首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Due to climate warming, many plant species shift ranges towards higher latitudes. Plants can disperse faster than most soil biota, however, little is known about how range‐expanding plants in the new range will establish interactions with the resident soil food web. In this paper we examine how the soil nematode community from the new range responds to range‐expanding plant species compared to related natives. We focused on nematodes, because they are important components in various trophic levels of the soil food web, some feeding on plant roots, others on microbes or on invertebrates. We expected that range expanding plant species have fewer root‐feeding nematodes, as predicted by enemy release hypothesis. We therefore expected that range expanders affect the taxonomic and functional composition of the nematode community, but that these effects would diminish with increasing trophic position of nematodes in the soil food web. We exposed six range expanders (including three intercontinental exotics) and nine related native plant species to soil from the invaded range and show that range expanders on average had fewer root‐feeding nematodes per unit root biomass than related natives. The range expanders showed resistance against rather than tolerance for root‐feeding nematodes from the new range. On the other hand, the overall taxonomic and functional nematode community composition was influenced by plant species rather than by plant origin. The plant identity effects declined with trophic position of nematodes in the soil food web, as plant feeders were influenced more than other feeding guilds. We conclude that range‐expanding plant species can have fewer root‐feeding nematodes per unit root biomass than related natives, but that the taxonomic and functional nematode community composition is determined more by plant identity than by plant origin. Plant species identity effects decreased with trophic position of nematodes in the soil food web.  相似文献   

2.
Current climate change has led to latitudinal and altitudinal range expansions of numerous species. During such range expansions, plant species are expected to experience changes in interactions with other organisms, especially with belowground biota that have a limited dispersal capacity. Nematodes form a key component of the belowground food web as they include bacterivores, fungivores, omnivores and root herbivores. However, their community composition under climate change‐driven intracontinental range‐expanding plants has been studied almost exclusively under controlled conditions, whereas little is known about actual patterns in the field. Here, we use novel molecular sequencing techniques combined with morphological quantification in order to examine nematode communities in the rhizospheres of four range‐expanding and four congeneric native species along a 2,000 km latitudinal transect from South‐Eastern to North‐Western Europe. We tested the hypotheses that latitudinal shifts in nematode community composition are stronger in range‐expanding plant species than in congeneric natives and that in their new range, range‐expanding plant species accumulate fewest root‐feeding nematodes. Our results show latitudinal variation in nematode community composition of both range expanders and native plant species, while operational taxonomic unit richness remained the same across ranges. Therefore, range‐expanding plant species face different nematode communities at higher latitudes, but this is also the case for widespread native plant species. Only one of the four range‐expanding plant species showed a stronger shift in nematode community composition than its congeneric native and accumulated fewer root‐feeding nematodes in its new range. We conclude that variation in nematode community composition with increasing latitude occurs for both range‐expanding and native plant species and that some range‐expanding plant species may become released from root‐feeding nematodes in the new range.  相似文献   

3.
A substantial proportion of the primary productivity in grassland ecosystems is allocated belowground, sustaining an abundant and diverse community of microbes and soil invertebrates. These belowground communities drive many important ecosystem functions and are responsive to a variety of environmental changes. Nematodes, an abundant and diverse component of grassland soil communities, are particularly responsive to altered environmental conditions, such as those associated with reduced fire frequency and nitrogen enrichment, with the most consistent responses displayed by microbial-feeding nematodes. However, much of the available research characterizing nematode responses to environmental change has been carried out at the taxonomic level of family or by broad trophic categories (e.g. fungivores, bacterivores). The extent to which differential responses to environmental change occurs at the genus level or below is unclear. Therefore, the objective of this study was to use molecular methods to quantify the response of microbial-feeding nematodes, at the lowest levels of taxonomic resolution, to nitrogen enrichment and changes in fire frequency. Using sequencing and quantitative polymerase chain reaction (PCR) probes for the 18S ribosomal RNA gene and the ITS1 region, we identified 19 microbial-feeding nematode taxa across four families. When nematodes were sampled across treatments, we found that some nematode taxa within a family responded similarly to nitrogen and burning treatments, while other taxa within the same family respond quite differently. Additionally, although nematodes from different families on average responded differently to nitrogen enrichment and burning, similar responses were seen in nematode taxa that span three taxonomic families. Thus, if nematodes are to be used as indicators of environmental change, care should be taken to assess the response at the lowest taxonomic level possible.  相似文献   

