首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The causes of spatial variation in the recruitment of benthic marine algae are frequently misunderstood because of difficulties in distinguishing among the many factors that influence the supply and establishment of microscopic propagules. We used the recently constructed San Clemente Artificial Reef (SCAR) experiment to examine the roles of dispersal distance, size of spore source, and habitat availability as sources of variation in the recruitment of the giant kelp Macrocystis pyrifera (L.) C. Ag., a species whose recruitment has often been considered to be dispersal limited. Sparse colonization on SCAR by adult Macrocystis occurred within 6 months after reef construction via drifters (i.e. individuals from neighboring kelp beds that became dislodged and set adrift). The abundance of drifters on SCAR declined exponentially with distance from the nearest source population (San Mateo), suggesting that San Mateo was the likely source of drifters. Dense recruitment of small Macrocystis sporophytes was observed within 8 months of reef construction. The density of recruits on SCAR showed an initial increase with distance from San Mateo before declining exponentially. Nonetheless, substantial recruitment was observed at the most distant locations on SCAR located 3.5 km from San Mateo. In contrast to drifters, the density of recruits was positively correlated to the bottom cover of artificial reef substrate. Importantly, no correlation was found between the local density or fecundity of drifters and the local density of kelp recruits suggesting that recruitment on SCAR resulted from widespread spore dispersal rather than from the local dispersal of spores from drifters.  相似文献   

2.
The persistence of floating seaweeds, which depends on abiotic conditions but also herbivory, had previously been mostly tested in outdoor mesocosm experiments. In order to investigate if the obtained mesocosm results of high seaweed persistence under natural environmental conditions and under grazing pressure can be extrapolated to field situations, we conducted in situ experiments. During two summers (2007 and 2008), Macrocystis pyrifera was tethered (for 14 d) to lines in the presence and absence of the amphipod Peramphithoe femorata at three sites (Iquique, Coquimbo, Calfuco). We hypothesized that grazing damage and seaweed persistence vary among sites due to different abiotic factors. By incubating the sporophytes in mesh bags, we were either able to isolate (grazing) or exclude (control) amphipods. To test for a mesh bag artifact, a set of sporophytes was incubated without mesh bags (natural). Mesh bags used to exclude herbivores influenced sporophyte growth and physiological performance. The chlorophyll a (Chl a) content depended largely on grazers and grazed sporophytes grew less than natural and control sporophytes within the two summers. A decrease in Chl a content was found for the sites with the highest prevailing irradiances and temperatures, suggesting an efficient acclimation to these sea surface conditions. Our field‐based results of sporophyte acclimation ability even under grazing pressure widely align with previous mesocosm results. We conclude that M. pyrifera and other temperate floating seaweeds can function as long‐distance dispersal vectors even with hitchhiking mesoherbivores.  相似文献   

3.
Elevated irradiance has a profound effect on the successful dispersal and establishment of kelp zoospores, affecting their physiology and viability. The research to date, however, has been on zoospores localized near the benthos, with little attention on the importance of vertical transportation and subsequent exposure to increased irradiance. Therefore, we wanted to investigate the effects of exposure to high irradiance on the reproductive planktonic life‐history stages of kelps Macrocystis pyrifera (L.) C. Agardh and Pterygophora californica Rupr. Zoospores of both species were exposed to different irradiances (75, 275, 575, 1,025 μmol photons · m?2 · s?1) over varying durations (1, 2, 4, 8, 12 h) and subsequently monitored for settlement competency, gametophyte development, and reproductive viability. Settlement success for M. pyrifera was uniform throughout all irradiance × time treatments, while settlement for P. californica decreased with increasing exposure time but not irradiance, although settlement was generally reduced at the highest irradiance level. Following zoospore settlement, germ tube development was visible in the gametophytes of both species within 1 week, although a significant decline of germ tube density in P. californica was observed with increasing irradiance. Similarly, a decrease in germ tube development with increasing exposure was observed across all irradiance levels for M. pyrifera, but irradiance itself was not significant. Further development into embryonic sporophytes was remarkably similar to gametophyte development, suggesting that the effect of exposure of kelp zoospores to high irradiance on subsequent sporophyte production is mediated through gametophyte development as well as zoospore survival.  相似文献   

