首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesodinium rubrum (=Myrionecta rubra), a marine ciliate, acquires plastids, mitochondria, and nuclei from cryptophyte algae. Using a strain of M. rubrum isolated from McMurdo Sound, Antarctica, we investigated the photoacclimation potential of this trophically unique organism at a range of low irradiance levels. The compensation growth irradiance for M. rubrum was 0.5 μmol quanta · m−2 · s−1, and growth rate saturated at ∼20 μmol quanta · m−2 · s−1. The strain displayed trends in photosynthetic efficiency and pigment content characteristic of marine phototrophs. Maximum chl a–specific photosynthetic rates were an order of magnitude slower than temperate strains, while growth rates were half as large, suggesting that a thermal limit to enzyme kinetics produces a fundamental limit to cell function. M. rubrum acclimates to light‐ and temperature‐limited polar conditions and closely regulates photosynthesis in its cryptophyte organelles. By acquiring and maintaining physiologically viable, plastic plastids, M. rubrum establishes a selective advantage over purely heterotrophic ciliates but reduces competition with other phototrophs by exploiting a very low‐light niche.  相似文献   

2.
The dinoflagellate Amylax triacantha is known to retain plastids of cryptophyte origin by engulfing the mixotrophic ciliate Mesodinium rubrum, itself a consumer of cryptophytes. However, there is no information on the fate of the prey's organelles and the photosynthetic performance of the newly retained plastids in A. triacantha. In this study, we conducted a starvation experiment to observe the intracellular organization of the prey's organelles and temporal changes in the photosynthetic efficiency of acquired plastids in A. triacantha. The ultrastructural observations revealed that while the chloroplast‐mitochondria complexes and nucleus of cryptophyte were retained by A. triacantha, other ciliate organelles were digested in food vacuoles. Acquired plastids were retained in A. triacantha for about 1 mo and showed photosynthetic activities for about 18 d when measured by a pulse‐amplitude modulation fluorometer.  相似文献   

3.
The marine photosynthetic dinoflagellates Dinophysis Ehrenb. species are obligate mixotrophs that require both light and the ciliate prey Myrionecta rubra (= Mesodinium rubrum) for long‐term survival. Despite rapid progress on the study of Dinophysis using laboratory cultures, however, whether it has its own permanent plastids or kleptoplastids (i.e., stolen plastids from its ciliate prey) is not fully resolved. Here, we addressed this issue using established cultures of D. caudata Saville‐Kent strain DC‐LOHABE01 and cross‐feeding/starvation experiments encompassing the prey Mrubra strain MR‐MAL01 cultures grown on two different cryptophytes (strains CR‐MAL01 and CR‐MAL11). To follow the fate of prey plastids, psbA gene as a tracer was amplified from individually isolated D. caudata cells, and the PCR products were digested with a restriction enzyme, SfaNI. The RFLP pattern of the PCR products digested by SfaNI revealed that Dcaudata continued to keep CR‐MAL01–type plastids, while it lost CR‐MAL11–type plastids with increasing starvation time. Our results suggest that Dinophysis treats in different ways plastids taken up from different cryptophytes via its ciliate prey Mrubra. Alternatively, Dcaudata may already have its own CR‐MAL01–type permanent plastid, with two types of plastids (CR‐MAL01 and CR‐MAL11) obtained from Mrubra being lost within 1 month. This result highlights the need to identify more accurately the origin of plastids in newly isolated photosynthetic Dinophysis species to resolve the issue of plastid permanence.  相似文献   

