotenoid, rapidly activated processes appear to play a major role in the down‐regulation of photosynthesis during light‐stress conditions. In these species, the repair of D1 is also important during light‐stress conditions. This finding could imply differential expression of mechanisms involved in photoprotection in red algae that seems to be related to the carotenoid profile of the species.  相似文献   

2.
植物叶黄素循环的组成、功能和调节(综述)   总被引:4,自引:0,他引:4  
对近几年来植物体内叶黄素循环的组成、功能、堇菜黄素脱环氧化酶和玉米黄素环氧化酶的结构、生化性质和调节,以及叶黄素的可转变性、定位等方面的研究进展作了综述。  相似文献   

3.
The xanthophyll cycle, its regulation and components   总被引:22,自引:0,他引:22  
During the last few years much interest has been focused on the photoprotective role of zeaxanthin. In excessive light zeaxanthin is rapidly formed in the xanthophyll cycle from violaxanthin, via the intermediate antheraxanthin, a reaction reversed in the dark. The role of zeaxanthin and the xanthophyll cycle in photoprotection, is based on fluorescence quenching measurements, and in many studies a good correlation to the amount of zeaxanthin (and antheraxanthin) has been found. Other suggested roles for the xanthophylls involve, protection against oxidative stress of lipids, participation in the blue light response, modulation of the membrane fluidity and regulation of abscisic acid synthesis. The enzyme violaxanthin de-epoxidase has recently been purified from spinach and lettuce as a 43-kDa protein. It was found as 1 molecule per 20–100 electron-transport chains. The gene has been cloned and sequenced from Lactuca sativa, Nicotiana tabacum and Arabidopsis thaliana. The transit peptide was characteristic of nuclear-encoded and lumen-localized proteins. The activity of violaxanthin de-epoxidase is controlled by the lumen pH. Thus, below pH 6.6 the enzyme binds to the thylakoid membrane. In addition ascorbate becomes protonated to ascorbic acid (pKa= 4.2) the true substrate (Km= 0.1 m M ) for the violaxanthin de-epoxidase. We present arguments for an ascorbate transporter in the thylakoid membrane. The enzyme zeaxanthin epoxidase requires FAD as a cofactor and appears to use ferredoxin rather than NADPH as a reductant. The zeaxanthin epoxidase has not been isolated but the gene has been sequenced and a functional protein of 72.5 kDa has been expressed. The xanthophyll cycle pigments are almost evenly distributed in the thylakoid membrane and at least part of the pigments appears to be free in the lipid matrix where we conclude that the conversion by violaxanthin de-epoxidase occurs.  相似文献   

4.
阳成伟  陈贻竹 《广西植物》2002,22(3):264-267
依赖叶黄素循环的热耗散是一种主要防御光破坏的机制。参与叶黄素循环的酶是紫黄质脱环氧化酶和玉米黄质环氧化酶 ,紫黄质脱环氧化酶已分离纯化 ,其 c DNA已被克隆 ,其活性主要受跨类囊体膜的 p H梯度和抗坏血酸浓度的调节 ;玉米黄质环氧化酶还没有被分离出来 ,但其 c DNA也已被克隆 ;其活性主要与NADPH的浓度、O2 及光等有关。  相似文献   

5.
The light-dependent, cyclic changes of xanthophyll pigments: violaxanthin, antheraxanthin and zeaxanthin, called the xanthophyll cycle, have been known for about fifty years. This process was characterised for higher plants, several fern and moss species and in some algal groups. Two enzymes, violaxanthin de-epoxidase (VDE) and zeaxanthin epoxidase (ZE), belonging to the lipocalin protein family, are engaged in the xanthophyll cycle. VDE requires for its activity ascorbic acid and reversed hexagonal structure formed by monogalactosyldiacylglycerol. ZE, postulated to be a flavoprotein, has not been purified yet and it is known from its gene sequence only. Zeaxanthin epoxidation is dependent on the reducing power of NADPH and presence of additional proteins. The xanthophyll cycle is postulated to play a role in many important physiological processes. Zeaxanthin, formed from violaxanthin under high light conditions, is thought to be a main photoprotector in autotrophic cells due to its ability to dissipate excess of absorbed light energy that can be measured as a non-photochemical quenching. In addition the zeaxanthin formation is important in protection of the thylakoid membranes against lipid peroxidation. Other postulated functions of the xanthophyll cycle, which include regulation of membrane physical properties, blue light reception and regulation of abscisic acid synthesis, are also discussed.  相似文献   

