首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our research seeks to clarify the phylogeny of the Caulerpales through analyses of rbcL (large subunit of ribulose 1,5 biphosphate carboxylase/oxygenase) gene sequences. In a review of caulerpalean taxonomy, Hillis‐Colinvaux (1984) recognized two suborders (Bryopsidineae and Halimedineae) on the basis of anatomical, physiological, and habitat characteristics. The Bryopsidineae (including the genera Bryopsis, Derbesia, and Codium) have cosmopolitan distributions, non‐holocarpic reproduction, and homoplasty, while the Halimedineae (including Caulerpa, Halimeda, and Udotea) have tropical to subtropical distributions, holocarpic reproduction, and heteroplasty. Previous phylogenetic analyses based on 18S rRNA sequence data supported the hypothesis of two monophyletic suborders within the Caulerpales (Zechman et al 1990). However, cladistic analyses of morphological characters (Vroom 1998) suggested that only the Halimedineae was monophyletic. Preliminary maximum likelihood and Bayesian analyses suggest the Halimedineae and Bryopsidineae form separate monophyletic groups, with robust support (bootstrap and posterior probabilities) for the former and moderate to poor support for the latter. The families of the Halimedineae (Caulerpaceae, Udoteaceae) form monophyletic sister groups with robust support. The freshwater family Dichotomosiphonaceae was inferred to be basal to the marine Halimedineae clade. The families within the Bryopsidineae (Derbesiaceae, Bryopsidaceae, Codiaceae) each form distinct monophyletic groups. The Codiaceae forms a basal monophyletic group to the sister clade of Bryopsidaceae and Derbeseaceae. This research was partially supported from a NSF grant (DEB‐0128977 to FWZ).  相似文献   

2.
Lee  J.J.  Harrison  M.  Byfield  C.  Lee  S.  & Médor  G. 《Journal of phycology》2003,39(S1):32-32
Our research seeks to clarify the phylogeny of the Caulerpales through analyses of rbcL (large subunit of ribulose 1,5 biphosphate carboxylase/oxygenase) gene sequences. In a review of caulerpalean taxonomy, Hillis-Colinvaux (1984) recognized two suborders (Bryopsidineae and Halimedineae) on the basis of anatomical, physiological, and habitat characteristics. The Bryopsidineae (including the genera Bryopsis, Derbesia , and Codium ) have cosmopolitan distributions, non-holocarpic reproduction, and homoplasty, while the Halimedineae (including Caulerpa, Halimeda, and Udotea) have tropical to subtropical distributions, holocarpic reproduction, and heteroplasty. Previous phylogenetic analyses based on 18S rRNA sequence data supported the hypothesis of two monophyletic suborders within the Caulerpales (Zechman et al 1990). However, cladistic analyses of morphological characters (Vroom 1998) suggested that only the Halimedineae was monophyletic. Preliminary maximum likelihood and Bayesian analyses suggest the Halimedineae and Bryopsidineae form separate monophyletic groups, with robust support (bootstrap and posterior probabilities) for the former and moderate to poor support for the latter. The families of the Halimedineae (Caulerpaceae, Udoteaceae) form monophyletic sister groups with robust support. The freshwater family Dichotomosiphonaceae was inferred to be basal to the marine Halimedineae clade. The families within the Bryopsidineae (Derbesiaceae, Bryopsidaceae, Codiaceae) each form distinct monophyletic groups. The Codiaceae forms a basal monophyletic group to the sister clade of Bryopsidaceae and Derbeseaceae. This research was partially supported from a NSF grant (DEB-0128977 to FWZ).  相似文献   

3.
A multi-locus time-calibrated phylogeny of the siphonous green algae   总被引:2,自引:0,他引:2  
The siphonous green algae are an assemblage of seaweeds that consist of a single giant cell. They comprise two sister orders, the Bryopsidales and Dasycladales. We infer the phylogenetic relationships among the siphonous green algae based on a five-locus data matrix and analyze temporal aspects of their diversification using relaxed molecular clock methods calibrated with the fossil record. The multi-locus approach resolves much of the previous phylogenetic uncertainty, but the radiation of families belonging to the core Halimedineae remains unresolved. In the Bryopsidales, three main clades were inferred, two of which correspond to previously described suborders (Bryopsidineae and Halimedineae) and a third lineage that contains only the limestone-boring genus Ostreobium. Relaxed molecular clock models indicate a Neoproterozoic origin of the siphonous green algae and a Paleozoic diversification of the orders into their families. The inferred node ages are used to resolve conflicting hypotheses about species ages in the tropical marine alga Halimeda.  相似文献   