4.
The gonyaulacalean dinoflagellates Amylax spp. were recently found to contain plastids of the cryptophyte origin, more specifically of Teleaulax amphioxeia. However, not only how the dinoflagellates get the plastids of the cryptophyte origin is unknown but also their ecophysiology, including growth and feeding responses as functions of both light and prey concentration, remain unknown. Here, we report the establishment of Amylax triacantha in culture, its feeding mechanism, and its growth rate using the ciliate prey Mesodinium rubrum (= Myrionecta rubra) in light and dark, and growth and grazing responses to prey concentration and light intensity. The strain established in culture in this study was assigned to A. triacantha, based on morphological characteristics (particularly, a prominent apical horn and three antapical spines) and nuclear SSU and LSU rDNA sequences. Amylax triacantha grew well in laboratory culture when supplied with the marine mixotrophic ciliate M. rubrum as prey, reaching densities of over 7.5 × 103 cells/ml. Amylax triacantha captured its prey using a tow filament, and then ingested the whole prey by direct engulfment through the sulcus. The dinoflagellate was able to grow heterotrophically in the dark, but the growth rate was approximately two times lower than in the light. Although mixotrophic growth rates of A. triacantha increased sharply with mean prey concentrations, with maximum growth rate being 0.68/d, phototrophic growth (i.e. growth in the absence of prey) was ?0.08/d. The maximum ingestion rate was 2.54 ng C/Amylax/d (5.9 cells/Amylax/d). Growth rate also increased with increasing light intensity, but the effect was evident only when prey was supplied. Increased growth with increasing light intensity was accompanied by a corresponding increase in ingestion. In mixed cultures of two predators, A. triacantha and Dinophysis acuminata, with M. rubrum as prey, A. triacantha outgrew D. acuminata due to its approximately three times higher growth rate, suggesting that it can outcompete D. acuminata. Our results would help better understand the ecophysiology of dinoflagellates retaining foreign plastids.  相似文献   

5.
Phototrophic Dinophysis species are known to acquire plastids of the cryptophyte Teleaulax amphioxeia through feeding on the ciliate Mesodinium rubrum or M. cf. rubrum. In addition, several molecular studies have detected plastid encoding genes of various algal taxa within field populations of Dinophysis species. The trophic pathway by which Dinophysis species acquire plastids from algae other than the cryptophyte genus Teleaulax, however, is unknown. In this study, we examined the fate of prey organelles and plastid genes obtained by Dinophysis caudata through ingestion of Mesodinium coatsi, a benthic ciliate that retains green plastids of Chroomonas sp. Transmission electron microscopy and molecular analysis revealed relatively rapid digestion of prey-derived plastids. Following digestion of M. coatsi, however, photodamaged D. caudata cells having olive-green rather than reddish-brown plastids were able to recover some of their original reddish-brown pigmentation. Results further suggest that plastid genes of various algal taxa detected in field populations of Dinophysis species may reflect prey diversity rather than sequestration of multiple plastid types. Ingestion and digestion of prey other than M. rubrum or M. cf. rubrum may also provide nutritional requirements needed to repair and perhaps maintain sequestered T. amphioxeia plastids.  相似文献   

6.
Mesodinium rubrum Lohmann is a mixotrophic ciliate and one of the best studied species exhibiting acquired phototrophy. To investigate the fate of cryptophyte organelles in the ciliate subjected to starvation, we conducted ultrastructural studies of a Korean strain of M. cf. rubrum during a 10 week starvation experiments. Ingested cells of the cryptophyte Teleaulax amphioxeia were first enveloped by ciliate membrane, and then prey organelles, including ejectisomes, flagella, basal bodies and flagellar roots, were digested. Over time, prey nuclei protruded into the cytoplasm of the ciliate, their size and volume increased, and their number decreased, suggesting that the cryptophyte nuclei likely fused with each other in the ciliate cytoplasm. At 4 weeks of starvation, M. cf. rubrum cells without cryptophyte nuclei started to appear. At 10 weeks of starvation, only two M. cf. rubrum cells still possessing a cryptophyte nucleus had relatively intact chloroplast-mitochondria complexes (CMCs), while M. cf. rubrum cells without cryptophyte nuclei had a few damaged CMCs. This is the first ultrastructural study demonstrating that cryptophyte nuclei undergo a dramatic change inside M. cf. rubrum in terms of size, shape, and number following their acquisition.  相似文献   

7.
To survive, the marine dinoflagellate Dinophysis caudata Saville‐Kent must feed on the plastidic ciliate Myrionecta rubra (=Mesodinium rubrum), itself a consumer of cryptophytes. Whether Dcaudata has its own permanent chloroplasts or retains plastids from its ciliate prey, however, remains unresolved. Further, how long Dcaudata plastids (or kleptoplastids) persist and remain photosynthetically active in the absence of prey remains unknown. We addressed those issues here, using the first established culture of D. caudata. Phylogenetic analyses of the plastid 16S rRNA and psbA gene sequences directly from the three organisms (Dcaudata, Mrubra, and a cryptophyte) revealed that the sequences of both genes from the three organisms are almost identical to each other, supporting that the plastids of Dcaudata are kleptoplastids. A 3‐month starvation experiment revealed that Dcaudata can remain photosynthetically active for ~2 months when not supplied with prey. Dcaudata cells starved for more than 2 months continued to keep the plastid 16S rRNA gene but lost the photosynthesis‐related genes (i.e., psaA and psbA genes). When the prey was available again, however, Dcaudata cells starved for more than 2 months were able to reacquire plastids and slowly resumed photosynthetic activity. Taken all together, the results indicate that the nature of the relationship between Dcaudata and its plastids is not that of permanent cellular acquisitions. Dcaudata is an intriguing protist that would represent an interesting evolutionary adaptation with regard to photosynthesis as well as help us to better understand plastid evolution in eukaryotes.  相似文献   

