首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Non-invasive genetics is a powerful tool in wildlife research and monitoring, especially when dealing with elusive and rare species such as the Eurasian otter (Lutra lutra). Nevertheless, otter DNA obtained from scats and anal secretions appears to be exposed to very quick degradation processes, and the success rate in DNA amplification is lower than in other carnivores. We collected 191 samples from April to September 2011 along the river Sangro basin (Italy) which was recently re-colonized by the Eurasian otter. Using two sets of microsatellite loci (six Lut and seven OT loci), we investigated the influence of sample type and age, collection time, storage time, temperature and humidity on genotyping success and amplification success. We also tested the efficacy of different DNA extraction kits and storage buffer mediums. Finally, we compared amplification success rate, allelic dropout and false allele rates for each locus. We obtained a mean amplification success rate of 79.0 % and a genotyping success rate of 35.1 %. Fresh pure jellies yielded the highest amplification success and genotyping rate. Six microsatellite loci should be theoretically sufficient to distinguish the individual unrelated otters (PID?=?0.001), while 13 loci were needed to distinguish sibling otters (PIDsibs?=?0.002) in our population. We identified 11 otters, and molecular sexing ascertained the presence of five males, four females and two uncertain individuals. Generalized linear models highlighted a significant influence of sample type and age, temperature and humidity both on genotyping and amplification success.  相似文献   

2.
The present study compares the effect of three storage media (silica, RNAlater®, ethanol) and time to extraction (1 week, 1 month and 3 months) on mitochondrial and nuclear marker amplification success in faecal DNA extracts from a sympatric community of small to medium‐sized Central African forest ungulates (genera Cephalophus, Tragelaphus, Hyemoschus). The effect of storage type and time on nuclear DNA concentrations, genotyping errors and percentage recovery of consensus genotypes was also examined. Regardless of storage method, mitochondrial and nuclear amplification success was high in DNA extracted within the first week after collection. Over longer storage periods, RNAlater yielded better amplification success rates in the mitochondrial assay. However, samples stored on silica showed (i) highest nuclear DNA concentrations, (ii) best microsatellite genotyping success, (iii) lowest genotyping errors, and (iv) greatest percentage recovery of the consensus genotype. The quantity of nuclear DNA was generally a good predictor of microsatellite performance with 83% amplification success or greater achieved with sample DNA concentrations of ≥ 50 pg/µL. If faecal DNA samples are to be used for nuclear microsatellite analyses, we recommend silica as the best storage method. However, for maximum mitochondrial amplification success, RNAlater appears to be the best storage medium. In contrast, ethanol appeared inferior to the other two methods examined here and should not be used to store tropical ungulate faeces. Regardless of storage method, samples should be extracted as soon as possible after collection to ensure optimal recovery of DNA.  相似文献   

3.
Developing strategies to maintain biodiversity requires baseline information on the current status of each individual species. The development of genetic techniques and their application to noninvasively collected samples have the potential to yield information on the structure of elusive animal populations and so are important tools in conservation management. Using DNA isolated from faecal samples can be challenging owing to low quantity and quality. This study, however, presents the development of novel real‐time polymerase chain reaction assays using fluorescently labelled TaqMan® MGB probes enabling species and sex identification of Eurasian otter (Lutra lutra) spraints (faeces). These assays can also be used in determining an optimum microsatellite panel and can be employed as cost‐saving screening tools for downstream genetic testing including microsatellite genotyping and haplotype analysis. The techniques are shown to work efficiently with Llutra DNA isolated from tissue, hair, spraint, blood and anal jelly samples.  相似文献   

