首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seven polymorphic microsatellite loci were developed for the mosquito species Ochlerotatus caspius, using an enriched genomic library. The number of alleles per locus varied between two and 11; the expected heterozygosity (HE) ranged from 0.18 to 0.77. These microsatellite primers should prove useful for population genetic studies of this mosquito species.  相似文献   

2.
The mosquito Anopheles stephensi is an important malaria vector in India, Pakistan, Iran and Afghanistan. Differences in egg morphology and chromosomal characters have been described between urban and rural forms of this mosquito but the population genetic structure remains unclear. In India this species is mainly urban, rural populations are largely zoophilic and not thought to transmit malaria. In eastern Afghanistan and the Punjab and Northwest Frontier Province, Pakistan, it is the major malaria vector. We have developed primers for 16 microsatellite loci to assist in defining the population structure and epidemiological importance of this mosquito.  相似文献   

3.
Anopheles is a diverse genus of mosquitoes comprising over 500 described species, including all known human malaria vectors. While a limited number of key vector species have been studied in detail, the goal of malaria elimination calls for surveillance of all potential vector species. Here, we develop a multilocus amplicon sequencing approach that targets 62 highly variable loci in the Anopheles genome and two conserved loci in the Plasmodium mitochondrion, simultaneously revealing both the mosquito species and whether that mosquito carries malaria parasites. We also develop a cheap, nondestructive, and high-throughput DNA extraction workflow that provides template DNA from single mosquitoes for the multiplex PCR, which means specimens producing unexpected results can be returned to for morphological examination. Over 1000 individual mosquitoes can be sequenced in a single MiSeq run, and we demonstrate the panel’s power to assign species identity using sequencing data for 40 species from Africa, Southeast Asia, and South America. We also show that the approach can be used to resolve geographic population structure within An. gambiae and An. coluzzii populations, as the population structure determined based on these 62 loci from over 1000 mosquitoes closely mirrors that revealed through whole genome sequencing. The end-to-end approach is quick, inexpensive, robust, and accurate, which makes it a promising technique for very large-scale mosquito genetic surveillance and vector control.  相似文献   

4.
Chromosome number and morphology in mosquitoes is remarkably uniform: virtually all mosquitoes have a diploid chromosome number of six (2N = 6), and their chromosomes are invariably metacentric or submetacentric. Numerical changes obviously have not been important in mosquito chromosomal evolution, and because of the morphological similarity of their chromosomes, it appears that structural changes have played little or no role in mosquito karyotypic evolution. The goal of the present study was to identify the types and relative numbers of chromosomal changes in mosquito evolution and to extend the comparison where possible to the higher diptera. To do this, we compared the enzyme linkage maps of six species of Aedes to each other and to enzyme maps of seven other mosquito species and to Drosophila melanogaster. Our results indicate that Aedes chromosomes have been modified by inversions, most which were paracentric, and by translocations, most which were Robertsonian. Intrageneric comparison of Aedes enzyme maps also revealed groups of linked enzyme loci whose integrity has been maintained throughout Aedes evolution (conserved linkages/syntenies). Intergeneric comparisons of Aedes enzyme maps with those of species in the genera Culex, Anopheles, and Toxorhynchites disclosed conserved associations of enzyme loci between mosquito genera. These findings lead us to postulate that the ancestral mosquito karyotype consisted of six chromosomal elements which, other than being combined in different ways in various mosquito groups, have remained essentially intact during mosquito evolution. Furthermore, the identification of groups of linked enzyme loci common to mosquitoes and to D. melanogaster indicates that linkage group conservation may characterize the karyotypic evolution of all dipteran insects.  相似文献   

5.
The mosquito Anopheles sacharovi, a member of the A. maculipennis complex, is an important malaria vector in the Middle East. Here we describe the isolation of 15 microsatellite polymorphic loci from the A. sacharovi genome, displaying a high among‐individual diversity (0.30–0.92) in a sample from Turkey. Seven loci displayed a significant departure from Hardy–Weinberg proportions, suggesting a substantial frequency of null alleles. The remaining eight loci are good candidates for further genetic studies in this species.  相似文献   

