首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new genus, Augophyllum Lin, Fredericq et Hommersand gen. nov. related to Nitophyllum, tribe Nitophylleae, subfam. Nitophylloideae of the Delesseriaceae, is established to contain the type species Augophyllum wysorii Lin, Fredericq et Hommersand sp. nov. from Caribbean Panama; Augophyllum kentingii Lin, Fredericq et Hommersand sp. nov. from Taiwan; Augophyllum marginifructum (R. E. Norris et Wynne) Lin, Fredericq et Hommersand comb. nov. (Myriogramme marginifructa R. E. Norris et Wynne 1987) from South Africa, Tanzania, and the Sultanate of Oman; and Augophyllum delicatum (Millar) Lin, Fredericq et Hommersand comb. nov. (Nitophyllum delicatum Millar 1990 ) from southeastern Australia. Like Nitophyllum, Augophyllum is characterized by a diffuse meristematic region, the absence of macro‐ and microscopic veins, procarps consisting of a supporting cell bearing a slightly curved four‐celled carpogonial branch flanked laterally by a cover cell and a sterile cell, a branched multicellular sterile group after fertilization, absence of cell fusions between gonimoblast cells, and tetrasporangia transformed from multinucleate surface cells. Augophyllum differs from Nitophyllum by the blades becoming polystromatic inside the margins, often with a stipitate cylindrical base, the possession of aggregated discoid plastids neither linked by fine strands nor forming bead‐like branched chains, spermatangia and procarps initiated at the margins of blades, not diffuse, and a cystocarp composed of densely branched gonimoblast filaments borne on a conspicuous persistent auxiliary cell with an enlarged nucleus. Analyses of the rbcL gene support the separation of Augophyllum from Nitophyllum. An investigation of species attributed to Nitophyllum around the world is expected to reveal other taxa referable to Augophyllum.  相似文献   

2.
A new ceramiaceous alga, Sciurothamnion stegengae De Clerck et Kraft, gen. et sp. nov., is described from the western Indian Ocean and the Philippines. Sciurothamnion appears related to the tribe Callithamnieae on the basis of the position and composition of its procarps and by the majority of post‐fertilization events. It differs, however, from all current members of the tribe by the presence of two periaxial cells bearing determinate laterals per axial cell. Additionally, unlike any present representative of the subfamily Callithamnioideae, no intercalary foot cell is formed after diploidization of the paired auxiliary cells. The genus is characterized by a terminal foot cell (“disposal cell”), which segregates the haploid nuclei of the diploidized auxiliary cell from the diploid zygote nucleus. The nature of three types of foot cells reported in the Ceramiaceae (intercalary foot cells containing only haploid nuclei, intercalary foot cells containing haploid nuclei and a diploid nucleus, and terminal foot cells containing only haploid nuclei) is discussed.  相似文献   

3.
On the basis of LM, we isolated strains of two species of fusiform green flagellates that could be assigned to former Chlorogonium (Cg.) Ehrenb. One species, “Cg.”heimii Bourr., lacked a pyrenoid in its vegetative cells and required organic compounds for growth. The other was similar to Cg. elongatum (P. A. Dang.) Francé and “Cg.”acus Nayal, but with slightly smaller vegetative cells. Their molecular phylogeny was also studied based on combined 18S rRNA, RUBISCO LSU (rbcL), and P700 chl a‐apoprotein A2 (psaB) gene sequences. Both species were separated from Chlorogonium emend., Gungnir Nakada and Rusalka Nakada, which were formerly assigned to Chlorogonium. They were accordingly assigned to new genera, Tabris Nakada gen. nov. and Hamakko (Hk.) Nakada gen. nov. as T. heimii (Bourr.) Nakada comb. nov. and Hk. caudatus Nakada sp. nov., respectively. Tabris is differentiated from other genera of fusiform green flagellates by its vegetative cells, which only have two apical contractile vacuoles and lack a pyrenoid in the chloroplast. Hamakko, on the other hand, is distinguishable by the fact that its pyrenoids in vegetative cells are penetrated by flattened thylakoid lamellae.  相似文献   

