首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A widely-used method for generating dendritic cell (DC) is to culture bone marrow cells in granulocyte-macrophage colony-stimulating factor (GM-CSF)-containing medium for 6-10 days. Usually, non-adherent cells are used as qualified dendritic cells while the adherent ones are discarded as “non-dendritic cells” or macrophages. In this study, we show that the adherent cells are nearly identical to the non-adherent cells in both dendritic cell surface markers expression and main dendritic cell-related functions, hence to prove that these “junk cells” are actually qualified dendritic cells.  相似文献   

2.
Plasmid-encoded GM-CSF (pGM-CSF) is an adjuvant for genetic vaccines; however, little is known about how pGM-CSF enhances immunogenicity. We now report that pGM-CSF injected into mouse muscle leads to a local infiltration of potential APCs. Infiltrates reached maximal size on days 3 to 5 after injection and appeared in several large discrete clusters within the muscle. Immunohistological studies in muscle sections from mice injected with pGM-CSF showed staining of cells with the macrophage markers CD11b, Mac-3, IA(d)/E(d) and to the granulocyte marker GR-1 from day 1 through day 14. Cells staining with the dendritic cell marker CD11c were detected only on days 3 to 5. Muscles injected with control plasmids did not stain for CD11c but did stain for CD11b, Mac-3, IA(d)/E(d), and GR-1. No staining was observed with the APC activation markers, B7.1 or CD40, or with markers for T or B cells. These findings are consistent with the infiltrating cells in the pGM-CSF-injected muscles being a mixture of neutrophils, macrophages, and immature dendritic cells and suggest that the i.m. APCs may be enhancing immune responses to coinjected plasmid Ags. This hypothesis is supported by data showing that 1) separation of injections with pGM-CSF and Ag-expressing plasmid into different sites did not enhance immune responses and 2) immune enhancement was associated with the presence of CD11c+ cells in the infiltrates. Thus, pGM-CSF enhancement may depend on APC recruitment to the i.m. site of injection.  相似文献   

3.
4.
5.
Chen A  Xu H  Choi Y  Wang B  Zheng G 《Cellular immunology》2004,231(1-2):40-48
Dendritic cells (DCs) are the most potent APCs known to date. Despite their potency, DCs are short-lived. During the course of an immune response, DCs interact with cognate T cells, which upon activation express both DC survival and pro-apoptotic factors. This raises the question how DC longevity is regulated by these signals. In this study, we have assessed the roles of FasL (CD95L) and tumor necrosis factor-related activation-induced cytokine (TRANCE) in regulating the survival of murine bone marrow-derived DCs (BMDCs). We have shown for the first time that TRANCE protects DCs from FasL-mediated apoptosis, and that the quantitative balance between TRANCE and FasL can modulate BMDC survival in vitro. In addition, by quantifying adoptively transferred BMDCs in draining lymph nodes (LNs), we have shown that treating DCs with FasL prior to the transfer decreases the quantity of donor DCs capable of migrating to the LN, presumably due to FasL-mediated apoptosis of donor DCs in vivo. Furthermore, we have shown that TRANCE can counteract FasL and reverse such decrease. Taken together, these results suggest that the interplay between FasL and TRANCE play a role in regulating the survival of DCs.  相似文献   

6.
The effect of s.c. inoculation of purified recombinant derived granulocyte-macrophage (GM)-CSF on resident murine peritoneal macrophages was assessed in this study. From 18 to 24 h after s.c. administration of GM-CSF to normal mice, the resident peritoneal macrophages were harvested and the levels of membrane-bound IL-1, FcR, Mac-1 cell-surface Ag, and class II MHC expression were assessed. Peritoneal cells from GM-CSF-inoculated mice had significantly greater levels of membrane-bound IL-1 than did control mice. In addition when resident peritoneal macrophages from normal mice were purified by adherence and grown in the presence of GM-CSF, they produced greater levels of both membrane-bound and secreted IL-1. The peritoneal cells from GM-CSF-inoculated mice did not differ from controls in the expression of class II MHC-encoded Ag. This observation was confirmed by the finding that GM-CSF was unable to induce class II MHC expression on P388D1 cells, whereas a secondary mixed leukocyte culture supernatant was. Peritoneal cells from GM-CSF-inoculated mice also exhibited greater levels of expression of FcR and the Mac-1 cell-surface Ag. This resulted in an increase in their ability to phagocytose opsonized SRBC in vitro.  相似文献   