6.
The success of vector borne disease transmission depends on the interplay between mosquito and pathogen. Understanding the genetic and molecular basis of refractoriness of mosquito may lead to novel disease control mechanisms. To complete the life cycle within the vector mosquito, a pathogen needs to overcome several physical barriers, such as the peritrophic matrix, midgut epithelium, or salivary glands. The immune response of the mosquito has to be neutralized or avoided. Genomic approaches are being employed to identify the genetic and molecular differences between selected strains of refractory and susceptible mosquitoes. Detailed molecular genetic maps based on restriction fragment length polymorphism (RFLP) and microsatellite (or simple sequence repeat) markers have been developed for two important vectors, Aedes aegypti and Anopheles gambiae, respectively. Recent success in genetic localization of quantitative trait loci controlling refractoriness/susceptibility of mosquitoes for Plasmodium and Brugian microfilariae provides a framework for further molecular characterization. Libraries of large genomic DNA inserts in bacterial or yeast artificial chromosomes (BACs and YACs) will facilitate physical mapping of the genetic loci controlling refractoriness. Identification of candidate refractory genes, and the cloning of other molecular markers for the mosquito immunity, provides tools for fruitful analysis of mosquito-parasite interactions. © 1997 Wiley-Liss, Inc.  相似文献   

7.
Climate can strongly influence the population dynamics of disease vectors and is consequently a key component of disease ecology. Future climate change and variability may alter the location and seasonality of many disease vectors, possibly increasing the risk of disease transmission to humans. The mosquito species Culex quinquefasciatus is a concern across the southern United States because of its role as a West Nile virus vector and its affinity for urban environments. Using established relationships between atmospheric variables (temperature and precipitation) and mosquito development, we have created the Dynamic Mosquito Simulation Model (DyMSiM) to simulate Cx. quinquefasciatus population dynamics. The model is driven with climate data and validated against mosquito count data from Pasco County, Florida and Coachella Valley, California. Using 1-week and 2-week filters, mosquito trap data are reproduced well by the model (P < 0.0001). Dry environments in southern California produce different mosquito population trends than moist locations in Florida. Florida and California mosquito populations are generally temperature-limited in winter. In California, locations are water-limited through much of the year. Using future climate projection data generated by the National Center for Atmospheric Research CCSM3 general circulation model, we applied temperature and precipitation offsets to the climate data at each location to evaluate mosquito population sensitivity to possible future climate conditions. We found that temperature and precipitation shifts act interdependently to cause remarkable changes in modeled mosquito population dynamics. Impacts include a summer population decline from drying in California due to loss of immature mosquito habitats, and in Florida a decrease in late-season mosquito populations due to drier late summer conditions.  相似文献   

8.
Climate-based models simulating Culex mosquito population abundance in the Northeastern US were developed. Two West Nile vector species, Culex pipiens and Culex restuans, were included in model simulations. The model was optimized by a parameter-space search within biological bounds. Mosquito population dynamics were driven by major environmental factors including temperature, rainfall, evaporation rate and photoperiod. The results show a strong correlation between the timing of early population increases (as early warning of West Nile virus risk) and decreases in late summer. Simulated abundance was highly correlated with actual mosquito capture in New Jersey light traps and validated with field data. This climate-based model simulates the population dynamics of both the adult and immature mosquito life stage of Culex arbovirus vectors in the Northeastern US. It is expected to have direct and practical application for mosquito control and West Nile prevention programs.  相似文献   

9.
Microsatellites were isolated and characterized in the northern house mosquito, Culex pipiens, a widespread pest species and important vector of diseases such as West Nile virus. An enrichment protocol yielded 150 positive clones. We designed primers to amplify 17 unique (GT)n microsatellites, eight of which amplified cleanly and were polymorphic. A survey of 29 individuals showed that these loci are highly variable with the number of alleles ranging from seven to 19 and expected heterozygosity ranging from 0.66 to 0.93. These markers will be useful for studies of population structure and intraspecific variation in epidemiological characteristics of Cx. pipiens.  相似文献   