4.
The phylogeny of the green algal Order Dasycladales was inferred by maximum parsimony and Bayesian analyses of chloroplast‐encoded rbcL sequence data. Bayesian analysis suggested that the tribe Acetabularieae is monophyletic but that some genera within the tribe, such as Acetabularia Lamouroux and Polyphysa Lamouroux, are not. Bayesian analysis placed Halicoryne Harvey as the sister group of the Acetabularieae, a result consistent with limited fossil evidence and monophyly of the family Acetabulariaceae but was not supported by significant posterior probability. Bayesian analysis further suggested that the family Dasycladaceae is a paraphyletic assemblage at the base of the Dasycladales radiation, casting doubt on the current family‐level classification. The genus Cymopolia Lamouroux was inferred to be the basal‐most dasycladalean genus, which is also consistent with limited fossil evidence. Unweighted parsimony analyses provided similar results but primarily differed by the sister relationship between Halicoryne Lamouroux and Bornetella Munier‐Chalmas, thus supporting the monophyly of neither the families Acetabulariaceae nor Dasycladaceae. This result, however, was supported by low bootstrap values. Low transition‐to‐transversion ratios, potential loss of phylogenetic signal in third codon positions, and the 550 million year old Dasycladalean lineage suggest that dasyclad rbcL sequences may be saturated due to deep time divergences. Such factors may have contributed to inaccurate reconstruction of phylogeny, particularly with respect to potential inconsistency of parsimony analyses. Regardless, strongly negative g1 values were obtained in analyses including all codon positions, indicating the presence of considerable phylogenetic signal in dasyclad rbcL sequence data. Morphological features relevant to the separation of taxa within the Dasycladales and the possible effects of extinction on phylogeny reconstruction are discussed relative to the inferred phylogenies.  相似文献   

5.
Morphological and molecular studies have been undertaken on two species of the red algal genus Laurencia J.V.Lamouroux: Laurencia majuscula (Harvey) A.H.S. Lucas and Laurencia dendroidea J.Agardh, both from their type localities. The phylogenetic position of these species was inferred by analysis of the chloroplast‐encoded rbcL gene sequences from 24 taxa. In all phylogenetic analyses, the Australian Laurencia majuscula and the Brazilian L. dendroidea formed a well‐supported monophyletic clade within the Laurencia sensu stricto. This clade was divided into two subclades corresponding to each geographical region; however, the genetic divergence between Australian L. majuscula and Brazilian L. dendroidea was only 0–1.35%. Examination of the type specimens and sequences of freshly collected samples of both Laurencia majuscula and L. dendroidea show the two to be conspecific despite their disjunct type localities.  相似文献   

6.
Sequences of the gene encoding the large subunit of RUBISCO (rbcL) for 30 genera in the six currently recognized families of conjugating green algae (Desmidiaceae, Gonatozygaceae, Mesotaeniaceae, Peniaceae, and Zygnemataceae) were analyzed using maximum parsimony and maximum likelihood; bootstrap replications were performed as a measure of support for clades. Other Charophyceae sensu Mattox and Stewart and representative land plants were used as outgroups. All analyses supported the monophyly of the conjugating green algae. The Desmidiales, or placoderm desmids, constitute a monophyletic group, with moderate to strong support for the four component families of this assemblage (Closteriaceae, Desmidiaceae, Gonatozygaceae, and Peniaceae). The analyses showed that the two families of Zygnematales (Mesotaeniaceae, Zygnemataceae), which have plesiomorphic, unornamented and unsegmented cell walls, are not monophyletic. However, combined taxa of these two traditional families may constitute a monophyletic group. Partitioning the data by codon position revealed no significant differences across all positions or between partitions of positions one and two versus position three. The trees resulting from parsimony analyses using first plus second positions versus third position differed only in topology of branches with poor bootstrap support. The tree derived from third positions only was more resolved than the tree derived from first and second positions. The rbcL‐based phylogeny is largely congruent with published analyses of small subunit rDNA sequences for the Zygnematales. The molecular data do not support hypotheses of monophyly for groups of extant unicellular and filamentous or colonial desmid genera exhibiting a common cell shape. A trend is evident from simple omniradiate cell shapes to taxa with lobed cell and plastid shapes, which supports the hypothesis that chloroplast shape evolved generally from simple to complex. The data imply that multicellular placoderm desmids are monophyletic. Several anomalous placements of genera were found, including the saccoderm desmid Roya in the Gonatozygaceae and the zygnematacean Entransia in the Coleochaetales. The former is strongly supported, although the latter is not, and Entransia's phylogenetic position warrants further study.  相似文献   