7.
Surfactant protein A (SP-A) is an innate immune molecule that regulates pathogen clearance and lung inflammation. SP-A modulates innate immune functions such as phagocytosis, cytokine production, and chemotaxis; however, little is known about regulation of adaptive immunity by SP-A. Dendritic cells (DCs) are the most potent antigen-presenting cell with the unique capacity to activate naive T cells and initiate adaptive immunity. The goal of this study was to test the hypothesis that SP-A regulates the differentiation of immature DCs into potent T cell stimulators. The data show that incubation of immature DCs for 24 h with SP-A inhibits basal- and LPS-mediated expression of major histocompatibility complex class II and CD86. Stimulation of immature DCs by SP-A also inhibits the allostimulation of T cells, enhances dextran endocytosis, and alters DC chemotaxis toward RANTES and secondary lymphoid tissue chemokine. The effects on DC phenotype and function are similar for the structurally homologous C1q, but not for SP-D. These studies demonstrate that SP-A participates in the adaptive immune response by modulating important immune functions of DCs.  相似文献   

8.
Nonglycosylated murine and human granulocyte-macrophage colony-stimulating factor have a molecular mass of approximately 14.5 kDa predicted from the primary amino acid sequence. The expression of both proteins in COS cells leads to a heterogeneous population of molecules that differ in the degree of glycosylation. Both human and murine molecules contain two N-linked glycosylation sites that are situated in nonhomologous locations along the linear sequence. Despite this difference both proteins show a similar size distribution among the glycosylation variants. These studies analyze the effects of introducing in the murine protein novel N-linked glycosylation sites corresponding to those sites found in the human molecule. A panel of molecules composed of various combinations of human N-linked glycosylation sites in either the presence or the absence of murine N-linked glycosylation was compared. Substitution of a proper human N-linked glycosylation consensus sequence at Asn 24 did not result in N-linked glycosylation, nor was there any considerable effect on bioactivity. Replacement of the N-linked glycosylation consensus sequence at Asn 34 results in glycosylation similar to that found in the human molecule and causes a significant decrease in bioactivity. These data suggest that the position of N-linked glycosylation is critical for maximal bioactivity in a particular species and that the changes in position of these sites in different species probably occurred during evolution in response to changes in their receptors.  相似文献   

9.
10.
C Gamba-Vitalo  M P DiGiovanna  A C Sartorelli 《Blood cells》1991,17(1):193-205; discussion 206-8
To evaluate the efficacy of recombinant murine granulocyte-macrophage colony-stimulating factor (rGM-CSF) in attenuating the myelosuppression associated with chemotherapy, the effects of 100 and 300 ng rGM-CSF, administered twice daily by intraperitoneal injection for 6 consecutive days to mice 24 hours after a dose of 200 mg/kg cyclophosphamide, were measured. Six days after the initial injection of rGM-CSF, a significant increase occurred in the absolute myeloid count compared to that of vehicle-treated animals. The difference was most pronounced on day 7, attaining levels of 327% and 428% of the control; these increases slowly declined to that of the control level by day 19. No significant effect was produced by rGM-CSF on the packed red cell volume or on the platelet count. Furthermore, the administration of rGM-CSF did not alter bone marrow cellularity or increase the number of marrow-derived hematopoietic stem cells. In contrast, a significant splenomegaly occurred, starting on day 6 and continuing until day 17. This was characterized by a pronounced increase in splenic-derived granulocyte (CFU-G), granulocyte-macrophage (CFU-GM), macrophage (CFU-M), megakaryocyte (CFU-MK), and erythroid (BFU-E, CFU-E) stem cells. The increases occurred between days 6 and 9 following the initial administration of rGM-CSF. These findings indicated that the administration of rGM-CSF to cyclophosphamide-treated animals causes an absolute increase in circulating myeloid cells and that these increases are derived from the spleen. The use of recombinant hematopoietic growth factors may permit the administration of more intensive chemotherapy through amelioration of chemically induced leukopenia.  相似文献   

11.
Exposure to pathogens induces dendritic cells to release inflammatory cytokines and chemokines. The inflammatory response is controlled by endogenous agents such as anti-inflammatory cytokines, glucocorticoids, anti-inflammatory neuropeptides, and lipid mediators. This study is the first report on the inhibition by prostaglandin E2 (PGE2) of TNF release from bone marrow-derived dendritic cells stimulated with lipopolysaccharide (LPS), a TLR4 ligand, or peptidoglycan, a TLR2 ligand. The inhibition of TNF occurs at both mRNA and protein level. The inhibitory effect of PGE2 is mediated by the EP2 and EP4 receptors, and involves both PKA signaling and mediation by DC-derived IL-10. Intraperitoneal administration of PGE2 together with LPS results in a reduction in serum TNF and intracellular TNF in peritoneal exudate cells, compared to LPS alone. In addition, administration of PGE2 in vivo reduces the numbers of CD11c+ DCc that accumulate in the peritoneal cavity in response to LPS. The various implications of the PGE2-induced reduction in TNF are discussed.  相似文献   