4.
We examined the molecular phylogeny and ultrastructure of Chlorogonium and related species to establish the natural taxonomy at the generic level. Phylogenetic analyses of 18S rRNA and RUBISCO LSU (rbcL) gene sequences revealed two separate clades of Chlorogonium from which Chlorogonium (Cg.) fusiforme Matv. was robustly separated. One clade comprised Cg. neglectum Pascher and Cg. kasakii Nozaki, whereas the other clade included the type species Cg. euchlorum (Ehrenb.) Ehrenb., Cg. elongatum (P. A. Dang.) Francé, and Cg. capillatum Nozaki, M. Watanabe et Aizawa. On the basis of unique ultrastructural characteristics, we described Gungnir Nakada gen. nov. comprising three species: G. neglectum (Pascher) Nakada comb. nov., G. mantoniae (H. Ettl) Nakada comb. nov., and G. kasakii (Nozaki) Nakada comb. nov. We also emended Chlorogonium as a monophyletic genus composed of Cg. euchlorum, Cg. elongatum, and Cg. capillatum. Because Cg. fusiforme was distinguished from the redefined Chlorogonium and Gungnir by the structure of its starch plate, which is associated with pyrenoids, we reclassified this species as Rusalka fusiformis (Matv.) Nakada gen. et comb. nov.  相似文献   

5.
6.
Cyrtophorids are a specialized group of ciliated protozoa with multitudinous morphotypes. In the present work, the morphology and infraciliature of two new and three rarely known species, including two new genera of cyrtophorid ciliates, Heterohartmannula fangi gen. et sp. nov. , Aporthotrochilia pulex (Deroux, 1976) gen. et comb. nov. , Trochilia alveolata sp. nov. , Trochochilodon flavus Deroux, 1976, and Hypocoma acinetarum Collin, 1907, are described. Heterohartmannula gen. nov. is mainly characterized by a combination of features: two circumoral kineties obliquely arranged, podite not surrounded by somatic kineties, and no distinct gap between left and right ciliary field. Aporthotrochilia gen. nov. is diagnosed mainly by: podite present, oral ciliature reduced to two fragments, several kinety fragments positioned on the right posterior of frontoventral kineties and several terminal fragments. Phylogenetic analyses based on the small subunit rRNA (SSU rRNA) gene sequences support the establishment of two new genera and indicate that Heterohartmannula is most closely related to Hartmannula, and Aporthotrochilia is basal to the Cyrtophoria‐Chonotrichia clade. Trochilia alveolata sp. nov. differs from its congeners mainly by having a conspicuous alveolar layer. In addition, detailed live and infraciliature data of Hypocoma acinetarum and Trochochilodon flavus are supplied. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 164 , 1–17.  相似文献   

7.
The phylogenetic position of an oxygenic photosynthetic prokaryote containing chl d as a major pigment, which have been tentatively named “Acaryochloris marina,” was analyzed using small subunit rDNA sequences. Phylogenetic relationships inferred among A. marina, selected strains from the Cyanobacteria, and plastids showed that A. marina was within the cyanobacterial radiation. The A. marina lineage diverged independently from other phylogenetic subgroups of the Cyanobacteria. No organism was found to be identical or related closely to A. marina by a similarity search and phylogenetic analysis. Based on these results, in addition to the reported characteristics of the cell morphology, pigment composition, and photosynthesis, a new taxon, Acaryochloris marina Miyashita et Chihara gen. et sp. nov., is formally proposed for the oxy‐genic photosynthetic prokaryote.  相似文献   

8.
A new genus and species of heterotrophic dinoflagellate, Cryptoperidiniopsis brodyi gen. et sp. nov., are described. This new species commonly occurs in estuaries from Florida to Maryland, and is often associated with Pfiesteria piscicida Steidinger et Burkholder, Pseudopfiesteria shumwayae (Glasgow et Burkholder) Litaker et al., and Karlodinium veneficum (Ballantine) J. Larsen, as well as other small (<20 μm) heterotrophic and mixotrophic dinoflagellates. C. brodyi gen. et sp. nov. feeds myzocytotically on pigmented microalgae and other microorganisms. The genus and species have the enhanced Kofoidian plate formula of Po, cp, X, 5′, 0a, 6″, 6c, PC, 5+s, 5″′, 0p, and 2″″ and are assigned to the order Peridiniales and the family Pfiesteriaceae. Because the Pfiesteriaceae comprise small species and are difficult to differentiate by light microscopy, C. brodyi gen. et sp. nov. can be easily misidentified.  相似文献   

