首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
3.
4.
Micromonas pusilla (Butcher) Manton et Parke, a marine prasinophyte, was used to investigate how cell growth and division affect optical properties of phytoplankton over the light:dark cycle. Measurements were made of cell size and concentration, attenuation and absorption coefficients, flow cytometric forward and side light scattering and chl fluorescence, and chl and carbon content. The refractive index was derived from observations and Mie scattering theory. Diel variations occurred, with cells increasing in size, light scattering, and carbon content during daytime photosynthesis and decreasing during nighttime division. Cells averaged 1.6 μm in diameter and exhibited phased division, with 1.3 divisions per day. Scattering changes resulted primarily from changes in cell size and not refractive index; absorption changes were consistent with a negligible package effect. Measurements over the diel cycle suggest that in M. pusilla carbon‐specific attenuation varies with cell size, and this relationship appears to extend to other phytoplankton species. Because M. pusilla is one of the smallest eukaryotic phytoplankton and belongs to a common marine genus, these results will be useful for interpreting in situ light scattering variation. The relationship between forward light scattering (FLS) and volume over the diel cycle for M. pusilla was similar to that determined for a variety of phytoplankton species over a large size range. We propose a method to estimate cellular carbon content directly from FLS, which will improve our estimates of the contribution of different phytoplankton groups to productivity and total carbon content in the oceans.  相似文献   

5.
6.
Endogenous cytokinins were quantified in synchronized Chlorella minutissima Fott et Novákova (MACC 361) and Chlorella sp. (MACC 458) grown in a 14:10 light:dark (L:D) photoperiod. In 24 h experiments, cell division occurred during the dark period, and cells increased in size during the light period. Cytokinin profiles were similar in both strains, consisting of five cis‐zeatin (cZ) and three N6‐(2‐isopentenyl)adenine (iP) derivatives. Cytokinin concentrations were low during the dark period and increased during the light period. In 48 h experiments using synchronized C. minutissima (MACC 361), half the cultures were maintained in continuous dark conditions for the second photoperiod. Cell division occurred during both dark periods, and cells increased in size during the light periods. Cultures kept in continuous dark did not increase in size following cell division. DNA analysis confirmed these results, with cultures grown in light having increased DNA concentrations prior to cell division, while cultures maintained in continuous dark had less DNA. Cytokinins (cZ and iP derivatives) were detected in all samples with concentrations increasing over the first 24 h. This increase was followed by a large increase, especially during the second light period where cytokinin concentrations increased 4‐fold. Cytokinin concentrations did not increase in cultures maintained in continuous dark conditions. In vivo deuterium‐labeling technology was used to measure cytokinin biosynthetic rates during the dark and light periods in C. minutissima with highest biosynthetic rates measured during the light period. These results show that there is a relationship between light, cell division, and cytokinins.  相似文献   

7.
In nature, photosynthetic organisms are exposed to fluctuating light, and their physiological systems must adapt to this fluctuation. To maintain homeostasis, these organisms have a light fluctuation photoprotective mechanism, which functions in both photosystems and metabolism. Although the photoprotective mechanisms functioning in the photosystem have been studied, it is unclear how metabolism responds to light fluctuations within a few seconds. In the present study, we investigated the metabolic response of Synechocystis sp. PCC 6803 to light fluctuations using 13C-metabolic flux analysis. The light intensity and duty ratio were adjusted such that the total number of photons or the light intensity during the low-light phase was equal. Light fluctuations affected cell growth and photosynthetic activity under the experimental conditions. However, metabolic flux distributions and cofactor production rates were not affected by the light fluctuations. Furthermore, the estimated ATP and NADPH production rates in the photosystems suggest that NADPH-consuming electron dissipation occurs under fluctuating light conditions. Although we focused on the water–water cycle as the electron dissipation path, no growth effect was observed in an flv3-disrupted strain under fluctuating light, suggesting that another path contributes to electron dissipation under these conditions.  相似文献   

8.
9.
10.
The division cycle of two phytoplankton species, Olisthodiscus luteus and Heterocapsa sp. was studied in relation to a 12:12 light:dark cycle. Batch cultures in exponential phase were sampled every three hours during 48 hours. Cell number, cellular volume and DNA and RNA concentrations were measured. Microscopic observations of the nuclei of Heterocapsa sp. were also performed. In both species, cell division took place in the dark. In Heterocapsa sp., DNA and RNA showed a similar diel variability pattern, with synthesis starting at the end of the light period, previously to mitosis and cytokinesis. In O. luteus. Major RNA synthesis occurred during darkness, and DNA was produced almost continuously. Both species presented different values and diel rhythmicity on the RNA/DNA ratios.  相似文献   

11.
The diel variability in picophytoplankton cell death was analyzed by quantifying the proportion of dead cyanobacteria Prochlorococcus and Synechococcus cells along several in situ diel cycles in the open Mediterranean Sea. During the diel cycle, total cell abundance varied on average 2.8 ± 0.6 and 2.6 ± 0.4 times for Synechococcus and Prochlorococcus populations, respectively. Increasing percentages of dead cells of Prochlorococcus and Synechococcus were observed during the course of the day reaching the highest values around dusk and decreasing as the night progressed, indicating a clear pattern of diel variation in the cell mortality of both cyanobacteria. Diel cycles of cell division were also monitored. The maximum percentage of dead cells (Max % DC) and the G2 + M phase of the cell division occurred within a period of 2 h for Synechoccoccus and 4.5 h for Prochlorococcus, and the lowest fraction of dead cells occurred at early morning, when the maximum number of cells in G1 phase were also observed. The G1 maximum corresponded with the maximal increase in newly divided cells (minimum % dead cells), and the subsequent exposure of healthy daughter cells to environmental stresses during the day resulted in the progressive increase in dying cells, with the loss of these cells from the population when cell division takes place. The discovery of diel patterns in cell death observed revealed the intense dynamics of picocyanobacterial populations in nature.  相似文献   

12.
13.
14.
15.
16.
Blue light induced quenching in a Synechocystis sp. PCC 6803 strain lacking both photosystems is only related to allophycocyanin fluorescence. A fivefold decrease in the fluorescence level in two bands near 660 and 680 nm is attributed to different allophycocyanin forms in the phycobilisome core. Some low-heat sensitive component inactivated at 53 °C is involved in the quenching process. Enormous allophycocyanin fluorescence in the absence of the photosystems reveals a dark stage in this quenching. Thus, we present evidence that light activation of the carotenoid-binding protein and formation of a quenching center within the phycobilisome core in vivo are discrete events in a multistep process.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号