6.
Physiology and xanthophyll cycle activity of Nannochloropsis gaditana   总被引:2,自引:0,他引:2  
The physiology of the violaxanthin-producing microalga Nannochloropsis gaditana is examined and the effect of environmental factors on the growth and cellular pigment content investigated in batch and continuous cultures. N. gaditana is slow-growing, with a maximum specific growth rate of 0.56 day(-1) at 23 degrees C. The xanthophyll cycle is present in this strain, but has a much lower activity than in higher plants and other species of Nannochloropsis. At 30 degrees C, under high light (1500 micromol photons m(-2) s(-1)), 33% of the violaxanthin pool was deepoxidated to antheraxanthin (76%) and zeaxanthin (24%) over 60 min. Addition of iodoacetamide dramatically affected the xanthophyll cycle activity: 50% of the violaxanthin was replaced by zeaxanthin (90%) within 30 min. This was attributed to an increase in membrane fluidity following iodoacetamide addition, resulting in a larger pool of violaxanthin available for conversion. Batch culture studies showed that a decrease in irradiance (from 880 to 70 micromol photons m(-2) s(-1)) can increase chlorophyll a and violaxanthin content by as much as 80% and 60%, respectively. Continuous cultures indicated that violaxanthin is a growth-rate-dependent product, but the violaxanthin content is less affected by dilution rate (in the range 0.12 to 0.72 day(-1)) and pH (6.8 to 7.8) than chlorophyll a. The optimum conditions for growth and violaxanthin production in continuous culture were found to occur at a dilution rate of 0.48 day(-1), a temperature of between 24 degrees C and 26 degrees C, and pH in the range 7.1 to 7.3.  相似文献   

7.
Leaf Xanthophyll content and composition in sun and shade determined by HPLC   总被引:39,自引:0,他引:39  
As a part of our investigations to test the hypothesis that zeaxanthin formed by reversible de-epoxidation of violaxanthin serves to dissipate any excessive and potentially harmful excitation energy we determined the influence of light climate on the size of the xanthophyll cycle pool (violaxanthin + antheraxanthin + zeaxanthin) in leaves of a number of species of higher plants. The maximum amount of zeaxanthin that can be formed by de-epoxidation of violaxanthin and antheraxanthin is determined by the pool size of the xanthophyll cycle. To quantitate the individual leaf carotenoids a rapid, sensitive and accurate HPLC method was developed using a non-endcapped Zorbax ODS column, giving baseline separation of lutein and zeaxanthin as well as of other carotenoids and Chl a and b.The size of the xanthophyll cycle pool, both on a basis of light-intercepting leaf area and of light-harvesting chlorophyll, was ca. four times greater in sun-grown leaves of a group of ten sun tolerant species than in shade-grown leaves in a group of nine shade tolerant species. In contrast there were no marked or consistent differences between the two groups in the content of the other major leaf xanthophylls, lutein and neoxanthin. Also, in each of four species examined the xanthophyll pool size increased with an increase in the amount of light available during leaf development whereas there was little change in the content of the other xanthophylls. However, the -carotene/-carotene ratio decreased and little or no -carotene was detected in sun-grown leaves. Among shade-grown leaves the -carotene/-carotene ratio was considerably higher in species deemed to be umbrophilic than in species deemed to be heliophilic.The percentage of the xanthophyll cycle pool present as violaxanthin (di-epoxy-zeaxanthin) at solar noon was 96–100% for shade-grown plants and 4–53% for sun-grown plants with zeaxanthin accounting for most of the balance. The percentage of zeaxanthin in leaves exposed to midday solar radiation was higher in those with low than in those with high photosynthetic capacity.The results are consistent with the hypothesis that the xanthophyll cycle is involved in the regulation of energy dissipation in the pigment bed, thereby preventing a buildup of excessive excitation energy at the reaction centers.Abbreviations A antheraxanthin - C -carotene - C -carotene - EPS epoxidation state (V+0.5A)/(V+A+Z) - L lutein - N neoxanthin - PFD photon flux density - V violaxanthin - Z zeaxanthin C.I.W.-D.P.B. Publiation No. 1035  相似文献   