4.
Across much of North America, river otter (Lontra canadensis) populations were extirpated or greatly reduced by the early 20th century. More recently, reintroductions have resulted in restored populations and the recommencement of managed trapping. Perhaps the best example of these river otter reintroductions occurred in Missouri, regarded as one of the most successful carnivore recovery programs in history. However, abundance estimates for river otter populations are difficult to obtain and often contentious when used to underpin management activities. We assessed the value of latrine site monitoring as a mechanism for quantifying river otter abundance. Analyses of fecal DNA to identify individual animals may result in an improved population estimate and have been used for a variety of mammal species. We optimized laboratory protocols, redesigned existing microsatellite primers, and calculated genotyping error rates to enhance genotyping success for a large quantity of river otter scat samples. We also developed a method for molecular sexing. We then extracted DNA from 1,421 scat samples and anal sac secretions (anal jelly) collected during latrine site counts along 22–34-km stretches representing 8–77% of 8 rivers in southern Missouri in 2009. Error rates were low for the redesigned microsatellites. We obtained genotypes at 7–10 microsatellite loci for 24% of samples, observing highest success for anal jelly samples (71%) and lowest for fresh samples (collected within 1 day of defecation). We identified 63 otters (41 M, 22 F) in the 8 rivers, ranging from 2 to 14 otters per river. Analyses using program CAPWIRE resulted in population estimates similar to the minimum genotyping estimate. Density estimates averaged 0.24 otters/km. We used linear regression to develop and contrast models predicting population size based on latrine site and scat count indices, which are easily collected in the field. Population size was best predicted by a combination of scats per latrine and latrines per kilometer. Our results provide methodological approaches to guide wildlife managers seeking to initiate similar river otter fecal genotyping studies, as well as to estimate and monitor river otter population sizes. © 2011 The Wildlife Society.  相似文献   

5.
Faeces have proved to be a suitable non-invasive DNA source for microsatellite analysis in wildlife research. For the success of such studies it is essential to obtain the highest possible PCR amplification success rate. These rates are still relatively low in most carnivorous species, especially in the otter (Lutra lutra). We therefore optimised the entire microsatellite genotyping process by combining our findings with results from previous studies to gain a high rate of reliable genotypes. We investigated the influence of otter faecal quality in relation to the quantity of slimy secretions and three levels of storage periods at ?20°C on amplification success. Further, we tested the cost-effective and time-saving Chelex extraction method against the profitable QIAamp® DNA Stool Kit (Qiagen), and compared three PCR methods - a standard single-step PCR protocol, a single-locus two-step PCR procedure and a multiplex two-step PCR procedure - regarding success rate and genotyping errors. The highest amplification success rate (median: 94%; mean: 78%) was achieved using faecal samples consisting only of jelly extracted with the QIAamp® DNA Stool Mini Kit (Qiagen) immediately after collection and amplified following the time and cost efficient multiplex two-step PCR protocol. The two-step procedure, also referred to as pre-amplification approach, turned out to be the main improvement as it increases amplification success about 11% and reduces genotyping errors about 53%, most notably allelic dropouts.  相似文献   

6.
DNA sourced from faeces is notoriously less reliable than that from tissue. Hence, understanding whether faecal pellet quality varies within faecal piles may be important for sample selection. We hypothesized that the order in which faecal pellets are deposited may influence microsatellite polymerase chain reaction (PCR) amplification success from sampled faeces, more specifically, that first pellets deposited will have signatures of greater success than later ones. In a first test of the hypothesis, first and later-deposited pellets, as determined from the direction of footprints, were collected from fresh (overnight) faecal piles of northern hairy-nosed wombats (Lasiorhinus krefftii). DNA extracts were typed for seven microsatellite loci. We found that faecal deposition order significantly affected optical density of bands on autoradiographs (a measure of PCR amplification success) when the first faecal pellet was compared with the last one, but not when the first pellet was only distinguishable from later ones. The absence of a difference in amplification rate between first and later pellets is likely a reflection of the overall high amplification success in this study. That first pellets deposited yield more product suggests they contain more intestinal cells. Although further comparisons are needed, these results may inform sample selection in species for which success of microsatellite PCR amplification of faecal DNA is low. Deposition order may have more of an impact on amplification success and genotyping errors as faecal age increases.  相似文献   