9.
Electrohemiphlebia barucheli gen. et sp. nov. and Jordanhemiphlebia electronica gen. et sp. nov. , two new genera and species are described, based on exceptional inclusions of hemiphlebiid damselflies in Cretaceous amber from France and Jordan. The type specimen of E. barucheli was studied using phase contrast X‐ray synchrotron microtomography, giving exceptional images and detailed information. Its comparison with the recent Hemiphlebia mirabilis confirms the attribution of several Cretaceous damselflies to the Hemiphlebiidae, showing that this particular group was widespread in the Early Cretaceous and probably originated in the Late Jurassic or earlier. The ecological niches today occupied by the small coenagrionoid damselflies were occupied during the Triassic and Jurassic by Protozygoptera, hemiphlebiids during the Early Cretaceous, and modern taxa in the Cenozoic.  相似文献   

10.
Rutaraphes shikokuensis gen. et sp. nov. is described from Shikoku, Japan. The new taxon belongs to a group of genera characterized by the lateral sutures demarcating the submentum and is most similar to Neuraphes and Scydmoraphes. Morphological structures of Rutaraphes are illustrated and possible affinities with other genera of Cyrtoscydmini are discussed. Keys to identification of Palearctic and Japanese genera of Cyrtoscydmini are given. Including Rutaraphes, 14 genera of Scydmaeninae are currently known to occur in Japan.  相似文献   

11.
Bipolar asymmetry has been considered a morphological characteristic sufficient for differentiation of genera among the Desmidiaceae. Therefore, Micrasterias sudanensis Grönbl., Prowse & Scott, the only species of Micrasterias showing such asymmetry, is made the type of a new genus, Prescottiella, gen. nov.  相似文献   

12.
A new sand‐dwelling dinoflagellate from Palau, Galeidinium rugatum Tamura et Horiguchi gen. et sp. nov., is described. The life cycle of this new alga consists of a dominant nonmotile phase and a brief motile phase. The motile cell transforms itself directly into the nonmotile cell after swimming for a short period, and cell division takes place in the nonmotile phase. The nonmotile cell possesses a dome‐like cell covering, which is wrinkled and equipped with a transverse groove on the surface. The cell has 10–20 chloroplasts and a distinct eyespot. The motile cell is Gymnodinium‐like in shape. The dinoflagellate possesses an endosymbiotic alga to which the chloroplasts belong and which is separated from the host (dinoflagellate) cytoplasm by a unit membrane. The endosymbiont cytoplasm also possesses its own eukaryotic nucleus and mitochondria. The eyespot is surrounded by triple membranes and is located in the host cytoplasm. Photosynthetic pigment analysis, using HPLC, revealed that G. rugatum possesses fucoxanthin as the principal accessory pigment instead of peridinin. The rbcL tree showed that G. rugatum is monophyletic with Durinskia baltica (Levander) Carty et Cox and Kryptoperidinium foliaceum (Stein) Lindemann and that this clade is closely related to the pennate diatom, Cylindrotheca sp. The endosymbiont of G. rugatum is therefore shown to be a diatom. Phylogenetic analysis based on small subunit rDNA sequences demonstrated that G. rugatum, D. baltica, and K. foliaceum, all of which are known to harbor an endosymbiont of diatom origin, are closely related.  相似文献   

13.
Two new propagule-farming red algae from southern Australia, Deucalion levringii (Lindauer) gen. et comb. nov. and Anisoschizus propaguli gen. et sp. nov., are described and defined largely on their development in laboratory culture. Deucalion is included in the tribe Compsothamnieae on the basis of its subapical procarp and alternate distichous branching. It differs from the other genera included in that tribe in that it produces 3-celled propagules, polysporangia, a subapical cell of the fertile axis which bears 3 pericentral cells, and an apparently post-fertilization involucre which develops from the hypogenous and sub-hypogenous cells of the fertile axis. Its gametophyte morphology has been elucidated in culture, as only sporophytes are known from the field. Gametophytes do not appear to produce propagules. Anisoschizus is provisionally included in the tribe Spermothamnieae on the basis of its subdichotomous branching, possession of a prostrate system and the production of polysporangia. It differs from the other genera of the tribe in the production of 2-celled propagules. Observations on the germination of the “monosporangia” of Mazoyerella arachnoidea and Monosporus spp. indicate that they are analagous to the propagules of Deucalion and Anisoschizus. The nature of these propagules and their role in recycling the parent plant are discussed and contrasted with true monosporangia. It is recommended that Monosporus be maintained as a form genus containing representatives from more than one tribe, as exemplified by plants from Lord Howe I. provisionally identified as M. indicus Boergesen which have both prostrate and erect, as opposed to only erect, axes.  相似文献   