4.
Recent work suggests that the ability to delay reproduction as resistant haploid gametophytes may be important for seaweeds that experience unpredictable disturbances or seasonal periods of poor conditions that result in adult sporophyte absence. Further, delayed gametophytes of some kelp species (order Laminariales) may produce sporophytes more rapidly than if they had never experienced a delay, conferring a competitive advantage when conditions improve or after disturbance events. Here, it was determined that the gametophytes of the canopy‐forming kelp Macrocystis pyrifera (L.) C. Agardh could delay reproduction in a one‐ to two‐cell state (<50 μm) for at least 7 months when grown under nutrient‐limiting conditions. These stages retained reproductive viability and produced sporophytes within 5 d once nutrients were increased. This finding suggests that gametophytes could potentially promote recovery of M. pyrifera populations after extended periods of sporophyte absence. In addition, the time required for sporophyte production between gametophytes of the four most conspicuous kelp species in Southern California that had delayed reproduction and gametophytes that had not was compared. For these four kelp species, a delay of at least 30 d conferred a 40%–76% reduction in the time required for sporophyte production once nutrients were received. Fecundity did not decrease with delay duration, suggesting there is no apparent cost of delayed development for kelps as has been observed in other organisms. Thus, delayed development may be a viable strategy for surviving and initially dominating in environments with variable quality.  相似文献   

5.
We investigated patterns of spore dispersal in the giant kelp Macrocystis pyrifera by collecting 80 independent measurements of spore dispersal from isolated individuals and isolated groups of individuals over a two‐year period. Our results indicate that giant kelp spores routinely disperse both short (i.e. a couple meters) and long (i.e. hundreds to thousands of meters) distances depending on the oceanographic conditions. One consequence of spore dispersal over short distances is self‐fertilization (i.e., fertilization between male and female gametophytes derived from the same sporophyte). Field experiments designed to test the effects of self‐fertilization on lifetime fitness in Macrocystis revealed significant inbreeding depression. Birth rates in self‐fertilized populations were ca. 50% of those produced from outcrossing, which lead to significant differences in cohort size that persisted up through the adult stage. In contrast to outcrossed populations, very few individuals produced from selfing became reproductively mature, and those that did were significantly less fecund than outcrossed individuals. By contrast, long‐range dispersal of spores leads to increased rates of outcrossing. However, long‐range dispersal is typically accompanied by massive dilution of spores, leading to low densities of spore settlement. Sparse spore settlement decreases the overall chance of fertilization in the microscopic gametophyte generation thereby reducing the potential for colonization of the macroscopic sporophyte stage. Large population size of adult sporophytes coupled with the synchronous release of spores in response to environmental cues can help offset the effects of spore dilution and extend the distances over which giant kelp is able to colonize.  相似文献   

6.
Different lamina of Macrocystis pyrifera sporophytes (i.e., sporophylls, pneumatocyst‐bearing blades, and apical scimitars) in a wave‐sheltered site were found to be fertile. We quantified their sorus surface area, reproductive output (number of spores released) and the viability of released spores (germination rate). Sorus area was greatest on the sporophylls, with sporangia developing on >57% of the total area and smallest on the pneumatocyst‐bearing blades with 21% of the total area bearing sporangia. The apical scimitar released the greatest number of meiospores (cells · mL?1 · cm?2) and the sporophylls the least. Meiospores produced from all types of fertile laminae were equally viable. This reproductive plasticity may enhance reproductive output, and contribute to short and long‐distance spore dispersal and the cryptic gametophyte propagule bank for the next generation of sporophytes.  相似文献   

7.
  • The moss Syntrichia caninervis is widely distributed in cool temperate and cold deserts where environmental pressures create a dependence on asexual reproduction (fragment reproduction). However, when compared to sporophyte‐producing mosses, there is a lack of evidence to support the capacity of drought‐tolerant mosses that predominantly fragment and produce protonema to disperse over long distances.
  • We used 20 microsatellite loci to study genetic variation and structure in six populations (five natural populations and one population from a regeneration site) in three contrasting and widely separated regions of China.
  • The genetic diversity and expected heterozygosity were lower in populations from the Tengger Desert than in populations from the other regions. Using PCoA, UPGMA and Structure analysis, the genetic grouping divided the three regions into three distinct groups. This may indicate that in regions where S. caninervis reproduces predominantly asexually, propagules are spread mainly by short‐distance dispersal. The genetic diversity of the population from the regeneration site in the Tengger Desert was slightly higher than that of the nearby, naturally occurring population, and included some input from the Pamir Plateau almost 2,300 km to the west, suggesting long‐distance dispersal of S. caninervis propagules across the region.
  • Predominantly asexually reproducing populations of S. caninervis are mainly dependent on short‐distance dispersal. Long‐distance dispersal of S. caninervis propagules across the region is difficult. Establishment of populations with dominant asexual reproduction will eventually result in genetic differentiation.
  相似文献   