7.
Abstract Nuclear-encoded SSU rDNA sequences have been obtained from 64 strains of conjugating green algae (Zygnemophyceae, Streptophyta, Viridiplantae). Molecular phylogenetic analyses of 90 SSU rDNA sequences of Viridiplantae (inciuding 78 from the Zygnemophyceae) were performed using complex evolutionary models and maximum likelihood, distance, and maximum parsimony methods. The significance of the results was tested by bootstrap analyses, deletion of long-branch taxa, relative rate tests, and Kishino–Hasegawa tests with user-defined trees. All results support the monophyly of the class Zygnemophyceae and of the order Desmidiales. The second order, Zygnematales, forms a series of early-branching clades in paraphyletic succession, with the two traditional families Mesotaeniaceae and Zygnemataceae not recovered as lineages. Instead, a long-branch Spirogyra/Sirogonium clade and the later-diverging Netrium and Roya clades represent independent clades. Within the order Desmidiales, the families Gonatozygaceae and Closteriaceae are monophyletic, whereas the Peniaceae (represented only by Penium margaritaceum) and the Desmidiaceae represent a single weakly supported lineage. Within the Desmidiaceae short internal branches and varying rates of sequence evolution among taxa reduce the phylogenetic resolution significantly. The SSU rDNA-based phylogeny is largely congruent with a published analysis of the rbcL phylogeny of the Zygnemophyceae (McCourt et al. 2000) and is also in general agreement with classification schemes based on cell wall ultrastructure. The extended taxon sampling at the subgenus level provides solid evidence that many genera in the Zygnemophyceae are not monophyletic and that the genus concept in the group needs to be revised.  相似文献   

8.
Parsimony analyses of ndhF chloroplast gene sequences were undertaken for 15 species of Acanthaceae and nine representative outgroup species. In addition, parsimony analyses of rbcL sequences were undertaken for 12 species of Acanthaceae and the same nine outgroup species as for ndhF. The results indicate that ndhF provides more informative characters and greater systematic resolution at this hierarchical level than rbcL. The ndhF analyses demonstrate that Elytraria and Thunbergia are successive sister taxa to all Acanthaceae taxa that have retinacula and explosive fruits. These data also demonstrate that taxa with both retinacula and explosive fruits can be subdivided further into two monophyletic groups that correspond to taxa with and without cystoliths. Within the group with cystoliths three putatively monophyletic groups correspond to taxa possessing quincuncial, left contort, and ascending-cochlear corolla aestivation patterns. The results of the rbcL analysis provide less systematic resolution than ndhF but do contain several congruent arrangements of taxa within Acanthaceae.  相似文献   

9.
Nuclear ribosomal small subunit and chloroplast rbcL sequence data for heterokont algae and potential outgroup taxa were analyzed separately and together using maximum parsimony. A series of taxon sampling and character weighting experiments was performed. Traditional classes (e.g. diatoms, Phaeophyceae, etc.) were monophyletic in most analyses of either data set and in analyses of combined data. Relationships among classes and of heterokont algae to outgroup taxa were sensitive to taxon sampling. Bootstrap (BS) values were not always predictive of stability of nodes in taxon sampling experiments or between analyses of different data sets. Reweighting sites by the rescaled consistency index artificially inflates BS values in the analysis of rbcL data. Inclusion of the third codon position from rbcL enhanced signal despite the superficial appearance of mutational saturation. Incongruence between data sets was largely due to placement of a few problematic taxa, and so data were combined. BS values for the combined analysis were much higher than for analyses of each data set alone, although combining data did not improve support for heterokont monophyly.  相似文献   