12.
The roles of colony-stimulating factors in long-term bone marrow cultures were studied and compared. After single additions of high concentrations of unpurified colony-stimulating activities to the cultures, rapid deterioration of the cultures was observed. This appears to result from contaminants in the stimulatory preparations. Cultures to which one purified colony-stimulating factor (CSF) from endotoxin mouse lung-conditioned medium was added did not run down ten weeks after addition and were found to be the same as the controls. The deterioration of the cultures to which unpurified stimulators were added could not be accounted for by accelerated granulopoiesis leading to subsequent exhaustion of the cultures. The inability of purified CSF to affect the cellularity of the suspension cells did not result from instability or masking of the activity in the cultures, nor did CSF preferentially stimulate the cells within the adherent layer. The suspension cells responded to purified CSF after separation from the adherent cells. The data suggest that if CSFs are marrow stimulators, their effects in turn may be stringently regulated within the marrow.  相似文献   

13.
Human recombinant granulocyte CSF (G-CSF) modulation of cytokine receptors on murine bone marrow cells (BMC) in vivo and in vitro was investigated. In vivo, G-CSF reduced 125I-G-CSF binding to BMC by greater than 95% within 30 min, with return to base line after 48 h. Human rCSF-1 binding was reduced greater than 85% after 30 min and failed to recover even after 48 h. Murine rTNF-alpha or recombinant granulocyte/macrophage CSF binding was not significantly altered. However, human rIL-1 alpha binding increased greater than 1.5-fold after 3 h, was elevated greater than 5-fold between 6 and 12 h, and declined to base line after 48 h. In vitro, G-CSF induced a greater than 1.5-fold increase in IL-1 binding to BMC after 8 h, suggesting that up-modulation of IL-1 binding in vivo required G-CSF and other influences. Further studies indicated that BMC responded to glucocorticoids and G-CSF with a synergistic increase of IL-1 binding. This synergistic IL-1R modulation was a time- and dose-dependent process and was inhibited by cycloheximide or actinomycin D in a dose-dependent manner. Binding studies further revealed that the synergistic stimulation of IL-1R expression on BMC was probably due to increased receptor number, rather than increased receptor affinity. In addition, this phenomenon was also observed in other hematopoietic cells. Our results demonstrated that G-CSF was capable of stimulating IL-1R expression on BMC both in vivo and in vitro and G-CSF in combination with glucocorticoids synergistically up-modulated IL-1 binding to BMC in vitro. Inasmuch as IL-1 induces the secretion of G-CSF and glucocorticoids in vivo, this synergistic induction may play an important, as yet unknown, role in the inflammatory cascade.  相似文献   

14.
This report examines the actions of IFN-gamma on monocytopoiesis in murine liquid and semisolid bone marrow cultures. The proliferative response of bone marrow cells to macrophage CSF and granulocyte-macrophage CSF was assayed by measuring [3H]TdR uptake in a range of mouse strains. No interstrain difference in kinetics was observed for CSF-1 action, but GM-CSF acted significantly more rapidly on C57B1/6, Swiss, and to a lesser extent A/J mice than on BALB/c or CBA. IFN-gamma inhibited [3H]TdR incorporation elicited by CSF-1, and to a much lesser extent, GM-CSF. When the two CSF were added together, the effects were not additive; in fact, the response was the same as that seen with GM-CSF alone. When IFN-gamma was also added, the response was restored to the level seen with CSF-1 alone. In essence, the inhibitory actions of GM-CSF and IFN-gamma were mutually exclusive. The mechanism of these actions was investigated using colony assays. As expected, CSF-1 caused the formation of pure macrophage colonies, whereas GM-CSF stimulated production of macrophage, granulocyte, and mixed granulocyte macrophage colonies. When the two CSF were added in combination, the total colony count was greater than with either alone, but less than additive. The number of pure macrophage colonies was reduced to the number seen with GM-CSF alone. IFN-gamma reduced the number of colonies in the presence of CSF-1, but slightly increased the number with GM-CSF. In the presence of both CSF, IFN-gamma increased the colony count by around 25 to 40%, so that the numbers were greater than the combined total of CSF-1 plus GM-CSF added separately. Similar results were obtained in all mouse strains tested. The results suggest that the thymidine uptake data reflect changes in the number of progenitor cells responding rather than changes in cell cycle time. The results are discussed in terms of the possibility that coadministration of GM-CSF and CSF-1 could ameliorate the myelosuppressive actions of IFN-gamma in vivo, leading to more effective use of this agent as a biologic response modifier.  相似文献   