8.
Laboratory and field experiments were done hi Still-water Cove, Carmel Bay, California, and Monterey Harbor, California, to determine the effect of photosynthetically active radiation (PAR) on the shallow (upper) limit of giant kelp, Macrocystis pyrifera (L.) C. Agardh. At shallow depths, M. pyrifera did not recruit or grow to macroscopic size from gametophytes or embryonic sporophytes transplanted to vertical buoy lines; sharp decreases in PAR with depth coincided with observed recruitment and sporophyte distributions. Shade manipulations indicated that settlement of M. pyrifera zoospores was decreased, but not prohibited, by high PAR. Postsettlement stages (gametophytes and embryonic sporophytes), however, survived only under shade. These results suggest that high PAR can inhibit the recruitment of M. pyrifera to shallow water by killing its postsettlement stages; whether or not ultraviolet (UV) radiation also inhibits recruitment was not tested. In either case, however, it appears that high irradiance (PAR and/or UV) regulates the shallow limit of M. pyrifera prior to temperature and desiccation stresses inherent to intertidal regions. In an additional experiment, recruitment or growth of transplanted gametophytes or embryonic sporophytes of Macrocystis integrifolia Bory also did not occur at shallow depths, suggesting that this shallow water species accesses high irradiance regions via a method other than sexual reproduction.  相似文献   

9.
The life history in culture of Akkesiphycus lubricus Yamada et Tanaka, an alga which has been placed in the Coilodesmaceae or the Punclariaceae, Dictysiphonales, was studied. In culture the species alternates between a microscopic filamentous gametophyte and a macroscopic polystichous sporophyte, a pattern common to the Dictyasiphonales and Laminariales. However, it has a unique anisogamous dioecious gametophyte. Fusions between mac-ro-gametes and micro-gametes were not observed, Macro-gametes or zygotes germinated, mostly developing into sporophytes that formed unilocular sporangia and the rest developed into reduced gametophytic flaments again. The gametophyte matures in 50C short-day conditions, corresponding to winter in Hokkaido. The sporophyte develops normally and matures only in low-temperature conditions irrespective of daylength. In regard to iits systematic position, Akkesiphycus lubricus is considered to have a closer relationship with the Laminariales than with the Dietyosiphonales in the following characters; lack of pyrenoids; early stages of parenchyma formation in the sporophyte; direct development of sporophytes from gametes or zygotes without forming a besal system zoospore becomes almost empty after germination by the migration of cell contents into a germ lube; formation of macro-gametangia by direct conversions of mother cells of mother cells of fertile branches; and micro-gametangia formed in clusters showing closeresemblance to the antheridia of Pseudochorda nagii (Tokida) Inagaki.  相似文献   

10.
The giant kelp Macrocystis pyrifera (L.) C. Agardh is widely distributed in the Northern Hemisphere and Southern Hemisphere, yet it exhibits distinct population dynamics at local to regional spatial scales. Giant kelp populations are typically perennial with the potential for year‐round reproduction and recruitment. In southern Chile, however, annual giant kelp populations exist and often persist entirely on secondary substrata (e.g., shells of the slipper limpet Crepipatella fecunda [Gastropoda, Calyptraeidae]) that can cover up to 90% of the rocky bottom. In these populations, the macroscopic sporophyte phase disappears annually during winter and early spring, leaving a 3–4 month period in which a persistent microscopic phase remains to support the subsequent year’s recruitment. We tested the effects of a suite of grazers on the recruitment success of this critical microscopic phase at two sites in southern Chile. Field experiments indicated that the snail Tegula atra negatively impacted M. pyrifera sporophyte recruitment, but that recruitment was highest in the presence of sessile female limpets, C. fecunda. Conversely, small male C. fecunda (biofilm grazers) did not regulate kelp recruitment. Laboratory observations showed that C. fecunda males only grazed on microscopic kelp gametophytes and small (<250 μm) sporophytes, rejecting larger sporophytes, whereas T. atra grazed on all the kelp stages. Recruitment to the C. fecunda treatments far exceeded that to bare rock in the absence of grazers but was not due to the physical presence of C. fecunda shells. We concluded that the key to M. pyrifera recruitment success in southern Chile is its capacity to colonize secondary substrates provided by the slipper limpet C. fecunda.  相似文献   