10.
The complete rbcL gene was sequenced for 21 species and 32 strains of Vaucheria and for five other Xanthophyceae (Asterosiphon dichotomus (Kützing) Rieth, Botrydium becharianum Vischer, B. cystosum Vischer, B. stoloniferum Mitra, Tribonema intermixtum Pascher). The psbA‐rbcL spacer, upstream of the rbcL gene, and the RUBISCO spacer between the rbcL and rbcS genes were also completely sequenced for the Vaucheria strains and Asterosiphon. The psbA‐rbcL spacer was the most variable region that was sequenced, and only the 3′ end of the spacer could be aligned. Phylogenetic analyses (maximum parsimony, neighbor joining, and maximum likelihood) were conducted using the DNA sequence and the amino acid sequence for the rbcL gene, and a second analysis was conducted using a portion of the psbA‐rbcL spacer +rbcL gene + RUBISCO spacer. All analyses showed that Vaucheria species formed monophyletic clades that corresponded with morphologically based subgeneric sections, including the section Racemosae. Species producing a gametophore (= fruiting branch, bearing both an antheridium and oogonium) formed a monophyletic clade in all analyses. The nongametophore species sometimes formed a monophyletic clade but other times formed a basal grade. Pair‐wise comparisons of nucleotides and amino acids showed that for some species, numerous nucleotide changes resulted in relatively few amino acid changes. Consequently, phylogenetic analysis of the amino acids produced numerous trees, which in a strict consensus tree resulted in numerous polychotomies. An original strain of V. terrestris that was deposited in two culture collections over 25 years ago had identical sequences, suggesting no rapid change was occurring in the sequenced regions. Two strains of V. prona, isolated from Europe and North America, had identical sequences. Other species, for which two or more strains were examined, had different sequences. These results suggest that cryptic species complexes exist within Vaucheria because the rbcL gene is a conservative gene that is identical in other protists.  相似文献   

11.
The taxonomic validity of the genus Hydropuntia Montagne (1843) (including Polycavernosa) within the Gracilariaceae (Gracilariales, Rhodophyta) is controversial. Morphological characters that define species of Hydropuntia are said to be variable and to overlap with those of Gracilaria. Here we present a global phylogenetic study of the family based on a Bayesian analysis of a large rbcL DNA sequence dataset indicating that the genus Hydropuntia forms a well supported monophyletic clade within the family, and recognize Hydropuntia as a genus distinct from Gracilaria. We also conducted smaller phylogenetic analyses in which thirty four Hydropuntia rbcL sequences resulted in two major clades within the genus, comprising a Caribbean clade and an Indo‐Pacific clade. Diagnostic reproductive stages that separate these two clades will be illustrated.  相似文献   

12.
The placement of a recently discovered South American monotypic genus,Pseudomonotes tropenbosii, in subfam.Monotoideae (Dipterocarpaceae) extends the geographical range of the subfamily from Africa to the Neotropics. Although morphological and anatomical evidence suggest similarities betweenPseudomonotes andMonotes, the close alliance of these two genera was questionable due to their disjunct distribution and a lack of phylogenetic analysis. In the present study, we reconstructed the phylogeny ofPseudomonotes and other putatively related taxa usingrbcL sequence data. The analysis ofrbcL sequences of 20 taxa belonging to 15 genera and eight families recovered a single most parsimonious tree. The genusSarcolaena (Sarcolaenaceae) formed a clade sister to the monophyleticDipterocarpaceae clade.Monotes andPseudomonotes formed a strongly supported group, sister to the monophyletic clade withPakaraimaea and the remaining Asiatic dipterocarp species studied. The study strongly supports the placement ofPseudomonotes within subfam.Monotoideae of theDipterocarpaceae.  相似文献   

13.
Species level taxonomy and phylogeographical distribution patterns in the freshwater rhodophyte Sirodotia are resolved through phylogenetic inferences based on rbcL and cox2–3 sequence data. Previous studies focused on the taxonomy of specific Sirodotia species or the distributions across a limited geographical region. Our molecular phylogenies included samples attributable to five recognized Sirodotia species and include collections from Australia, Brazil, Costa Rica, Canada, Finland, Mexico, New Zealand, South Africa and the United States. Both rbcL and cox2–3 phylogenies inferred S. suecica, S. tenuissima and S. goebelii as a monophyletic group with little sequence divergence. This result supports the synonymy of S. tenuissima and S. goebelii with S. suecica (the species name with priority). Within this clade, samples collected from Australia and New Zealand formed a monophyletic group with no other discernible phylogeographical patterns within S. suecica. This result seems to be somewhat unusual in the Batrachospermales, as other species have shown greater genetic variation among geographically distant locations. As in previous studies, S. huillensis and S. delicatula were inferred as a separate species based on the rbcL phylogeny, supporting the current taxonomy. A specimen of S. aff. huillensis from South Africa, may represent a new species but further research is necessary before it can be designated as such.  相似文献   