8.
The effects of kinetin (Kn) on pigment content and electron transport activities (ETA) in wheat leavesin vivo and chloroplastsin vitro aging in light was investigated. Excised wheat leaves were infiltrated with Kn for 3 h under irradiation. The treatment increased zeaxanthin (Zx) content by 40% and also increased chlorophyll (Chia, Chib) and major carotenoid (Car) contents in the leaves (per fresh mass unit). Chloroplasts isolated from Kn treated leaves, when incubated in light for 4 h showed relatively lower pigment loss and slower loss of ETA compared to the chloroplasts of untreated leaves. These observations suggest photoprotective action of Kn. The photoprotection was more prominent when Kn was applied directly to the irradiated chloroplastsin vitro. Moreover, chloroplasts agingin vitro under irradiation without Kn treatment lost pigments and ETA. Within 3 h of irradiation, both whole chain (H2O to methylviologen) electron transport as well as photosystem (PS) 2 activity were completely lost. However, in the chloroplasts treated with Kn, the loss of pigments was slow and even after 4 h of irradiation the chloroplasts retained 15 % of PS 2 and 9 % of whole chain ETA. In the untreated chloroplasts, the loss of Zx after 4 h of irradiation was 49 % whereas in Kn treated samples its level was 1.3 times higher than that of control. Since a higher level of Zx was maintained in Kn treated chloroplasts, photoprotective action of Kn is possibly mediated through Zx. One of us (NKC) thanks Sambalpur University for study leave and Department of Biological Sciences, Mankato State University, Mankato for labortory facilities.  相似文献   

9.
Tobacco (Nicotiana tabacum cv. Xanthi) transformed with the antisense construct of tobacco violaxanthin de-epoxidase was analyzed for responses in growth chambers to both short and long-term stress treatments. Following a short-term (2 or 3 h) high-light treatment, antisense plants had a greater reduction in Fv/Fm relative to wild-type, indicating a greater susceptibility to photoinhibition. The responses of antisense plants to long-term stress were examined in two separate experiments, one with high light alone and the other wherein high light and water stress were combined. In the light-stress experiment, plants were grown at 1300 mol photons m–2 s–1 under a 12 h photoperiod. In the light and water-stress experiment, plants were grown under moderately high light of 900 mol photons m–2 s–1, under a 16 h photoperiod, in combination with water stress. Both conditions caused formation of high antheraxanthin and zeaxanthin levels in wild-type plants but not in antisense plants. In both cases, antisense plants showed significant reductions in Fv/Fm and total leaf-pigment content relative to wild-type. The data demonstrate a critical photoprotective function of the xanthophyll cycle-dependent energy dissipation in tobacco exposed suddenly to high amounts of excess light over extended times.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

10.
Tobacco (Nicotiana tabacum cv. Xanthi) transformed with an antisense cDNA construct of violaxanthin de-epoxidase (VDE) was examined for the effects of suppressed xanthophyll-cycle activity on photoinhibition, photosynthesis and growth under field conditions. De-epoxidation of violaxanthin and non-photochemical quenching were highly inhibited in antisense plants relative to vector-control and wild-type plants. However, no differences were observed between antisense and control plants in photosynthetic CO2 uptake and maximum photochemical yield [(Fm–Fo)/Fm] measured at predawn or in actual photochemical yield [(Fm–Fs)/Fm] measured at midday. Moreover, growth rates of the plants were the same, as were the leaf area ratio, plant height and leaf number. Similarly, antisense plants did not exhibit greater susceptibility to photoinhibition than controls under field conditions. In contrast, when chloroplast protein (D1) synthesis was inhibited by lincomycin, antisense plants were more vulnerable to photoinhibition than wild-type plants. These results indicate that photoprotection under field conditions is not strictly dependent on the levels of the de-epoxidized xanthophylls, antheraxanthin and zeaxanthin.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

11.
When light absorption by a plant exceeds its capacity for light utilization, photosynthetic light harvesting is rapidly downregulated by photoprotective thermal dissipation, which is measured as nonphotochemical quenching of chlorophyll fluorescence (NPQ). To address the involvement of specific xanthophyll pigments in NPQ, we have analyzed mutants affecting xanthophyll metabolism in Arabidopsis thaliana. An npq1 lut2 double mutant was constructed, which lacks both zeaxanthin and lutein due to defects in the violaxanthin de-epoxidase and lycopene -cyclase genes. The npq1 lut2 strain had normal Photosystem II efficiency and nearly wild-type concentrations of functional Photosystem II reaction centers, but the rapidly reversible component of NPQ was completely inhibited. Despite the defects in xanthophyll composition and NPQ, the npq1 lut2 mutant exhibited a remarkable ability to tolerate high light.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