14.
On the basis of comparative morphology and phylogenetic analyses of rbcL and LSU rDNA sequence data, a new genus, Gayliella gen. nov., is proposed to accommodate the Ceramium flaccidum complex (C. flaccidum, C. byssoideum, C. gracillimum var. byssoideum, and C. taylorii), C. fimbriatum, and a previously undescribed species from Australia. C. transversale is reinstated and recognized as a distinct species. Through this study, G. flaccida (Kützing) comb. nov., G. transversalis (Collins et Hervey) comb. nov., G. fimbriata (Setchell et N. L. Gardner) comb. nov., G. taylorii comb. nov., G. mazoyerae sp. nov., and G. womersleyi sp. nov. are based on detailed comparative morphology. The species referred to as C. flaccidum and C. dawsonii from Brazil also belong to the new genus. Comparison of Gayliella with Ceramium shows that it differs from the latter by having an alternate branching pattern; three cortical initials per periaxial cell, of which the third is directed basipetally and divides horizontally; and unicellular rhizoids produced from periaxial cells. Our phylogenetic analyses of rbcL and LSU rDNA gene sequence data confirm that Gayliella gen. nov. represents a monophyletic clade distinct from most Ceramium species including the type species, C. virgatum. We also transfer C. recticorticum to the new genus Gayliella.  相似文献   

15.
Few species in the genus Grateloupia have been investigated in detail with respect to the development of the auxiliary cell ampullae before or after diploidization. In this study, we document the vegetative and reproductive structures of two new species of Grateloupia, G. taiwanensis S.‐M. Lin et H.‐Y. Liang sp. nov. and G. orientalis S.‐M. Lin et H.‐Y. Liang sp. nov., plus a third species, G. ramosissima Okamura, from Taiwan. Two distinct patterns are reported for the development of the auxiliary cell ampullae: (1) ampullae consisting of three orders of unbranched filaments that branch after diploidization of the auxiliary cell and form a pericarp together with the surrounding secondary medullary filaments (G. taiwanensis type), and (2) ampullae composed of only two orders of unbranched filaments in which only a few cells are incorporated into a basal fusion cell after diploization of the auxiliary cell and the pericarp consists almost entirely of secondary medullary filaments (G. orientalis type). G. orientalis is positioned in a large clade based on rbcL gene sequence analysis that includes the type species of Grateloupia C. Agardh 1822 , Gfilicina. G. taiwanensis clusters with a clade that includes the generitype of Phyllymenia J. Agardh 1848 , Ph. belangeri from South Africa; that of Prionitis J. Agardh 1851 , Prlanceolata from Pacific North America; and that of Pachymeniopsis Y. Yamada ex Kawab. 1954, Palanceolata from Japan. A reexamination of the type species of the genera Grateloupia, Phyllymenia, Prionitis, and Pachymeniopsis is required to clarify the generic and interspecific relationships among the species presently placed in Grateloupia.  相似文献   

16.
A new marine sand‐dwelling coccoid dinoflagellate Pyramidodinium atrofuscum Horiguchi et Sukigara gen. et sp. nov. is described from Jellyfish Lake, Republic of Palau. The dinoflagellate alternates a non‐motile vegetative stage with a motile gymnodinioid stage within its life cycle. The non‐motile stage is dominant in the life cycle and the dinoflagellate reproduces itself by means of the production of two motile cells. The released motile cell swims only for a short period and is directly transformed into the non‐motile cell. The non‐motile cell is sessile, pyramidal in shape, with a single longitudinal ridge and a double transverse ridge. The surface of the cell wall is covered with many processes. The motile cell has a Gymnodinium‐like morphology, but no apical groove is present. An ultrastructural study revealed that the dinoflagellate possesses typical dinoflagellate organelles. Based on the unique morphology of the vegetative non‐motile stage, we propose a new genus Pyramidodinium for this dinoflagellate, with the type species Pyramidodinium atrofuscum Horiguchi et Sukigara, gen. et sp. nov.  相似文献   