14.
Taxonomy in silica‐scaled chrysophytes has gone through three morphological phases. From primary studies of the cell morphology in the 18th century, the focus was in the 20th century replaced by studies of the silica structures of the cell envelope. Now, in the latest decades the importance of DNA sequencing has been recognized, not only to support the taxonomic framework but also to obtain new understanding of taxonomic relations among particular taxa. In the first part of this review, we provide a historical overview of the developments in the taxonomy of scale‐bearing chrysophytes. In the second part, we present a phylogenetic reconstruction of chrysophyte algae, updated by newly obtained SSU rDNA and rbcL sequences of several isolated Synura, Mallomonas and Chrysosphaerella species. We detected significant incongruence between the phylogenies obtained from the different datasets, with the SSU rDNA phylogram being the most congruent with the morphological data. Significant saturation of the first rbcL codon position could indicate the presence of positive selection in the rbcL dataset. Within the Synurales, the relationships revealed by the phylogenetic analyses highlight the artificial infragenetic classification of Mallomonas and Synura, and the occurrence of cryptic diversity within a number of traditionally defined species. Finally, three new combinations are proposed based on the phylogenetic analyses: Tessellaria lapponica, Synura asmundiae and S. bjoerkii.  相似文献   

15.
Molecular phylogenetic analysis of the conjugating green algae (Class Zygnemophyceae) using nuclear (SSU rDNA) and chloroplast (rbcL) gene sequences has resolved hypotheses of relationship at the class, order, and family levels, but several key questions will require data from additional genes. Based on SSU and rbcL sequences, the Zygnemophyceae and Desmidiales are monophyletic, and families of placoderm desmids are distinct clades (Desmidiaceae, Peniaceae, Closteriaceae, and Gonatozygaceae). In contrast, the Zygnemataceae and Mesotaeniaceae are paraphyletic, although whether these two traditional families constitute a clade is uncertain. In addition, relationships of genera within families have proven resistant to resolution with these two oft‐used genes. We have sequenced the coxIII gene from the mitochondrial genome to address some of these ambiguous portions of the phylogeny of conjugating green algae. The coxIII gene is more variable than rbcL or SSU rDNA and offers greater resolving power for relationships of genera. We present preliminary analyses of coxIII sequences from each of the traditional families of Zygnemophyceae and contrast the resulting topologies with those derived from nuclear and chloroplast genes.  相似文献   

16.
Multigene phylogenetic analyses were directed at resolving the earliest divergences in the red algal subclass Rhodymeniophycidae. The inclusion of key taxa (new to science and/or previously lacking molecular data), additional sequence data (SSU, LSU, EF2, rbcL, COI‐5P), and phylogenetic analyses removing the most variable sites (site stripping) have provided resolution for the first time at these deep nodes. The earliest diverging lineage within the subclass was the enigmatic Catenellopsis oligarthra from New Zealand (Catenellopsidaceae), which is here placed in the Catenellopsidales ord. nov. In our analyses, Atractophora hypnoides was not allied with the other included Bonnemaisoniales, but resolved as sister to the Peyssonneliales, and is here assigned to Atractophoraceae fam. nov. in the Atractophorales ord. nov. Inclusion of Acrothesaurum gemellifilum gen. et sp. nov. from Tasmania has greatly improved our understanding of the Acrosymphytales, to which we assign three families, the Acrosymphytaceae, Acrothesauraceae fam. nov. and Schimmelmanniaceae fam. nov.  相似文献   