12.
Extracts of 28 species of marine macroscopic algae collected from various coastal habitats of northern California were examined for antiviral activity against a broad spectrum of mammalian viruses. Ten members of Rhodophyta contained substance(s) which caused greater than a 2 log reduction in the infectivity of herpes simplex virus types 1 and 2. In addition, anti-Coxsackie Bs virus activity was detected in extracts of Constantinea simplex Setchell. The physical and chemical properties of the substance in extracts of Farlowia mollis (Harvey and Bailey) Farlow and Setchell and C. simplex indicated the active agent was a structural polysaccharide.  相似文献   

13.
The photophysiological properties of strain RCC 237 belonging to the marine picoplanktonic genus Picochlorum, first described by Henley et al., were investigated under different photon flux densities (PFD), ranging from 40 to 400 μmol photons· m?2·s?1, mainly focusing on the development of the xanthophyll cycle and its relationship with the nonphotochemical quenching of fluorescence (NPQ). The functioning of the xanthophyll cycle and its photoprotective role was investigated by applying a progressive increase of PFD and using dithiotreitol and norflurazon to block specific enzymatic reactions in order to study in depth the relationship between xanthophyll cycle and NPQ. These two processes were significantly related only during the gradually increasing light periods and not during stable light periods, where NPQ and zeaxanthin were decoupled. This result reveals that NPQ is a photoprotective process developed by algae only when cells are experiencing increasing PFD or in response to stressful light variations, for instance after a sudden light shift. Results showed that the photobiological properties of Picochlorum strain RCC 237 seem to be well related to the surface water characteristics, as it is able to maintain its photosynthetic characteristics under different PFDs and to quickly activate the xanthophyll cycle under high light.  相似文献   

14.
Many animals use carotenoid pigments to produce yellow, orange, and red coloration. In birds, at least 10 carotenoid compounds have been documented in red feathers; most of these are produced through metabolic modification of dietary precursor compounds. However, it is poorly understood how lineages have evolved the biochemical mechanisms for producing red coloration. We used high‐performance liquid chromatography to identify the carotenoid compounds present in feathers from 15 species across two clades of blackbirds (the meadowlarks and allies, and the caciques and oropendolas; Icteridae), and mapped their presence or absence on a phylogeny. We found that the red plumage found in meadowlarks includes different carotenoid compounds than the red plumage found in caciques, indicating that these gains of red color are convergent. In contrast, we found that red coloration in two closely related lineages of caciques evolved twice by what appear to be similar biochemical mechanisms. The C4‐oxygenation of dietary carotenoids was responsible for each observed transition from yellow to red plumage coloration, and has been commonly reported by other researchers. This suggests that the C4‐oxygenation pathway may be a readily evolvable means to gain red coloration using carotenoids.  相似文献   

15.
钙质红藻是指可以发生生物钙化作用在其细胞壁上沉淀碳酸钙的红藻。钙质红藻可以保存为化石,是红藻古生物研究中的重要类群,具有重要的生态意义,但以往的研究对钙质红藻类群的系统分类及地史分布缺乏清晰认识。本文详细综述了钙质红藻化石的系统分类,归属于红藻门(Rhodophyta)红藻纲(Rhodophyceae)的4个目7个科,分别为珊瑚藻亚纲(Corallinophycidae)珊瑚藻目(Corallinales)的珊瑚藻科(Corallinaceae)、石叶藻科(Lithophyllaceae)、宽珊藻科(Mastophoraceae)和管孔藻科(Solenoporaceae),混石藻目(Hapalidiales)的混石藻科(Hapalidiaceae),孢石藻目(Sporolithales)的孢石藻科(Sporolithaceae)以及真红藻亚纲(Florideophycidae)耳壳藻目(Peyssonneliales)的耳壳藻科(Peyssonneliaceae)。最早的钙质红藻为管孔藻科,出现于中奥陶世,于中新世灭绝。珊瑚藻科最早出现于晚志留世并于白垩纪辐射演化至今,其他科均于白垩纪...  相似文献   

16.
The pigment composition of leaves from a number of different plant species collected from field sites in the region of Sheffield, UK, have been compared using high-performance liquid chromatography. Expression of pigment content per unit leaf area was dominated by variation in the total leaf chlorophyll. Neither chlorophyll per unit area nor the chlorophyll a/b ratio were found to be correlated with the habitat from which the plants originated. When the amounts of different carotenoids were expressed relative to the total carotenoid pool, it was found that whilst neither total carotene (α- +β-carotene) nor neoxanthin correlated with ability to grow in shade, the leaf content of both lutein and the total xanthophyll cycle carotenoids (zeaxanthin, anther-axanthin and violaxanthin) did, with lutein content being high in shade species and xanthophyll cycle intermediates low. There was a strong negative correlation between the relative amounts of each of these groups of carotenoids. The ratio of lutein to xanthophyll cycle carotenoids was strongly correlated to an index of shade tolerance.  相似文献   