7.
To establish longevity of faecal DNA samples under varying summer field conditions, we collected 53 faeces from captive brown bears (Ursus arctos) on a restricted vegetation diet. Each faeces was divided, and one half was placed on a warm, dry field site while the other half was placed on a cool, wet field site on Moscow Mountain, Idaho, USA. Temperature, relative humidity, and dew point data were collected on each site, and faeces were sampled for DNA extraction at <1, 3, 6, 14, 30, 45, and 60 days. Faecal DNA sample viability was assessed by attempting PCR amplification of a mitochondrial DNA (mtDNA) locus (∼150 bp) and a nuclear DNA (nDNA) microsatellite locus (180–200 bp). Time in the field, temperature, and dew point impacted mtDNA and nDNA amplification success with the greatest drop in success rates occurring between 1 and 3 days. In addition, genotyping errors significantly increased over time at both field sites. Based on these results, we recommend collecting samples at frequent transect intervals and focusing sampling efforts during drier portions of the year when possible.  相似文献   

8.
Noninvasive samples for genetic analyses have become essential to address ecological questions. Popular noninvasive samples such as faeces contain degraded DNA which may compromise genotyping success. Saliva is an excellent alternative DNA source but scarcity of suitable collection methods makes its use anecdotal in field ecological studies. We develop a noninvasive method of collection that combines baits and porous materials able to capture saliva. We report its potential in optimal conditions, using confined dogs and collecting saliva early after deposition. DNA concentration in saliva extracts was generally high (mean 14 ng μl-1). We correctly identified individuals in 78% of samples conservatively using ten microsatellite loci, and 90% of samples using only eight loci. Consensus genotypes closely matched reference genotypes obtained from hair DNA (99% of identification successes and 91% of failures). Mean genotyping effort needed for identification using ten loci was 2.2 replicates. Genotyping errors occurred at a very low frequency (allelic dropout: 2.3%; false alleles: 1.5%). Individual identification success increased with duration of substrate handling inside dog’s mouth and the volume of saliva collected. Low identification success was associated with baits rich in DNA-oxidant polyphenols and DNA concentrations <1 ng μl-1. The procedure performed at least as well as other noninvasive methods, and could advantageously allow detection of socially low-ranked individuals underrepresented in sources of DNA that are involved in marking behaviour (faeces or urine). Once adapted and refined, there is promise for this technique to allow potentially high rates of individual identification in ecological field studies requiring noninvasive sampling of wild vertebrates.  相似文献   

9.
Noninvasive samples are useful for molecular genetic analyses of wild animal populations. However, the low DNA content of such samples makes DNA amplification difficult, and there is the potential for erroneous results when one of two alleles at heterozygous microsatellite loci fails to be amplified. In this study we describe an assay designed to measure the amount of amplifiable nuclear DNA in low DNA concentration extracts from noninvasive samples. We describe the range of DNA amounts obtained from chimpanzee faeces and shed hair samples and formulate a new efficient approach for accurate microsatellite genotyping. Prescreening of extracts for DNA quantity is recommended for sorting of samples for likely success and reliability. Repetition of results remains extensive for analysis of microsatellite amplifications beginning from low starting amounts of DNA, but is reduced for those with higher DNA content.  相似文献   

10.
The use of scat surveys to obtain DNA has been well documented in temperate areas, where DNA preservation may be more effective than in tropical forests. Samples obtained in the tropics are often exposed to high humidity, warm temperatures, frequent rain and intense sunlight, all of which can rapidly degrade DNA. Despite these potential problems, we demonstrate successful mtDNA amplification and sequencing for faeces of carnivores collected in tropical conditions and quantify how sample condition and environmental variables influence the success of PCR amplification and species identification. Additionally, the feasibility of genotyping nuclear microsatellites from jaguar (Panthera onca) faeces was investigated. From October 2007 to December 2008, 93 faecal samples were collected in the southern Brazilian Amazon. A total of eight carnivore species was successfully identified from 71% of all samples obtained. Information theoretic analysis revealed that the number of PCR attempts before a successful sequence was an important negative predictor across all three responses (success of species identification, success of species identification from the first sequence and PCR amplification success), whereas the relative importance of the other three predictors (sample condition, season and distance from forest edge) varied between the three responses. Nuclear microsatellite amplification from jaguar faeces had lower success rates (15-44%) compared with those of the mtDNA marker. Our results show that DNA obtained from faecal samples works efficiently for carnivore species identification in the Amazon forest and also shows potential for nuclear DNA analysis, thus providing a valuable tool for genetic, ecological and conservation studies.  相似文献   