10.
Since its introduction in 1999, West Nile virus (WNV) has spread across North America. Culex tarsalis is a highly efficient WNV vector species. Many traits such as virus susceptibility, autogeny and host preference vary geographically and temporally in C. tarsalis. Culex tarsalis genomic libraries were developed and were highly enriched for microsatellite inserts (42–96%). We identified 12 loci that were polymorphic in wild C. tarsalis populations. These microsatellites are the first DNA‐based genetic markers developed for C. tarsalis and will be useful for investigating population structure and constructing genetic maps in this mosquito.  相似文献   

11.
The mosquito Anopheles nili is widespread across tropical Africa and appears to be the major vector of malaria in some rural forested areas of central Africa. Here we describe the isolation of 11 microsatellite polymorphic loci from the A. nili genome, displaying a high among‐individual diversity (0.58–0.96) in samples from west Africa. Two loci displayed a significant departure from Hardy–Weinberg proportions across all samples, suggesting a substantial frequency of null alleles. The remaining nine loci are good candidates for further genetic studies in this species.  相似文献   

12.
After introduction, West Nile virus (WNV) spread rapidly across the western United States between the years 2001 and 2004. This westward movement is thought to have been mediated by random dispersive movements of resident birds. Little attention has been placed on the role of mosquito vectors in virus dispersal across North America. The mosquito vector largely responsible for WNV amplification and transmission of WNV in the western USA is Culex tarsalis. Here we present population genetic data that suggest a potential role for C. tarsalis in the dispersal of WNV across the western USA. Population genetic structure across the species range of C. tarsalis in the USA was characterized in 16 states using 12 microsatellite loci. structure and geneland analyses indicated the presence of three broad population clusters. Barriers to gene flow were resolved near the Sonoran desert in southern Arizona and between the eastern Rocky Mountains and High Plains plateau. Small genetic distances among populations within clusters indicated that gene flow was not obstructed over large portions of the West Coast and within the Great Plains region. Overall, gene flow in C. tarsalis appears to be extensive, potentially mediated by movement of mosquitoes among neighbouring populations and hindered in geographically limited parts of its range. The pattern of genetic clustering in C. tarsalis is congruent with the pattern of invasion of WNV across the western United States, raising the possibility that movement of this important vector may be involved in viral dispersal.  相似文献   

13.
Yan G  Severson DW 《Genetics》2003,164(2):511-519
Models on the evolution of resistance to parasitism generally assume fitness tradeoffs between the costs of being parasitized and the costs associated with resistance. This study tested this assumption using the yellow fever mosquito Aedes aegypti and malaria parasite Plasmodium gallinaceum system. Experimental mosquito populations were created by mixing susceptible and resistant strains in equal proportions, and then the dynamics of markers linked to loci for Plasmodium resistance and other unlinked neutral markers were determined over 12 generations. We found that when the mixed population was maintained under parasite-free conditions, the frequencies of alleles specific to the susceptible strain at markers closely linked to the loci for resistance (QTL markers) as well as other unlinked markers increased significantly in the first generation and then fluctuated around equilibrium frequencies for all six markers. However, when the mixed population was exposed to an infected blood meal every generation, allele frequencies at the QTL markers for resistance were not significantly changed. Small population size caused significant random fluctuations of allele frequencies at all marker loci. Consistent allele frequency changes in the QTL markers and other unlinked markers suggest that the reduced fitness in the resistant population has a genome-wide effect on the genetic makeup of the mixed population. Continuous exposure to parasites promoted the maintenance of alleles from the resistant Moyo-R strain in the mixed population. The results are discussed in relation to the proposed malaria control strategy through genetic disruption of vector competence.  相似文献   