8.
The ciliate genus Mesodinium contains species that rely to varying degrees on photosynthetic machinery stolen from cryptophyte algal prey. Prey specificity appears to scales inversely with this reliance: The predominantly phototrophic M. major/rubrum species complex exhibits high prey specificity, while the heterotrophic lineages M. pulex and pupula are generalists. Here, we test the hypothesis that the recently described mixotroph M. chamaeleon, which is phylogenetically intermediate between M. major/rubrum and M. pulex/pupula, exhibits intermediate prey preferences. Using a series of feeding and starvation experiments, we demonstrate that M. chamaeleon grazes and retains plastids at rates which often exceed those observed in M. rubrum, and retains plastids from at least five genera of cryptophyte algae. Despite this relative generality, M. chamaeleon exhibits distinct prey preferences, with higher plastid retention, mixotrophic growth rates and efficiencies, and starvation tolerance when offered Storeatula major, a cryptophyte that M. rubrum does not appear to ingest. These results suggest that niche partitioning between the two acquired phototrophs may be mediated by prey identity. M. chamaeleon appears to represent an intermediate step in the transition to strict reliance on acquired phototrophy, indicating that prey specificity may evolve alongside degree of phototrophy.  相似文献   

9.
We compared autotrophic growth of the dinoflagellate Karlodinium micrum (Leadbeater et Dodge) and the cryptophyte Storeatula major (Butcher ex Hill) at a range of growth irradiances (Eg). Our goal was to determine the physiological bases for differences in growth–irradiance relationships between these species. Maximum autotrophic growth rates of K. micrum and S. major were 0.5 and 1.5 div.·d?1, respectively. Growth rates were positively correlated with C‐specific photosynthetic performance (PPC, g C·g C?1·h?1) (r2=0.72). Cultures were grouped as light‐limited (LL) and high‐light (HL) treatments to allow interspecific comparisons of physiological properties that underlie the growth–irradiance relationships. Interspecific differences in the C‐specific light absorption rate (EaC, mol photons·g C?1·h?1) were observed only among HL acclimated cultures, and the realized quantum yield of C fixation (φC(real.), mol C·mol photons?1) did not differ significantly between species in either LL or HL treatments. The proportion of fixed C that was incorporated into new biomass was lower in K. micrum than S. major at each Eg, reflecting lower growth efficiency in K. micrum. Photoacclimation to HL in K. micrum involved a significant loss of cellular photosynthetic capacity (Pmaxcell), whereas in S. major, Pmaxcell was significantly higher in HL acclimated cells. We conclude that growth rate differences between K. micrum and S. major under LL conditions relate primarily to cell metabolism processes (i.e. growth efficiency) and that reduced chloroplast function, reflected in PPC and photosynthesis–irradiance curve acclimation in K. micrum, is also important under HL conditions.  相似文献   

10.
Mesodinium rubrum Lohmann is a photosynthetic marine ciliate that has functional chloroplasts of cryptophyte origin. Little is known about the oral ultrastructure of M. rubrum compared with several reports on the sequestration of nuclei and plastids from prey organisms, such as Geminigera cryophila and Teleaulax species. Here, we describe the fine structure of the oral apparatus of a M. rubrum strain from Gomso Bay, Korea. The cytopharynx was cone‐shaped and supported by 20–22 ribbons of triplet microtubules. At the anterior end of the cytopharynx, an annulus anchored small cylinders composed of 11 microtubules. The small cylinders were spaced at regular intervals, each reinforced by one set of the triplet microtubules. At the opening of the cytostome, larger 14‐membered microtubular cylinders were set adjacent to the small, 11‐membered microtubular cylinders, each pair surrounded by separate membranes, however, only the large cylinders extended into the oral tentacles. There were 20–22 oral tentacles each having one to five extrusomes at its tip. At the anterior end of the oral apparatus, microtubular bands supporting the cytostome curved posteriad, extending beneath the cell cortex to the kinetosomes of the somatic cirri. The microtubular bands were connected by striated fibers and originated from kinetosomes anchored by fibers. Each cirrus consisted of eight cilia associated with 16 kinetosomes. The ultrastructure of M. rubrum from Korea provides information useful for taxonomic characterization of the genus Mesodinium and relevant to developing a better understanding of the acquisition of foreign organelles through phagocytosis by M. rubrum.  相似文献   