11.
Non-invasive genetic analyses are important for studies of species that are rare, sensitive or at risk of extinction. This study investigates the possibility of using faeces and urine to obtain microsatellite genotypes for individual identification of wolverines (Gulo gulo). The reliability of the employed method was assessed by analysing independent amplifications of non-invasive samples (a multiple-tube approach) and by comparing genotypes obtained from faeces to genotypes obtained from blood or tissue of the same individual. Ten microsatellite markers were successfully amplified in 65% of the faecal samples (n = 32) and 40% of the urine samples (n = 22). Allelic dropout was found in 12 and 14% of the amplifications from extracts of faeces and urine, respectively. Nevertheless, all multi-locus genotypes were correct, as judged from comparison to data from tissue or blood samples, after three replicates. These results suggest that a non-invasive approach based on DNA-analysis of faeces can be a powerful tool in population monitoring of wolverines, potentially providing reliable estimates of population size and immigration rate. A second objective of the study was to develop markers for DNA-based sex identification in wolverines using non-invasive samples. We developed two Y-linked markers, one that was specific to wolverine and one that also successfully identified sex in another mustelid. Importantly, none of the markers amplified potential prey species such as reindeer or rodents.  相似文献   

12.
Noninvasive population genetics has found many applications in ecology and conservation biology. However, the technical difficulties inherent to the analysis of low quantities of DNA generally tend to limit the efficiency of this approach. The nature of samples and loci used in noninvasive population genetics are important factors that may help increasing the potential success of case studies. Here we reviewed the effects of the source of DNA (hair vs. faeces), the diet of focal species, the length of mitochondrial DNA fragments, and the length and repeat motif of nuclear microsatellite loci on genotyping success (amplification success and rate of allelic dropout). Locus-specific effects appeared to have the greatest impact, amplification success decreasing with both mitochondrial and microsatellite fragments’ length, while error rates increase with amplicons’ length. Dinucleotides showed best amplification success and lower error rates compared to longer repeat units. Genotyping success did not differ between hair- versus faeces-extracted DNA, and success in faeces-based analyses was not consistently influenced by the diet of focal species. While the great remaining variability among studies implies that other unidentified parameters are acting, results show that the careful choice of genetic markers may allow optimizing the success of noninvasive approaches.  相似文献   

13.
Noninvasive genetic sampling has increasingly been used in ecological and conservation studies during the last decade. A major part of the noninvasive genetic literature is dedicated to the search for optimal protocols, by comparing different methods of collection, preservation and extraction of DNA from noninvasive materials. However, the lack of quantitative comparisons among these studies and the possibility that different methods are optimal for different systems make it difficult to decide which protocol to use. Moreover, most studies that have compared different methods focused on a single factor – collection, preservation or extraction – while there could be interactions between these factors. We designed a factorial experiment, as a pilot study, aimed at exploring the effect of several collection, preservation and extraction methods, and the interactions between them, on the quality and amplification success of DNA obtained from Asiatic wild ass (Equus hemionus) faeces in Israel. The amplification success rates of one mitochondrial DNA and four microsatellite markers differed substantially as a function of collection, preservation and extraction methods and their interactions. The most efficient combination for our system integrated the use of swabs as a collection method with preservation at ?20 °C and with the Qiagen DNA Stool Kit with modifications as the DNA extraction method. The significant interaction found between the collection, preservation methods and the extraction methods reinforces the importance of conducting a factorial design experiment, rather than examining each factor separately, as a pilot study before initiating a full‐scale noninvasive research project.  相似文献   

14.
The red panda (Ailurus fulgens) is an endangered species distributed in the Himalaya and Hengduan Mountains and extremely difficult to monitor because it is elusive, wary and nocturnal. However, recent advances in noninvasive genetics are allowing conservationists to indirectly estimate population size of this animal. Here, we present a pilot study of individual identification of wild red pandas using DNA extracted from faeces. A chain of optimal steps in noninvasive studies were used to maximize genotyping success and minimize error rate across sampling, selection of microsatellite loci, DNA extraction and amplification and data checking. As a result, 18 individual red pandas were identified successfully from 33 faecal samples collected in the field using nine red panda-specific microsatellite loci with a low probability of identity of 1.249 × 10−3 for full siblings. Multiple methods of tracking genotyping error showed that the faecal genetic profiles possessed very few genotyping errors, with an overall error rate of 1.12 × 10−5. Our findings demonstrate the feasibility and reliability of using faeces as an effective source of DNA for estimating and monitoring wild red panda populations.  相似文献   