14.
Polymerase chain reaction (PCR)-based genotyping of oocysts dissected from mosquito midguts has previously been used to investigate overall levels of inbreeding within malaria parasite populations. We present a re-analysis of the population structure of Plasmodium falciparum malaria using diploid genotypes at three antigen-encoding loci in 118 oocysts dissected from 34 mosquitoes. We use these data to ask whether mating is occurring at random within the mosquito midgut, as is generally assumed. We observe a highly significant deficit of heterozygous oocysts within mosquitoes at all three loci, suggesting that fusion of gametes occurs non-randomly in the mosquito gut. A variety of biological explanations, such as interrupted feeding of mosquitoes, positive assortative mating and outcrossing depression, could account for this observation. However, an alternative artefactual explanation--the presence of non-amplifying or null alleles--can account for the observed data equally well, without the need to invoke non-random mating. To evaluate this explanation further, we estimate the frequencies of null alleles within the oocyst population using maximum likelihood, by making the assumption that non-amplifying oocysts at any of the three loci are homozygous for null alleles. Observed levels of visible heterozygotes fit closely with those expected under random mating when non-amplifying oocysts are accounted for. Other lines of evidence also support the artefactual explanation. Overall inbreeding coefficients have been recalculated in the light of this analysis, and may be considerably lower than those estimated previously. In conclusion, we suggest that the deficit of heterozygotes observed is unlikely to indicate non-random mating within the mosquito gut and is better explained by misscoring of heterozygotes as homozygotes.  相似文献   

15.
Recent development of DNA markers provides powerful tools for population genetic analyses. Amplified fragment length polymorphism (AFLP) markers result from a polymerase chain reaction (PCR)-based DNA fingerprinting technique that can detect multiple restriction fragments in a single polyacrylamide gel, and thus are potentially useful for population genetic studies. Because AFLP markers have to be analysed as dominant loci in order to estimate population genetic diversity and genetic structure parameters, one must assume that dominant (amplified) alleles are identical in state, recessive (unamplified) alleles are identical in state, AFLP fragments segregate according to Mendelian expectations and that the genotypes of an AFLP locus are in Hardy-Weinberg equilibrium (HWE). The HWE assumption is untestable for natural populations using dominant markers. Restriction fragment length polymorphism (RFLP) markers segregate as codominant alleles, and can therefore be used to test the HWE assumption that is critical for analysing AFLP data. This study examined whether the dominant AFLP markers could provide accurate estimates of genetic variability for the Aedes aegypti mosquito populations of Trinidad, West Indies, by comparing genetic structure parameters using AFLP and RFLP markers. For AFLP markers, we tested a total of five primer combinations and scored 137 putative loci. For RFLP, we examined a total of eight mapped markers that provide a broad coverage of mosquito genome. The estimated average heterozygosity with AFLP markers was similar among the populations (0.39), and the observed average heterozygosity with RFLP markers varied from 0.44 to 0.58. The average FST (standardized among-population genetic variance) estimates were 0.033 for AFLP and 0.063 for RFLP markers. The genotypes at several RFLP loci were not in HWE, suggesting that the assumption critical for analysing AFLP data was invalid for some loci of the mosquito populations in Trinidad. Therefore, the results suggest that, compared with dominant molecular markers, codominant DNA markers provide better estimates of population genetic variability, and offer more statistical power for detecting population genetic structure.  相似文献   

16.
Abstract 1. Resource diversity can be an important determinant of individual and population performance in insects. Fallen parts of plants form the nutritive base for many aquatic systems, including mosquito habitats, but the effect of plant diversity on mosquito production is poorly understood. 2. To determine the effects of diverse plant inputs on larval mosquitoes, experiments were conducted that examined how leaves of Vitis aestivalis, Quercus virginiana, Psychotria nervosa, and Nephrolepis exaltata affected the container species Aedes triseriatus and Aedes albopictus. 3. The hypothesis that leaf species have different effects on larval survival, growth, population performance, and oviposition choice of the two mosquito species was tested. The hypothesis that larval performance of A. albopictus responds additively to combinations of the four plant species was also tested. 4. Larval survival and growth differed among the four leaf species, and oviposition preference differed among the two leaf species examined. Measurements of population performance demonstrated significant variation between leaf treatments. Larval outcomes for A. albopictus were significantly affected by leaf combination, and the hypothesis of additivity could be rejected. 5. These results indicate that individual leaf species are important in determining the performance of container dwelling mosquitoes, which grow larger and survive better on mixed‐species resource than expected, based on an additive model of resource utilisation.  相似文献   