11.
The red seaweed Gracilariopsis is an important crop extensively cultivated in China for high‐quality raw agar. In the cultivation site at Nanao Island, Shantou, China, G. lemaneiformis experiences high variability in environmental conditions like seawater temperature. In this study, G. lemaneiformis was cultured at 12, 19, or 26°C for 3 weeks, to examine its photosynthetic acclimation to changing temperature. Growth rates were highest in G. lemaneiformis thalli grown at 19°C, and were reduced with either decreased or increased temperature. The irradiance‐saturated rate of photosynthesis (Pmax) decreased with decreasing temperature, but increased significantly with prolonged cultivation at lower temperatures, indicating the potential for photosynthesis acclimation to lower temperature. Moreover, Pmax increased with increasing temperature (~30 μmol O2 · g?1FW · h?1 at 12°C to 70 μmol O2 · g?1FW · h?1 at 26°C). The irradiance compensation point for photosynthesis (Ic) decreased significantly with increasing temperature (28 μmol photons · m?2 · s?1 at high temperature vs. 38 μmol photons · m?2 · s?1 at low temperature). Both the photosynthetic light‐ and carbon‐use efficiencies increased with increasing growth or temperatures (from 12°C to 26°C). The results suggested that the thermal acclimation of photosynthetic performance of G. lemaneiformis would have important ecophysiological implications in sea cultivation for improving photosynthesis at low temperature and maintaining high standing biomass during summer. Ongoing climate change (increasing atmospheric CO2 and global warming) may enhance biomass production in G. lemaneiformis mariculture through the improved photosynthetic performances in response to increasing temperature.  相似文献   

12.
13.
The biomass and primary production of phytoplankton in Lake Awasa, Ethiopia was measured over a 14 month period, November 1983 to March 1985. The lake had a mean phytoplankton biomass of 34 mg chl a m–3 (n = 14). The seasonal variation in phytoplankton biomass of the euphotic zone (mg chl a m–2 h–1) was muted with a CV (standard deviation/mean) of 31%. The vertical distribution of photosynthetic activity was of a typical pattern for phytoplankton with light inhibition on all but overcast days. The maximum specific rates of photosynthesis or photosynthetic capacity (Ømax) for the lake approached 19 mg O2 (mg chl a)–1 h–1, with high values during periods of low phytoplankton biomass. Areal rates of photosynthesis ranged between 0.30 to 0.73 g O2 m–2 h–1 and 3.3 to 7.8 g O2 m–2 d–1. The efficiency of utilisation of PhAR incident on the lake surface varied from 2.4 to 4.1 mmol E–1 with the highest efficiency observed corresponding to the lowest surface radiation. Calculated on a caloric basis, the efficiency ranged between 1.7 and 2.9%. The temporal pattern of primary production by phytoplankton showed limited variability (CV = 21 %).  相似文献   