15.
The analysis of prey DNA in faeces is a non-invasive approach to examine the diet of birds. However, it is poorly known how gut transition time, environmental factors and laboratory treatments such as storage conditions or DNA extraction procedures affect the detection success of prey DNA. Here, we examined several of these factors using faeces from carrion crows fed with insect larvae. Faeces produced between 30 min and 4 h post-feeding tested positive for insect DNA, representing the gut transition time. Prey detection was not only possible in fresh but also in 5-day-old faeces. The type of surface the faeces were placed on for these 5 days, however, affected prey DNA detection success: samples placed on soil provided the lowest rate of positives compared to faeces left on leaves, on branches and within plastic tubes. Exposing faeces to sunlight and rain significantly lowered prey DNA detection rates (17% and 68% positives in exposed and protected samples, respectively). Storing faeces in ethanol or in the freezer did not affect molecular prey detection. Extracting DNA directly from larger pieces of faecal pellets resulted in significantly higher prey detection rates than when using small amounts of homogenized faeces. A cetyltrimethyl ammonium bromide-based DNA extraction protocol yielded significantly higher DNA detection rates (60%) than three commercial kits, however, for small amounts of homogenized faeces only. Our results suggest that collecting faeces from smooth, clean and non-absorbing surfaces, protected from sunlight and rain, improves DNA detection success in avian faeces.  相似文献   

16.
A cost-effective, reliable and efficient method of obtaining DNA samples is essential in large-scale genetic analyses. This study examines the possibility of using a threatened vole species, Microtus cabrerae, as a model for the collection and preservation of faecal samples for subsequent DNA extraction with a protocol based on the HotSHOT technique. Through the examination of the probability of multi-copies (mitochondrial) and single copy (microsatellite) loci amplification (including the genotype error) and of the DNA yield (estimated by real-time qPCR), the new protocol was compared with both the frequently employed methods that successfully use ethanol to preserve faecal samples and with commercial kit-based DNA extraction. The single-tube HotSHOT-based protocol is a user-friendly, non-polluting, time-saving and inexpensive method of faeces sample collection, preservation and PCR-quality gDNA preparation. This technique therefore provides researchers with a new approach that can be employed in high-throughput, noninvasive genetic analyses of wild animal populations.  相似文献   

17.
Non‐invasive methods of monitoring wild populations (such as genotyping faeces or hair) are now widely used and advocated. The potential advantages of such methods over traditional direct monitoring (such as live capture) are that accuracy improves because sampling of non‐trappable individuals may be possible, species in difficult and remote terrain can be surveyed more efficiently, and disturbance to animals is minimal. Few studies have assessed the effects of interactions between species on remote sampling success. We test the use of non‐invasive monitoring for the cryptic, forest‐dwelling, solitary and endangered bridled nailtail wallaby (Onychogalea fraenata) that is sympatric with the ecologically similar and more common black‐striped wallaby (Macropus dorsalis). Six types of hair traps were tested for 3668 trap days, and hairs were caught with about a 10% success rate. Camera traps showed that baited hair traps targeted both wallaby species. We microscopically identified hair as bridled nailtail wallaby or black‐striped wallaby. We compared these hairs and their genotypes (using seven microsatellite loci) with known bridled nailtail wallaby hairs and genotypes derived from animal trapping. Trapped bridled nailtail wallaby hairs had characteristics that could be mistaken for black‐stripe wallaby hairs; characteristics were not diagnostic. Genetic assignment tests consistently differentiated the known bridled nailtail wallaby samples from identified black‐striped wallaby samples, however genetic overlap between most of the microsatellite markers means that they are not suitable for species identification of single samples, with the possible exception of the microsatellite locus B151. With similar trapping effort and within the same area, live‐capture mark‐recapture techniques estimated 40–60 individuals and non‐invasive methods only detected 14 genotypes. A species‐specific genetic marker would allow more efficient targeting of bridled nailtail wallaby samples and increase capture rates.  相似文献   