4.
Nematodes are abundant consumers in grassland soils, but more sensitive and specific methods of enumeration are needed to improve our understanding of how different nematode species affect, and are affected by, ecosystem processes. High‐throughput amplicon sequencing is used to enumerate microbial and invertebrate communities at a high level of taxonomic resolution, but the method requires validation against traditional specimen‐based morphological identifications. To investigate the consistency between these approaches, we enumerated nematodes from a 25‐year field experiment using both morphological and molecular identification techniques in order to determine the long‐term effects of annual burning and nitrogen enrichment on soil nematode communities. Family‐level frequencies based on amplicon sequencing were not initially consistent with specimen‐based counts, but correction for differences in rRNA gene copy number using a genetic algorithm improved quantitative accuracy. Multivariate analysis of corrected sequence‐based abundances of nematode families was consistent with, but not identical to, analysis of specimen‐based counts. In both cases, herbivores, fungivores and predator/omnivores generally were more abundant in burned than nonburned plots, while bacterivores generally were more abundant in nonburned or nitrogen‐enriched plots. Discriminate analysis of sequence‐based abundances identified putative indicator species representing each trophic group. We conclude that high‐throughput amplicon sequencing can be a valuable method for characterizing nematode communities at high taxonomic resolution as long as rRNA gene copy number variation is accounted for and accurate sequence databases are available.  相似文献   

5.
Over the past decade, we have seen an increasing market for biopesticides and an increase in number of microbial control studies directed towards plant‐parasitic nematodes. This literature survey provides an overview of research on biological control of two economically important plant‐parasitic nematodes, Meloidogyne incognita (Kofoid & White) Chitwood (southern root‐knot nematode) and Heterodera glycines Ichinohe (soybean cyst nematode) using spore‐forming plant growth‐promoting rhizobacteria (PGPR). In this review, the current biological control strategies for the management of those cotton and soybean nematodes, the mechanism of using BacillusPGPR for biological control of plant‐parasitic nematode including induced systemic resistance and antagonism and the future of biological control agents on management of plant‐parasitic nematodes are covered.  相似文献   

6.
Obligate sedentary endoparasitic nematodes, such as the root‐knot and cyst nematodes, elicit the differentiation of specialized nematode nurse or feeding cells [nematode feeding sites (NFS), giant cells and syncytia, respectively]. During NFS differentiation, marked changes in cell cycle progression occur, partly similar to those induced by some geminiviruses. In this work, we describe the activation of V‐sense promoters from the Maize streak virus (MSV) and Wheat dwarf virus (WDV) in NFS formed by root‐knot and cyst nematodes. Both promoters were transiently active in microinjection experiments. In tobacco and Arabidopsis transgenic lines carrying promoter–β‐glucuronidase fusions, the MSV V‐sense promoter was activated in the vascular tissues of aerial plant parts, primarily leaf and cotyledon phloem tissue and some floral structures. Interestingly, in roots, promoter activation was restricted to syncytia and giant cells tested with four different nematode populations, but undetectable in the rest of the root system. As the activity of the promoter in transgenic rootstocks should be restricted to NFS only, the MSV promoter may have utility in engineering grafted crops for nematode control. Therefore, this study represents a step in the provision of some of the much needed additional data on promoters with restricted activation in NFS useful in biotechnological nematode control strategies.  相似文献   

7.
Changes in microclimate, soil physicochemical properties, understory vegetation cover, diversity, and composition as well as soil microbial community resulting from silvicultural practices are expected to alter soil food webs. Here, we investigated whether and how contrasting‐sized canopy openings affect soil nematode community within a 30 year‐aged spruce plantation. The results indicated that the responses of soil nematodes to canopy opening size were dependant on their feeding habit. The abundance of total nematodes and that of free‐living nematodes was negatively correlated with soil bulk density, whereas the abundance of omnivore–predators was negatively correlated with soil bulk density and shrubs cover, respectively. The ratio of the sum abundance of predators and omnivores to the plant parasites’ abundance, Simpson's dominance index, Pielou's evenness index, and sigma maturity index, maturity index (MI), MI2‐5, basal index, enrichment index, and structure index was sensitive to alteration in canopy opening size. Multivariate analysis indicated that thinning‐induced gap size resulted in contrasting nematode assemblages. In conclusion, soil nematodes should be integrated as an indicator to monitor soil multifunctionality change due to thinning.  相似文献   