14.
The photosynthesis‐irradiance response (PE) curve, in which mass‐specific photosynthetic rates are plotted versus irradiance, is commonly used to characterize photoacclimation. The interpretation of PE curves depends critically on the currency in which mass is expressed. Normalizing the light‐limited rate to chl a yields the chl a‐specific initial slope (αchl). This is proportional to the light absorption coefficient (achl), the proportionality factor being the photon efficiency of photosynthesis (φm). Thus, αchl is the product of achl and φm. In microalgae αchl typically shows little (<20%) phenotypic variability because declines of φm under conditions of high‐light stress are accompanied by increases of achl. The variation of αchl among species is dominated by changes in achl due to differences in pigment complement and pigment packaging. In contrast to the microalgae, αchl declines as irradiance increases in the cyanobacteria where phycobiliproteins dominate light absorption because of plasticity in the phycobiliprotein:chl a ratio. By definition, light‐saturated photosynthesis (Pm) is limited by a factor other than the rate of light absorption. Normalizing Pm to organic carbon concentration to obtain PmC allows a direct comparison with growth rates. Within species, PmC is independent of growth irradiance. Among species, PmC covaries with the resource‐saturated growth rate. The chl a:C ratio is a key physiological variable because the appropriate currencies for normalizing light‐limited and light‐saturated photosynthetic rates are, respectively, chl a and carbon. Typically, chl a:C is reduced to about 40% of its maximum value at an irradiance that supports 50% of the species‐specific maximum growth rate and light‐harvesting accessory pigments show similar or greater declines. In the steady state, this down‐regulation of pigment content prevents microalgae and cyanobacteria from maximizing photosynthetic rates throughout the light‐limited region for growth. The reason for down‐regulation of light harvesting, and therefore loss of potential photosynthetic gain at moderately limiting irradiances, is unknown. However, it is clear that maximizing the rate of photosynthetic carbon assimilation is not the only criterion governing photoacclimation.  相似文献   

15.
Three different chlorophyll (chl) c-type pigments were isolated from two cryptophyte species by silica thin-layer chromatography or polyethylene high-performance liquid chromatography. Chroomonas sp. Hansgirg contained chl c1 and magnesium-2,4-divinylpheoporphyrin a, mono-methylester; chl c2 and magnesium-2,4-divinylpheoporphyrin a5 monomethylester were found in Cryptomonas maculata (syn. Rhodomonas maculata Butcher). These identifications were based on spectral characteristics and on comparison with reference pigments isolated from the synurophycean Synura petersenii Korshikov and the prasinophyte Mantoniella squamata Manton & Park. Neither of the cryptophyte species contained chl c1 and chl c2. The significance of chl c1 as a major pigment and the occurrence of magnesium-2,4-divinylpheoporphyrin a5 monomethylester in cryptophytes are discussed.  相似文献   

16.
Hizikia fusiformis thalli experience dynamic incident light conditions during the period of growth. The present study was designed to examine how changing photon irradiance affects the photosynthesis both in the short and long terms by culturing H. fusiformis under three different light levels: 35 μmol photons m-2 s-1 (low light, LL), 85 μmol photons m-2 s-1 (intermediate light, IL), and 165 μmol photons m-2 s-1 (high light, HL). A similar relative growth rate was observed between IL- and HL-grown algae, but the growth rate was significantly reduced in LL-grown algae. The photosynthetic rates (P n) measured at their respective growth light levels were found to be lowest in the thalli grown at LL and highest at HL. However, LL-grown algae exhibited much higher P n in comparison with IL- and the HL-grown thalli at the same measuring photosynthetic photon flux density, indicating the photosynthetic acclimation to low growth light in H. fusiformis. The photosynthesis–light curves showed that LL-grown algae had a highest light-saturating maximum P n (P max) in comparison with IL- or HL-grown algae when the photosynthetic rates were expressed on the biomass basis. However, P max was highest in HL-grown algae compared to IL- or LL-grown algae when the rates were normalized to chlorophyll a. The photosynthesis–inorganic carbon (Ci) response curves were also significantly affected by the growth light conditions. The highest value of apparent photosynthetic conductance occurred in LL-grown algae while the lowest value in HL-grown algae. Additionally, the activity of external carbonic anhydrase (CA) tended to increase while the total CA activity inclined to decrease in H. fusiformis thalli when the growth light level altered from 35 to 165 μmol photons per square meter per second. The external CA inhibitors showed a higher inhibition in HL-grown algae compared with LL-grown algae. It was proposed that photosynthetic acclimation to low light condition in H. fusiformis was achieved through an increase in the number of reaction centers and increased capacities of electron transport and of Ci transport within cells. The ability of photosynthetic acclimation to low light confers H. fusiformis thalli to overcome the environmental low light condition as a result of the attenuation of seawater or self-shading through enhancing its photosynthetic performance and carbon assimilation necessary for growth.  相似文献   