18.
Optimal collection and preservation protocols for fecal DNA genotyping are not firmly established. We evaluated 3 factors that influence microsatellite genotyping success of fecal DNA extracted from coyote (Canis latrans) scats: 1) age of scat, 2) preservative, and 3) diet content. We quantified genotyping success by comparing rates of allelic dropout, false alleles, and failed amplifications among consensus genotypes. We used a panel of 6 microsatellite loci to genotype 20 scat samples, each of which was subjected to 3 age (1 day, 5 days, and 10 days post-deposition) and 3 preservation (DET buffer, 95% ethanol [EtOH], and lysis buffer) treatments. Both sample age and storage buffer had a significant effect on success and reliability. Ethanol and DET buffer preserved fecal samples with similar efficiency, and both were superior to lysis buffer. Our analysis of DNA degradation rates revealed that samples collected as early as 5 days of age yielded DNA that was highly degraded relative to samples collected on day 1. We tested the influence of dietary remains on microsatellite genotyping by using scat samples consisting predominantly of insect prey (n = 5), mammalian prey (n = 9), or the remains of juniper (Juniperus spp.) berries (n = 6) and compared EtOH and DET buffer preservation efficacy. We observed a significant interaction effect between storage buffer and diet for the probability of a false allele in a polymerase chain reaction (PCR), suggesting that the optimal preservation technique depended on the food remains comprising the scat. Scats comprised of juniper berry remains were more reliably genotyped when preserved in DET than EtOH. Mammalian prey-based scats were more reliable when stored in EtOH than DET buffer. Insect-predominant scats were preserved in EtOH and DET buffer with similar efficiency. Although accurate and reliable results can be obtained from scats collected at ≥5 days of age, we suggest sampling design to include collection of scats <5 days of age to minimize field and laboratory expenses. We suggest EtOH preservation for scats of obligate carnivores and of facultative carnivores with a diet consisting primarily of mammals. We suggest DET buffer preservation for animals with a diet consisting of plant-derived foods. Lysis buffer protocols that we employed should not be used for fecal DNA preservation. © 2011 The Wildlife Society.  相似文献   

19.
Genetic wildlife monitoring is increasingly carried out on the basis of non-invasively collected samples, whereby the most commonly used DNA sources are skin appendages (hairs, feathers) and faeces. In order to guide decisions regarding future adequate ways to monitor the roe deer (Capreolus capreolus) population of the Bavarian Forest National Park in Germany, we tested these two different types of DNA source materials to compare their suitability for genetic monitoring. We determined the haplotypes (d-loop) of 19 roe deer and genotyped each individual (tissue, hairs, faeces) across 12 microsatellite loci. The amount of missing and erroneous microsatellite alleles obtained from hair and faeces samples, respectively, was estimated based on comparisons with the corresponding tissue sample control. We observed no missing alleles in hair samples, but in fecal samples PCR failed in 30 out of 228 instances (19 individuals x 12 loci), corresponding to a frequency of missing alleles of 13.2% across all loci and individuals. In genotypes generated from hairs erroneous alleles were detected in 2 out of 228 instances (0.9%), while genotypes retrieved from fecal samples displayed erroneous alleles in 6 out of 198 remaining instances (3%). We conclude that both hair and fecal samples are generally well suited for genetic roe deer monitoring, but that fecal sample based analyses require a larger sample size to account for higher PCR failure rates.  相似文献   

20.
We show that Alpine ibex (Capra ibex) and Corsican mouflon (Ovis musimon) faeces yield useful DNA for microsatellite analysis, however, we detected higher genotyping error rates for spring faeces than for winter faeces. We quantified the genotyping error rate by repeatedly genotyping four microsatellites. Respectively, 99 and 95% of mouflon and ibex genotyping repetitions provided a correct genotype using winter samples, whereas spring samples provided only 52 and 59% correct genotypes. Thus, before starting a noninvasive study, we recommend that researchers conduct a pilot study to quantify genotyping error rates for each season, population and species to be studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号