11.
The effects of sedimentation and substrate orientation on algal and sessile invertebrate assemblages were tested on an annual population of Macrocystis pyrifera in Metri Bay, southern Chile. In the laboratory, M. pyrifera zoospores were seeded on Crepipatella fecunda shells, the primary substrate for M. pyrifera in this system. The seeded shells were deployed at Metri Bay inside cages and were orientated vertically and horizontally under two sedimentation regimes (bottom and suspended). Due to differences in grazer accessibility and the species present between the sedimentation treatments, grazers (>1 cm) were excluded. We followed sporophyte development of M. pyrifera and the natural recruitment of other algal and invertebrate species. Sedimentation rates were significantly higher in the cages attached to the bottom compared to suspended cages (P < 0.001). In total M. pyrifera and three additional algal genera were detected and all algal recruits showed significantly greater recruitment on the horizontally orientated substrate compared to the vertical substrate. Macrocystis pyrifera sporophytes were present only on the horizontal, suspended (less sedimentation) treatment. In contrast, Ulva and Ectocarpus spp. also occurred in the horizontal, high sediment treatment. Invertebrate recruitment (amphipods, barnacles and spirorbids) dominated the vertically oriented shells regardless of sedimentation. Results indicate that high sedimentation negatively affected the development of M. pyrifera sporophytes while other opportunistic species were able to recruit under these conditions.  相似文献   

12.
Syzygiella rubricaulis is a dioecious leafy liverwort disjunctly distributed and restricted to high‐altitude mountains in the Neotropics and the Azores. This study is part of a larger project examining the phylogeography of S. rubricaulis in the Neotropics, and our main goals were to understand its reproductive biology, where sex expression occurs, if vegetative propagules are frequently found, how the sexes are distributed in populations, how frequently sporophytes are formed and what environmental conditions influence sexual expression. S. rubricaulis patches are mostly female, but all patches also contain non sex‐expressing shoots. Out of 42 patches examined, 29 (69%) were sex‐expressing: 25 were unisexual (21 female and four male) and four of mixed sex (two male‐biased and two unbiased). At shoot level, out of 4200 shoots 18% were female and 7% male; among sex‐expressing shoots, 73% were female, representing a sex ratio of 0.8 (female‐biased). We encountered a total of 33 sporophytes in six patches (in Brazil, Venezuela and Ecuador). Leaf regenerants were found in one patch in Mexico. Low rates of sporophytes were likely related to low frequencies of male shoots and large distances between the sexes. As 25% of S. rubricaulis shoots expressed sex (occasionally producing sporophytes), we suggest that short‐distance (and rarely long‐distance) spore dispersal events occur in mountainous areas on a short‐term basis. On a long‐term basis, however, these events likely contribute to dynamic exchanges among populations in the Neotropics.  相似文献   

13.
Neushul , M. (U. Washington, Seattle.) Studies on the giant kelp, Macrocystis. II. Reproduction. Amer. Jour. Bot. 50(4): 354–359. Illus. 1963.—The reproduction of Macrocystis pyrifera was studied in the sea and in the laboratory. The estimated minimum time needed for the completion of the sexual life history of Macrocystis pyrifera in La Jolla, California, is from 12 to 14 months. Young sporophytes begin fruiting when they have from 4 to 8 stipes and a somatic frond weight of from 8 to 10 kg. The behavior of abscised sporophylls in laboratory tanks, as well as their morphology and coloration, strongly suggests an interrelationship between the translocation of photosynthetic products and fructification.  相似文献   