8.
Nematodes are the most abundant invertebrates in soils and are key prey in soil food webs. Uncovering their contribution to predator nutrition is essential for understanding the structure of soil food webs and the way energy channels through soil systems. Molecular gut content analysis of consumers of nematodes, such as soil microarthropods, using specific DNA markers is a novel approach for studying predator–prey interactions in soil. We designed new specific primer pairs (partial 18S rDNA) for individual soil‐living bacterial‐feeding nematode taxa (Acrobeloides buetschlii, Panagrellus redivivus, Plectus velox and Plectus minimus). Primer specificity was tested against more than 100 non‐target soil organisms. Further, we determined how long nematode DNA can be traced in the gut of predators. Potential predators were identified in laboratory experiments including nine soil mite (Oribatida, Gamasina and Uropodina) and ten springtail species (Collembola). Finally, the approach was tested under field conditions by analyzing five mite and three collembola species for feeding on the three target nematode species. The results proved the three primer sets to specifically amplify DNA of the respective nematode taxa. Detection time of nematode DNA in predators varied with time of prey exposure. Further, consumption of nematodes in the laboratory varied with microarthropod species. Our field study is the first definitive proof that free‐living nematodes are important prey for a wide range of soil microarthropods including those commonly regarded as detritivores. Overall, the results highlight the eminent role of nematodes as prey in soil food webs and for channelling bacterial carbon to higher trophic levels.  相似文献   

9.
The aim of this review was to undertake a survey of researchers working with plant‐parasitic nematodes in order to determine a ‘top 10’ list of these pathogens based on scientific and economic importance. Any such list will not be definitive as economic importance will vary depending on the region of the world in which a researcher is based. However, care was taken to include researchers from as many parts of the world as possible when carrying out the survey. The top 10 list emerging from the survey is composed of: (1) root‐knot nematodes (Meloidogyne spp.); (2) cyst nematodes (Heterodera and Globodera spp.); (3) root lesion nematodes (Pratylenchus spp.); (4) the burrowing nematode Radopholus similis; (5) Ditylenchus dipsaci; (6) the pine wilt nematode Bursaphelenchus xylophilus; (7) the reniform nematode Rotylenchulus reniformis; (8) Xiphinema index (the only virus vector nematode to make the list); (9) Nacobbus aberrans; and (10) Aphelenchoides besseyi. The biology of each nematode (or nematode group) is reviewed briefly.  相似文献   

10.
Cyst nematodes are important agricultural pests responsible for billions of dollars of losses each year. Plant resistance is the most effective management tool, but it requires a close monitoring of population genetics. Current technologies for pathotyping and genotyping cyst nematodes are time‐consuming, expensive and imprecise. In this study, we capitalized on the reproduction mode of cyst nematodes to develop a simple population genetic analysis pipeline based on genotyping‐by‐sequencing and Pool‐Seq. This method yielded thousands of SNPs and allowed us to study the relationships between populations of different origins or pathotypes. Validation of the method on well‐characterized populations also demonstrated that it was a powerful and accurate tool for population genetics. The genomewide allele frequencies of 23 populations of golden nematode, from nine countries and representing the five known pathotypes, were compared. A clear separation of the pathotypes and fine genetic relationships between and among global populations were obtained using this method. In addition to being powerful, this tool has proven to be very time‐ and cost‐efficient and could be applied to other cyst nematode species.  相似文献   

11.
The overall goal in nematode management is to develop sustainable systems where nematode populations are kept under the economic damage threshold. Conservation tillage and subsidiary crops, applied as cover crops and living mulches, generally improve soil health by increasing soil organic matter content and stimulating soil microbial activity. However, more permanent crop and weed cover associated with subsidiary crops and noninversion tillage, respectively, may benefit plant‐parasitic nematodes with broad host spectra such as Meloidogyne and Pratylenchus. These genera are major constraints to many field crops throughout Europe and there is a need to identify effective and reliable management options that can be applied to avoid excessive infestations. The dynamics of the indigenous fauna of plant‐parasitic nematodes were studied in eight coordinated multi‐environment field experiments (MEEs) under four agro‐environmental conditions in Europe (Continental, Nemoral, Atlantic North and Mediterranean North). The MEEs consisted of a 2‐year sequence of wheat combined with a living mulch or subsequent cover crops and second main crops maize, potatoes or tomatoes depending on site. Additionally, the effects of inversion tillage using the plough were compared with various forms of conservation tillage (no‐tillage, shallow and deep noninversion tillage). Overall, Helicotylenchus, Paratylenchus, Pratylenchus and Tylenchorhynchus were the most frequent genera across sites while Meloidogyne occurred only in Germany at very low densities. During the wheat–maize sequences in Switzerland, the populations of Pratylenchus increased from 63 to 146 nematodes per 100 mL soil and Helicotylenchus from 233 to 632 nematodes per 100 mL soil. The effects of tillage on plant‐parasitic nematodes were generally minor, although no tillage in Italy supported higher densities of Pratylenchus (184 nematodes per 100 mL soil) than inversion tillage (59 nematodes per 100 mL soil). Furthermore, Pratylenchus densities were 160 nematodes per 100 mL soil when leguminous subsidiary crops were grown, 122 nematodes per 100 mL soil in the green fallow and 84 nematodes per 100 mL soil after growing black oat (Avena strigosa) or oilseed radish (Raphanus sativus). The differences were greatest in Italy, in a sandy soil with low organic matter. Application of compost or nitrogen fertiliser had no consistent effects on plant‐parasitic nematodes. We conclude that crop rotations including specific subsidiary crops are prominent factors affecting the indigenous nematode community, while tillage and fertiliser are of lower importance.  相似文献   