17.
When the absorption of light energy exceeds the capacity for its utilization in photosynthesis, regulation of light harvesting is critical in order for photosynthetic organisms to minimize photo-oxidative damage. Thermal dissipation of excess absorbed light energy, measured as non-photochemical quenching (NPQ) of chlorophyll fluorescence, is induced rapidly in response to excess light conditions, and it is known that xanthophylls such as zeaxanthin and lutein, the transthylakoid pH gradient, and the PsbS protein are involved in this mechanism. Although mutants affecting NPQ and the biosynthesis of zeaxanthin and lutein were originally isolated and characterized at the physiological level in the unicellular green alga Chlamydomonas reinhardtii, the molecular basis of several of these mutants, such as npq1 and lor1, has not been determined previously. The recent sequencing of the C. reinhardtii nuclear genome has facilitated the search for C. reinhardtii homologs of plant genes involved in xanthophyll biosynthesis and regulation of light harvesting. Here we report the identification of C. reinhardtii genes encoding PsbS and lycopene ɛ-cyclase, and we show that the lor1 mutation, which affects lutein synthesis, is located within the lycopene ɛ-cyclase gene. In contrast, no homolog of the plant violaxanthin de-epoxidase (VDE) gene was found. Molecular markers were used to map the npq1 mutation, which affects VDE activity, as a first step toward the map-based cloning of the NPQ1 gene.  相似文献   

18.
Freshwater red algae can be categorized into seueral morphological groups that contend with flow in diferent ways. Crusts and tufts occur within the boundary layer and thereby may aiioid mechanical stress caused flow. The more tolerant semi-erect forms can be dizlided into mucilagznous and non-mucilaginous filaments as well as tissue-like thalli. Twelve taxa from these groups occur at a wide range of current velocities (x = 24–58 cm-s?l). There is a signaficant increase in strength of these forms in a gradient from tufs (x = 12 ± 7 kNm-2) to mucilaginous filaments (X = 530 t- I60 kNm-2) to nonmucilaginous filaments and tissues (x = 1400 ± 400 kN. m-2). In terms of breaking extension, no consistent trend is observed among the different morphologies; the range is ll.3–29.2% beyond the original length. Sirodotia suecica Kylin produces the least increase in drag farce with increasing flow and thus the lowest E value(- 1.27) whereas the large mucilaginous species Batrachospermum boryanum Sirod. and B. virgatum (Kutz.) Sirod. show the highest drag forces and E values (-0.45 to -0.33). Almost a ten-fold range in estimated current uelocities is required to break apart the freshwater red algae tested. Predicted velocities at which the morphological groups break are as follows: tufts, 80±30 cm.s-1; mucilaginous filaments, 160#±90 cm.s-1 and tissues, 580±150 cm.s-1. Implications regarding euolution of freshwater Rhodophyta are discussed.  相似文献   

19.
A method for the axenic culture of marine microscopic algae that utilizes various types of paper as solid substrates for growth is described. Investigations into the growth of 39 algal, strains on various paper substrates were conducted. Applications of the method to bioassay are discussed.  相似文献   

20.
A high-performance liquid chromatographic (HPLC) method is described that allows improved resolution of several chemotaxonomically significant phytoplankton pigments. The protocol, which employs two pumps and a modified Mantoura and Llewellyn (1983) solvent system, can be easily adapted for many HPLC systems currently in use. The most unique aspect of the method is the use of a polymeric C18 reversed phase HPLC column (VYDAC 201TP). In comparison to the monomeric C18 columns typically used in the characterization of phytoplankton pigments, polymeric C18 columns offer superior selectivity for structurally similar compounds. The protocol was evaluated for the ability to resolve most of the phytoplankton pigments of diagnostic importance using algal cultures from nine classes. Pigment pairs that were resolved by the method include a) lutein and zeaxanthin, b) neoxanthin and 19′-hexanoyloxyfucoxanthin, and c) α-carotene and β-carotene, and partial resolution of chlorophyll c1 and chlorophyll c2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号