14.
Delayed recruitment of microscopic stages in response to cyclical cues is critical to the population dynamics of many annual and seasonally reproducing perennial seaweeds. Microscopic stages may play a similar role in continuously reproducing perennials in which adult sporophytes are subject to episodic mortality, if they can respond directly to the unpredictable onset and relaxation of unfavorable conditions. We experimentally evaluated the potential for temporary reduction in limiting resources (light, nutrients) to directly delay recruitment of giant kelp (Macrocystis pyrifera (L.) C.A. Agardh) gametophytes and embryonic sporophytes. Laboratory cultures were subjected to limiting conditions of light and nutrients for 1 month and then exposed to nonlimiting conditions for 10 days. Gametophytes in all treatments failed to recruit to sporophytes after 2 weeks, suggesting they are not a source of delayed recruitment in giant kelp. Sporophytes in light‐limited treatments, however, survived and grew significantly slower than non–light‐limited controls. When stimulated with light, light‐limited sporophytes grew from 2 to>10 times faster than unstimulated controls depending on nutrient availability. These results suggest that limiting resources can delay recruitment of embryonic giant kelp sporophytes for at least 1 month. Flexible timing of recruitment from embryonic sporophytes may enhance persistence of continuously reproducing perennial species when mac‐ roscopic adults are subject to episodic large‐scale removals.  相似文献   

15.
Haploid sporophytes of Osmunda claytoniana (2n = x = 22) were apogamously produced from calli when cultivated on a hormone-free medium. Flow cytometric analysis showed that ploidy chimeras were spontaneously produced in a haploid sporophyte of O. claytoniana and those of O. japonica that were obtained in the previous study. In the haploid sporophyte of O. claytoniana, a diploid pinnule and a partially diploid terminal segment were produced in a haploid pinna. In O. japonica, a haploid sporophyte yielded a diploid pinna in a haploid frond, and another haploid sporophyte yielded a diploid pinnule in a haploid pinna. Diploid chimeras were large in size and could be readily distinguished from other haploid parts of the fronds. It is likely that the chimeras were produced clonally from a single diploid cell that established chromosome doubling.  相似文献   

16.
The life‐cycle system of Ulotrichales, a major order of Ulvophyceae, remains controversial because it is unclear whether the Codiolum phase, a characteristic unicellular diploid generation in ulotrichalean algae, is a zygote or a sporophyte. This controversy inhibits the understanding of the diversified life cycles in Ulvophyceae. To distinguish between zygotes and sporophytes, we have to examine not only whether diploid generations function as sporophytes, but also whether mitosis occurs before meiosis in diploid generations. However, the nuclear behavior in the Codiolum phases is largely unknown, probably because no suitable methods are available. Using fluorescent microscopy with ethidium bromide and transmission electron microscopy of cell‐wall‐dissected specimens, we report the nuclear behavior in the Codiolum phases of an ulotrichalean alga with a representative life cycle, Monostroma angicava. Each vegetative Codiolum phase had a single polyploid nucleus due to endoreduplication, a type of mitosis without nuclear division. During zoosporogenesis, the nucleus had a structure that would be a meiosis‐specific complex. We quantitatively showed that Codiolum phases grew extremely large and produced numerous zoospores. Our results suggest that an event comparable to mitosis occurs before meiosis in the Codiolum phase of M. angicava. This nuclear behavior and the functions (growth and zoospore production abilities) correspond to those of sporophytes. Therefore, the life‐cycle system of M. angicava is a heteromorphic haplo‐diplontic cycle. This system appears to be widely adopted among other ulotrichalean algae.  相似文献   

17.
Recent progress in Macrocystis mariculture is based on clonal stock cultures of gametophyte parents. Batches of up to 105 genetically identical sporophyte seedlings can be produced at any time in the laboratory and explanted in the field for production of biomass. Sexual crosses of selected Macrocystis pyrifera gametophyte parents of different geographic origin along the coast of Chile showed heterosis and produced sporophyte batches with superior growth performance. Starting from zygotes, after 10 weeks in the laboratory and 5 months in the sea, our best hybrid genotypes grew up to 11 kg fresh weight per frond, which corresponds to 66 kg m−1 of line in a commercial mariculture installation. In contrast, average yields of 14.4 and 22 kg m−1 are reported in the literature for traditional methods. Additional experiments, including inter-specific crosses M. pyrifera × M. integrifolia and their performance in different climate zones of Chile, confirm that heterosis is a powerful tool for crop improvement in Macrocystis. It opens the possibility to construct tailor-made heterosis genotypes with maximum productivity and/or other desired properties for any given locality.  相似文献   