17.
Gracilariaceae are mostly pantropical red algae and include ~230 species in seven genera. Infrafamilial classification of the group has long been based on reproductive characters, but previous phylogenies have shown that traditionally circumscribed groups are not monophyletic. We performed phylogenetic analyses using two plastid (universal plastid amplicon and rbcL) and one mitochondrial (cox1) loci from a greatly expanded number of taxa to better assess generic relationships and understand patterns of character distributions. Our analyses produce the most well‐supported phylogeny of the family to date, and indicate that key characteristics of spermatangia and cystocarp type do not delineate genera as commonly suggested. Our results further indicate that Hydropuntia is not monophyletic. Given their morphological overlap with closely related members of Gracilaria, we propose that Hydropuntia be synonymized with the former. Our results additionally expand the known ranges of several Gracilariaceae species to include Brazil. Lastly, we demonstrate that the recently described Gracilaria yoneshigueana should be synonymized as G. domingensis based on morphological and molecular characters. These results demonstrate the utility of DNA barcoding for understanding poorly known and fragmentary materials of cryptic red algae.  相似文献   

18.
Within the angiosperm subclass Alismatidae (= superorder Alismatiflorae), contemporary taxonomists have often assigned the families Hydrocharitaceae and Najadaceae to different orders. The Najadaceae are presumably allied to a variety of aquatic families in the order Najadales, whereas the Hydrocharitaceae have been segregated as the order Hydrocharitales or placed within the order Alismatales. Analyses of DNA sequence data from the chloroplast gene rbcL, however, indicate that Najadaceae have a much closer phylogenetic relationship to Hydrocharitaceae than to families of the "Najadales" (Cymodoceaceae, Potamogetonaceae, Ruppiaceae, Scheuchzeriaceae, Zannichelliaceae, Zosteraceae). This association supports previous studies based upon examination of floral structure and seed coat anatomy. The rbcL sequence data also indicate that the Zosteraceae and Potamogetonaceae are closely related families. The rbcL sequence of Zostera is actually more similar to that of Potamogeton richardsonii than is the sequence of the latter to a congener, Potamogeton amplifolius. The marine, dioecious, hydrophilous genus Zostera has acquired a number of distinctive adaptations, but probably diverged relatively rapidly from freshwater Potamogetonaceae. Molecular data place Ruppiaceae as a sister group to the marine Cymodoceaceae and do not support the commonly accepted merger of Ruppiaceae and Potamogetonaceae.  相似文献   

19.
Veratrum (Melanthiaceae) comprises ca. 27 species with highly variable morphology. This study aims to construct the molecular phylogeny of this genus to infer its floral evolution and historical biogeography, which have not been examined in detail before. Maximum parsimony, maximum likelihood, and Bayesian analyses were performed on the separate and combined ITS, trnL-F, and atpB-rbcL sequences to reconstruct the phylogenetic tree of the genus. All Veratrum taxa formed a monophyletic group, within which two distinct clades were distinguished: species with white-to-green perianth formed one highly supported clade, and the species with black-purple perianth constituted another highly supported clade. Phylogenetic inference on flower color evolution suggested that white-to-green perianth was a plesiomorphic state and black-purple perianth was apomorphic for Veratrum. When species distribution areas were traced as a multi-state character, parsimonious optimization inferred that Veratrum possibly originated in East Asia. Our study confirmed previous phylogenetic and taxonomic suggestions on this genus and provided a typical example of plant radiation across the Northern Hemisphere.  相似文献   

20.
Members of the order Cladocera show remarkable morphological and ecological diversity. One of the most spectacular adaptive radiations in this group has involved species of the suborder Onychopoda, which have adopted a novel feeding strategy, predation, and have colonized habitats with a broad range of salinities. In order to evaluate the origins and systematics of this group, we derived a molecular phylogeny for its three component families including nine of 10 recognized genera based on three mitochondrial (mt) gene sequences: cytochrome c oxidase subunit I (COI), the ribosomal small and large subunits (12S and 16S) and one nuclear gene sequence: the small ribosomal subunit (18S). Maximum‐parsimony, maximum‐likelihood and neighbour‐joining phylogenetic analyses were largely congruent, supporting the monophyly of the suborder and each of its families. Comparative analyses of data based on total evidence and the conditional combination of the ribosomal genes produced relatively congruent patterns of phylogenetic affinity. By contrast, analyses of single gene results were inconsistent in recovering the monophyletic groups identified by the multigene analyses. Based on the reconstructed phylogeny, we discriminate among the existing hypotheses regarding the evolutionary history of the onychopods. We identify a prolonged episode of speciation from the Miocene to the Pleistocene with two pulses of diversification. We discuss our results with reference to the geological history of the Ponto‐Caspian basin, the region which fostered the onychopod radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号