17.
  1. Inflorescences of some Curcuma and Zingiber (Zingiberaceae) in tropical Asia provide an unique aquatic habitat being discrete, small, and made of numerous smaller compartments (the bracts).
  2. The aquatic community in inflorescences of Curcuma in northern Thailand was composed of immature Diptera, of which the biting midge Dasyhelea and the mosquito Armigeres theobaldi were the commonest. No important competitors, predators or pathogenic parasites for the mosquito were confirmed.
  3. Inter-inflorescence distribution of the mosquito was contagious. Within each inflorescence, the fourth-instar larvae or pupae usually occupied bracts singly.
  4. The k-value analysis detected density-dependent mortality due to contest competition in the mosquito larvae.
  5. Variations in the larval and pupal mosquito size were density-independent and remarkably small as compared with size variations known for other mosquitoes.
  6. These population attributes (large density-dependent mortality with density-independent, minimally variable individual size) appear unique among mosquitoes, arising from conspecific killing, efficient foraging (inter-bract movement by crawl and single occupation of bracts), and availability of host plant tissues as supplementary food.
  7. A simple population model suggested that a small proportion of adult females lay eggs.
  相似文献   

18.
Molecular genetic studies of population structure and gene flow are commonly employed in fish stock assessment and breeding population delineation. Genetically structured breeding populations may have different effective population sizes, distinct reproductive rates and variable susceptibility to harvesting or breeding habitat degradation. Nine microsatellite loci were isolated for Morone saxatilis (Moronidae), an anadromous fish inhabiting the mid‐Atlantic. Microsatellite loci were isolated with a subtractive hybridization method and will be used to estimate population structure. The loci averaged 8.5 alleles each. Seven loci in the Choptank population and two loci in the Potomac population deviated from Hardy–Weinberg expected frequencies of heterozygotes.  相似文献   

19.
In the southern Appalachia of the U.S., Aedes mosquitoes maintain and transmit La Crosse virus (LACV) which causes La Crosse encephalitis, a neuroinvasive disease of children. In response to mosquito outbreaks, communities organize prevention, detection, and response measures that are dependent on local characteristics of the mosquito population and the community. Knowing Ae. albopictus is an accessory vector of LACV and a nuisance biter, our objective was to build a system of ordinary differential equations to model dynamics in a single season using our data and readily available environmental variables that can reflect the abundance and activity of Ae. albopictus. Consequently, we built an Ae. albopictus single‐season mathematical model for eastern Tennessee to fit our 2013 mosquito collection data in order to understand the population fluctuations. We included precipitation, temperature, and rate of change of temperature in the model because Aedes mosquitoes oviposit desiccant tolerant eggs with peak activity occurring over 26° C and those data are readily available and used frequently as forecast predictors. Our ordinary differential equation model accurately fits the data and facilitates predictions and better understanding of Ae. albopictus populations in southern Appalachia.  相似文献   

20.
Microsatellites represent an important tool for characterising population structure, for attributing individuals to stocks, and for revealing ecological processes taking place on population and meta-population levels. A sound knowledge of population structure is essential for sustainable management of exploited fish stocks, and helps to understand population connectivity and speciation. We developed for the first time primers for microsatellite loci in the carapine grenadier, Coryphaenoides carapinus, inhabiting the abyssal Atlantic. Eleven microsatellites were obtained from partial genomic DNA libraries enriched for tetranucleotide repeats. The loci were characterised in three unrelated individuals and nine loci were found to be polymorphic. Cross-amplification in two commercially exploited deep-sea macrourid species (Coryphaenoides rupestris and Macrourus berglax) resolved two polymorphic loci in each species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号