18.
Megaspore germination and sporophyte formation of Marsilea vestitaH. and G. was studied under different light, pH, temperature,and crowding conditions during a 6 d experimental period. Maximumgermination and sporophyte development occurs under relativelylow light intensity. Darkness and high light intensity inhibitsporophyte development. Selected wavelengths of light (red,far-red, green, blue) and darkness reduce both megaspore germinationand sporophyte development as compared to white light. Megasporesand sporophytes show maximum development at 25 ?C in light,whereas their development is reduced at all temperatures indarkness. The optimum pH range for megaspore germination ispH 7–8 and that for sporophyte development is pH 7. Sporocarpcontents alter the pH of unbuffered acidic and basic media towarda more optimal growth condition (pH 6–8) for megasporegermination. Megaspore germination and sporophyte developmentvary inversely with conditions of crowding. Root and leaf growthon developed sporophytes is very similar in most treatments.  相似文献   

19.
We conducted a population genetic analysis of the stalked kelp, Pterygophora californica, in the Santa Barbara Channel, California, USA. The results were compared with previous work on the genetic differentiation of giant kelp, Macrocystis pyrifera, in the same region. These two sympatric kelps not only share many life history and dispersal characteristics but also differ in that dislodged P. californica does not produce floating rafts with buoyant fertile sporophytes, commonly observed for M. pyrifera. We used a comparative population genetic approach with these two species to test the hypothesis that the ability to produce floating rafts increases the genetic connectivity among kelp patches in the Santa Barbara Channel. We quantified the association of habitat continuity and oceanographic distance with the genetic differentiation observed in stalked kelp, like previously conducted for giant kelp. We compared both overall (across all patches) and pairwise (between patches) genetic differentiation. We found that oceanographic transit time, habitat continuity, and geographic distance were all associated with genetic connectivity in P. californica, supporting similar previous findings for M. pyrifera. Controlling for differences in heterozygosity between kelp species using Jost's DEST, we showed that global differentiation and pairwise differentiation were similar among patches between the two kelp species, indicating that they have similar dispersal capabilities despite their differences in rafting ability. These results suggest that rafting sporophytes do not play a significant role in effective dispersal of M. pyrifera at ecologically relevant spatial and temporal scales.  相似文献   

20.
Kelp forests are highly productive and species‐rich benthic ecosystems in temperate regions that provide biogenic habitat for numerous associated species. Diverse epifaunal communities inhabit kelp sporophytes and are subject to variations in the physical environment and to changes experienced by the kelp habitat itself. We assessed seasonal variations in epifaunal invertebrate communities inhabiting giant kelps, Macrocystis pyrifera, and their effects on this seaweed. Six seasonal samplings were conducted over a year at an upwelling‐dominated site in northern‐central Chile where physical conditions are known to fluctuate temporally. More than 30 taxa were identified, among which peracarid crustaceans stood out in both diversity and abundance. Species richness and abundance differed among sporophyte sections (holdfast and fronds) and throughout the year. The frond community was dominated by two grazers (the amphipod Peramphithoe femorata and the isopod Amphoroidea typa), while suspension feeders, grazers, and omnivores (the amphipod Aora typica, the isopod Limnoria quadripunctata, and polychaetes) dominated the holdfasts. Abundances of the dominant species fluctuated throughout the year but patterns of variation differed among species. The most abundant grazer (P. femorata) had highest densities in summer, while the less abundant grazer (A. typa) reached its peak densities in winter. Interestingly, the area of kelp damaged by grazers was highest in autumn and early winter, suggesting that grazing impacts accumulate during periods of low kelp growth, which can thus be considered as ‘vestiges of herbivory past.’ Among the factors determining the observed seasonal patterns, strong variability of environmental conditions, reproductive cycles of associated fauna, and predation by fishes vary in importance. Our results suggest that during spring and early summer, bottom‐up processes shape the community structure of organisms inhabiting large perennial seaweeds, whereas during late summer and autumn, top‐down processes are more important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号