17.
文章报道可能属于单子叶被子植物化石的两个新属Shangyuania gen.nov.和Zhouia gen.nov.,标本采自辽宁省北票市上园乡黄半吉沟下白垩统义县组尖山沟层。前者属于水生草本植物,具有一个非常细弱的茎,茎保存不全,未见分枝。茎上生有对生和互生的沉水型叶;叶线形,全缘。基部无柄,顶端为钝圆形;具有一条中脉,中脉的两侧各有3—4条细而平行的侧脉和在叶的远轴面上各有一行可能的通气组织;穗状花序生于叶腋中,具有一个细弱的花序梗,由4~5轮小花组成。后者是一个单独保存的种子,卵圆形,被压扁,表面具有多角形的细胞或泡沫状纹饰。通过对两新属形态特征研究和对比,推测它们可能与现生眼子菜科(Potamogetonaceae),特别是该科中的眼子菜属(Potamogeton),以及茨藻科(Najadaceae)的茨藻属(Najas)有某种亲缘关系。  相似文献   

18.
The development of two red algal parasites was examined in laboratory culture. The red algal parasite Bostrychiocolax australis gen. et sp. nov., from Australia, originally misidentified as Dawsoniocolax bostrychiae (Joly et Yamaguishi-Tomita) Joly et Yamaguishi-Tomita, completes its life history in 6 weeks on its host Bostrychia radicans (Montagne) Montagne. Initially the spores divide to form a small lenticular cell, and then a germ tube grows from the opposite pole. Upon contact with the host cuticle, the germ tube penetrates the host cell wall. The tip of the germ tube expands, and the spore cytoplasm moves into this expanded tip. The expanded germ tube tip becomes the first endophytic cell from which a parasite cell is cut off that fuses with a host tier cell. The nuclei of this infected host cell enlarge. As parasite development continues, other host-parasite cell fusions are formed, transferring more parasite nuclei into host cells. The erumpent colorless multicellular parasite develops externally on the host, and reproductive structures are visible within 2 weeks. Tetrasporangia are superficial and cruciately or tetra-hedrally divided. Spermatia are formed in clusters. The carpogonial branches are four-celled, and the carpogonium fuses directly with the auxiliary (support) cell. The mature carposporophyte has a large central fusion cell and sympodially branched gonimoblast filaments. Early stages of development differ markedly in Dawsoniocolax bostrychiae from Brazil. Upon contact with the host, the spore undergoes a nearly equal division, and a germ tube elongates from the more basal of the two spore cells, penetrates the host cell wall, and fuses with a host tier cell. Subsequent development involves enlargement of the original spore body and division to form a multicellular cushion, from which descending rhizoidal filaments form that fuse with underlying host cells. This radically different development is in marked contrast to the final reproductive morphology, which is similar to B. australis and has lead to taxonomic confusion between these two entities. The different spore germination patterns and early germ-ling development of B. australis and D. bostrychiae warrant the formation of a new genus for the Australian parasite.  相似文献   

19.
20.
Nemerteans of the Great Barrier Reef 3. Anopla Heteronemertea (Lineidae)   总被引:3,自引:0,他引:3  
Nine species of lineid heteronemerteans are recorded from the Great Barrier Reef province of Australia. Six of these are new species, including four new genera, and are fully described and illustrated. These are Aetheorhynchus actites gen. et sp. nov. , Bennettiainsularis gen. et sp. nov., Cerebratulus magnetkus sp. nov., Colemania albulus gen. et sp. nov., Mkrura tridacnae sp. nov. and Quasilineus pulcherrimus gen. ct sp. nov. Lineus tricuspidatus (Quoy & Gaimard) is re-established, illustrated and described. Gorgonorhynchus repens Dakin & Fordham and Parborlasia hutchingsi Gibson have been fully described elsewhere, but a full list of known locations is provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号