15.
Bone marrow-derived dendritic cells (DCs) were examined for the expression of the murine macrophage C-type lectin specific for galactose and N-acetylgalactosamine (mMGL). Flow cytometric analysis after double staining for MHC class II and mMGL with specific monoclonal antibodies indicated that mMGL was expressed on immature DCs with low to moderate levels of MHC class II and down-regulated during maturation. Immature DCs bound and internalized alpha-N-acetylgalactosaminides conjugated to soluble polyacrylamide (alpha-GalNAc polymers), whereas mature DCs and bone marrow cells did not. The two-color flow cytometric profiles indicated that the degree of alpha-GalNAc polymer bindings exactly coincided with the intensity of the binding of a mMGL-specific monoclonal antibody LOM-14. The internalized alpha-GalNAc polymers seemed to be transported to MHC class II compartments. Thus, mMGL is transiently expressed on bone marrow-derived DCs during their development and maturation and suggested to be involved in the uptake of glycosylated antigens for presentation.  相似文献   

16.
GM-CSF is critical for dendritic cell (DC) survival and differentiation in vitro. To study its effect on DC development and function in vivo, we used a gene transfer vector to transiently overexpress GM-CSF in mice. We found that up to 24% of splenocytes became CD11c+ and the number of DC increased up to 260-fold to 3 x 10(8) cells. DC numbers remained substantially elevated even 75 days after treatment. The DC population was either CD8alpha+CD4- or CD8alpha-CD4- but not CD8alpha+CD4+ or CD8alpha-CD4+. This differs substantially from subsets recruited in normal or Flt3 ligand-treated mice or using GM-CSF protein injections. GM-CSF-recruited DC secreted extremely high levels of TNF-alpha compared with minimal amounts in DC from normal or Flt3 ligand-treated mice. Recruited DC also produced elevated levels of IL-6 but almost no IFN-gamma. GM-CSF DC had robust immune function compared with controls. They had an increased rate of Ag capture and caused greater allogeneic and Ag-specific T cell stimulation. Furthermore, GM-CSF-recruited DC increased NK cell lytic activity after coculture. The enhanced T cell and NK cell immunostimulation by GM-CSF DC was in part dependent on their secretion of TNF-alpha. Our findings show that GM-CSF can have an important role in DC development and recruitment in vivo and has potential application to immunotherapy in recruiting massive numbers of DC with enhanced ability to activate effector cells.  相似文献   

17.
18.
19.
20.
PG are known to inhibit T cell proliferation, at least in part by suppressing IL-2 production, but effects of PG on the production of other lymphokines have not been well studied. We have found that PGE2 and PGE1, but not PGF2 alpha, inhibit both proliferation and production of granulocyte-macrophage (GM)-CSF by murine TH clones stimulated with Ag or anti-CD3 antibody. Thus, signals generated via the Ag receptor:CD3 complex were inhibited by PGE. Most interesting, however, was the finding that PGE2 and PGE1 could act synergistically with IL-2 for the induction of GM-CSF in some TH1 clones. Dependence on PGE2 for this response was not found in all clones, as some TH1 cells could produce GM-CSF after IL-2 alone, and some cells did not produce GM-CSF even in the presence of PGE2 and IL-2. These observations indicate that there is a subset of TH1 cells receptive to a stimulating activity of PGE2 in the presence of IL-2. PGE2 is known to elevate cAMP levels in T cells. Therefore, we tested whether other agents known to increase cAMP, such as forskolin and cholera toxin, could act in conjunction with IL-2 to induce GM-CSF secretion. As was found with PGE2, these compounds also induced GM-CSF activity in the presence of IL-2, suggesting a critical role for cAMP in this process. Overall these data indicate that the requirements for activation of GM-CSF secretion vary among individual T cells. Most importantly they provide the first evidence that E-series PG are positive signals for lymphokine induction in certain T cells, whereas simultaneously acting as negative signals limiting proliferation. This result also suggests that treatment with anti-inflammatory drugs that decrease PGE2 concentrations may inhibit lymphokine secretion normally stimulated by this pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号