12.
Abstract 1. As herbivory often elicits systemic changes in plant traits, indirect interactions via induced plant responses may be a pervasive feature structuring herbivore communities. Although the importance of this phenomenon has been emphasised for herbivorous insects, it is unknown if and how induced responses contribute to the organisation of other major phytoparasitic taxa. 2. Survey and experimental field studies were used to investigate the role of plants in linking the dynamics of foliar‐feeding insects and root‐feeding nematodes on tobacco, Nicotiana tabacum. 3. Plant‐mediated interactions between insects and nematodes could largely be differentiated by insect feeding guild, with positive insect–nematode interactions predominating with leaf‐chewing insects (caterpillars) and negative interactions occurring with sap‐feeding insects (aphids). For example, insect defoliation was positively correlated with the abundance of root‐feeding nematodes, but aphids and nematodes were negatively correlated. Experimental field manipulations of foliar insect and nematode root herbivory also tended to support this outcome. 4. Overall, these results suggest that plants indirectly link the dynamics of divergent consumer taxa in spatially distinct ecosystems. This lends support to the growing perception that plants play a critical role in propagating indirect effects among a diverse assemblage of consumers.  相似文献   

13.
14.
Soil nematodes play crucial roles in the soil food web and are a suitable indicator for assessing soil environments and ecosystems. Previous nematode community analyses based on nematode morphology classification have been shown to be useful for assessing various soil environments. Here we have conducted DNA barcode analysis for soil nematode community analyses in Japanese soils. We isolated nematodes from two different environmental soils of an unmanaged flowerbed and an agricultural field using the improved flotation-sieving method. Small subunit (SSU) rDNA fragments were directly amplified from each of 68 (flowerbed samples) and 48 (field samples) isolated nematodes to determine the nucleotide sequence. Sixteen and thirteen operational taxonomic units (OTUs) were obtained by multiple sequence alignment from the flowerbed and agricultural field nematodes, respectively. All 29 SSU rDNA-derived OTUs (rOTUs) were further mapped onto a phylogenetic tree with 107 known nematode species. Interestingly, the two nematode communities examined were clearly distinct from each other in terms of trophic groups: Animal predators and plant feeders were markedly abundant in the flowerbed soils, in contrast, bacterial feeders were dominantly observed in the agricultural field soils. The data from the flowerbed nematodes suggests a possible food web among two different trophic nematode groups and plants (weeds) in the closed soil environment. Finally, DNA sequences derived from the mitochondrial cytochrome oxidase c subunit 1 (COI) gene were determined as a DNA barcode from 43 agricultural field soil nematodes. These nematodes were assigned to 13 rDNA-derived OTUs, but in the COI gene analysis were assigned to 23 COI gene-derived OTUs (cOTUs), indicating that COI gene-based barcoding may provide higher taxonomic resolution than conventional SSU rDNA-barcoding in soil nematode community analysis.  相似文献   