17.
Toxic marine dinoflagellate species of the genus Dinophysis Ehrenberg are obligate mixotrophs that require feeding on the ciliate Mesodinium rubrum and light to achieve growth. It is now well known that they harbour plastids of cryptophyte origin, particularly of the genus Teleaulax, Plagioselmis or Geminigera group (TPG clade). Nevertheless, whether these plastids are permanent, or periodically acquired from M. rubrum prey, need additional studies in different phototrophic Dinophysis species. The origin of plastids from Dinophysis acuta Ehrenberg, one of the main agents of diarrhetic shellfish poisoning (DSP) outbreaks in Western Europe, was investigated here. Cross feeding-starvation experiments were carried out with cultures of D. acuta using M. rubrum as prey, the latter fed with two cryptophyte species, Teleaulax amphioxeia Hill and Teleaulax gracilis, belonging to the TPG clade in addition to Falcomonas sp. and Hemiselmis sp. The fate of cryptophyte plastids transferred to D. acuta through its ciliate prey was investigated using the plastid psbA gene as a tracer.  相似文献   

18.
ABSTRACT. Myrionecta rubra, a ubiquitous planktonic ciliate, has received much attention due to its wide distribution, occurrence as a red tide organism, and unusual cryptophyte endosymbiont. Although well studied in coastal waters, M. rubra is poorly examined in the open ocean. In the Irminger Basin, North Atlantic, the abundance of M. rubra was 0–5 cells/ml, which is low compared with that found in coastal areas. Distinct patchiness (100 km) was revealed by geostatistical analysis. Multiple regression indicated there was little relationship between M. rubra abundance and a number of environmental factors, with the exception of temperature and phytoplankton biomass, which influenced abundance in the spring. We also improve on studies that indicate distinct size classes of M. rubra; we statistically recognise four significantly distinct width classes (5–16, 12–23, 18–27, 21–33 μm), which decrease in abundance with increasing size. A multinomial logistic regression revealed the main variable correlated with this size distribution was ambient nitrate concentration. Finally, we propose a hypothesis for the distribution of sizes, involving nutrients, feeding, and dividing of the endosymbiont.  相似文献   

19.
Photosynthetic rates measured in protoplasts isolated from the broivn alga Macrocystis pyrifera (L.) Ag. were compared to those for intact tissue. Both 14C incorporation and O2 evolution gave similar rates of light-saturated protoplast photosynthesis (approximately 0.4 mmol-g chl a?1· min?1). Light saturated photosynthetic rates (Pmax) and light harvesting efficiencies (α) of protoplasts were approximately 40% those of intact tissue. In contrast, protoplasts had a greater substrate affinity for photosynthetic HCO3 uptake (lower K0.5) than intact tissue (0.87 and 4.1 mMolar, respectively), presumably because of a reduction in the thickness of the unstirred boundary layer in the absence of the cell wall. Overall, the data suggest that protoplasts isolated from Macrocystis pyrifera are of valur in the study of photosynthesis. However, experiments with intact tissue are necessary as controls to aid interpretation of protoplast data.  相似文献   

20.
This is the first report of the propagation of the toxic dinoflagellate Dinophysis fortii Pavill. under laboratory conditions when fed on the marine ciliate Myrionecta rubra grown with the cryptophyte Teleaulax amphioxeia (W. Conrad) D. R. A. Hill. In contrast, reduced growth of D. fortii (max. of 3–4 divisions) and formation of small cells were observed in the absence of the ciliate or when provided with T. amphioxeia only as prey, showing that D. fortii cannot utilize T. amphioxeia as prey. In the TEM observation of D. fortii cells, which had fully fed on the ciliate prey, well‐developed chloroplasts (5–12 μm in length) were seen and three thylakoids were usually arranged in most of the chloroplasts observed, but chloroplasts having two thylakoids were sometimes confirmed. In cells starved for 4 weeks, decrease of chloroplast numbers and disappearance of large chloroplasts were observed, and only a few small chloroplasts (0.5–2 μm in length) remained in the marginal regions. In the observation of the sequestration process of the chloroplasts ingested from M. rubra by D. fortii, within 15 min after D. fortii captured M. rubra, incorporation of almost all of the chloroplasts was observed, while most of the other cell contents still remained in the M. rubra cell. After that, dispersion of the ingested chloroplasts toward the marginal regions was confirmed, suggesting that chloroplasts of M. rubra are ingested and dispersed in D. fortii cells in advance of the ingestion of the other cell contents to prevent them from being digested in food vacuoles. The ingested chloroplasts can also function as kleptoplastids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号