15.
16.
Belowground communities exert major controls over the carbon and nitrogen balances of terrestrial ecosystems by regulating decomposition and nutrient availability for plants. Yet little is known about the patterns of belowground communities and their relationships with environmental factors, particularly at the regional scale where multiple environmental gradients co‐vary. Here, we describe the patterns of belowground communities (microbes and nematodes) and their relationships with environmental factors based on two parallel studies: a field survey with two regional‐scale transects across the Mongolia plateau and a water‐addition experiment in a typical steppe. In the field survey, soils and plants were collected across two large‐scale transects (a 2000‐km east–west transect and a 900‐km south–north transect). At the regional‐scale, the variations in soil microbes (e.g. bacterial PLFA, fungal PLFA, and F/B ratio) were mainly explained by precipitation and soil factors. In contrast, the variation in soil nematodes (e.g. density of trophic groups and the bacterial‐feeding/fungal‐feeding nematode ratio) were primarily explained by precipitation. These variations of microbe or nematode variables explained by environmental factors at regional scale were derived from different vegetation types. Along the gradient from nutrient‐poor to nutrient‐rich vegetation types, the total variation in soil microbes explained by precipitation increased and that explained by plant and soil decreased, while the opposite was true for soil nematodes. Experimental water addition, which increased rainfall by 30% during the growing season, increased biomass or density of belowground communities, with the nematodes being more responsive than the microbes. The different responses of soil microbial and nematode communities to environmental gradients at the regional scale likely reflect their different adaptations to climate, soil nutrients, and plants. Our findings suggest that the soil nematode and microbial communities are strongly controlled by bottom‐up effects of precipitation alone or in combination with soil conditions.  相似文献   

17.
18.
Ungulates, smaller mammals, and invertebrates can each affect soil biota through their influence on vegetation and soil characteristics. However, direct and indirect effects of the aboveground biota on soil food webs remain to be unraveled. We assessed effects of progressively excluding aboveground large‐, medium‐ and small‐sized mammals as well as invertebrates on soil nematode diversity and feeding type abundances in two subalpine grassland types: short‐ and tall‐grass vegetation. We explored pathways that link exclusions of aboveground biota to nematode feeding type abundances via changes in plants, soil environment, soil microbial biomass, and soil nutrients. In both vegetation types, exclusions caused a similar shift toward higher abundance of all nematode feeding types, except plant feeders, lower Shannon diversity, and lower evenness. These effects were strongest when small mammals, or both small mammals and invertebrates were excluded in addition to excluding larger mammals. Exclusions resulted in a changed abiotic soil environment that only affected nematodes in the short‐grass vegetation. In each vegetation type, exclusion effects on nematode abundances were mediated by different drivers related to plant quantity and quality. In the short‐grass vegetation, not all exclusion effects on omni–carnivorous nematodes were mediated by the abundance of lower trophic level nematodes, suggesting that omni–carnivores also depended on other prey than nematodes. We conclude that small aboveground herbivores have major impacts on the soil food web of subalpine short‐ and tall‐grass ecosystems. Excluding aboveground animals caused similar shifts in soil nematode assemblages in both subalpine vegetation types, however, mechanisms turned out to be system‐specific.  相似文献   

19.
The study of nematodes parasitizing native plants plays a crucial role in understanding plant–pathogen interactions. In the present study we describe the patterns of attack by an undescribed species of Ditylenchus occurring in Miconia albicans (Melastomataceae), a widespread, native shrub from the Brazilian cerrado. We also tested the hypothesis that nematode‐induced leaf galls negatively correlate to host plant performance and that gall density is a function of host plant density. We collected paired healthy and attacked shoots from 28 individuals of M. albicans and estimated the leaf area lost to nematode‐induced galls in up to 10 leaves per shoot. We analyzed the relationships between leaf area lost to nematode galls and reproductive traits. Nematode attack levels were also compared to the spatial distribution of the host plant. Inflorescence length and fruit production were significantly reduced in attacked shoots compared with healthy shoots. Seeds from attacked shoots showed no significant reduction in germinability or germination time when compared with seeds collected from healthy shoots. Gall density was positively correlated with host density. Despite being seldom studied in tropical ecosystems, nematodes may play an important role in plant fitness and in structuring tropical communities.  相似文献   

20.
The neonicotinoid imidacloprid and the herbicide diuron are long‐lived pesticides commonly detected in European rivers. Both have lethal as well as sublethal effects on aquatic invertebrates dwelling in streambeds. Here, we performed lethality tests of imidacloprid and diuron on seven species of widespread, free‐living nematodes and the model organism Caenorhabditis elegans. Our results indicated that nematodes were relatively tolerant to both pesticides, and only two species (Diploscapter coronatus and Plectus opisthocirculus) showed mortality at high nominal concentrations of imidacloprid (119 mg/L) and diuron (33 mg/L). The changes observed in nematode community structure after imidacloprid and diuron exposure may have been related to trade‐offs between sensitivity to toxicants and changes in competitive abilities of the species. While the former can be tested using single‐species tests, we recommend that the latter be tested in further experiments using multispecies communities. Our results suggest that the presence of these pesticides could favor nematodes over other meiofaunal groups found in freshwater sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号