首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 15N composition of the dominant form of dissolved inorganic nitrogen (DIN) was determined in upland groundwater, riparian groundwater, and stream water of the Barro Branco catchment, Amazônas, Brazil. The 15N composition of organic nitrogen in riparian and upland leaf litter was also determined. The data for these waters could be divided into three groups: upland groundwater DIN predominately composed of NO3 with 15N values averaging 6.25 ± 0.9 riparian groundwater DIN primarily composed of NH4 + with 15N values averaging 9.17 ± 1.0 and stream water DIN predominately composed of NO3 with 15N values averaging 4.52 ± 0.8 Nitrate samples taken from the stream source and from the stream adjacent to the groundwater transects showed a downstream increase in 15N from 1.0to 4.5 Leaf litter samples averaged 3.5 ± 1.2The observed patterns in isotopic composition, together with previously observed inorganic nitrogen species and concentration shifts between upland, riparian and stream waters, suggest that groundwater DIN is not the primary source of DIN to the stream. Instead, the isotopic data suggest that remineralization of organic nitrogen within the stream itself may be a major source of stream DIN, and that the majority of DIN entering the stream via groundwater flowpaths is removed at the riparian-stream interface.  相似文献   

2.
Lake Puma Yumco is a typical alpine lake (altitude 5030m) located in the pre-Himalayas of Tibet, China, and this study was the first limnological investigation ever conducted on it. Lake Puma Yumco (28°34N, 90°24E) has the following morphometric properties: maximum length 31km, maximum width 14km, mean width 9km, shoreline 90km, surface area 280km2, and shoreline development 1.5. Transparency was approximately 10m, even in the thawing season. The extinction coefficient of the lake water was calculated as 0.15m–1. Annual maximum transparency was estimated from the depth of the Chara zone to be 30m. Dissolved oxygen was 7mg O2 l–1 and showed saturated values, and salinity was 360mgl–1. The chemical type of the lake water was Mg-Ca-HCO3-SO4, and it was slightly alkaline in character. Total nitrogenous nutrients (sum of ammonia, nitrite, nitrate, and urea nitrogen), phosphate, and silicate were extremely low at 1, 0.02, and 9µM, respectively. Dissolved organic carbon, nitrogen, and phosphorus concentrations were 160, 11, and 0.08µM and the molar ratio was calculated as 2100:140:1. Chlorophyll a concentration was 0.2mgm–3. Phytoplankton and zooplankton were dominated by Aphanocapsa sp. and Diaptomidae. Both nitrogen and phosphorus appear to be the limiting parameters for phytoplankton growth. Organic carbon and nitrogen contents in lake sediments were low and the sediments contained a large amount of CaCO3. The grain size of sediment was that of silt-sand in most cases. The present results indicate that the pre-Himalayan alpine freshwater Lake Puma Yumco is an ultraoligotrophic lake.  相似文献   

3.
Previous studies in insects demonstrated that leg coordination changes following complete ablation of distal limb segments. However, normal coordination was restored when small peg leg prostheses were attached to leg stumps to permit substrate contact. We have adapted this paradigm to preserve appropriate leg mass and inertia by severing all nerves and muscle tendons in the femur of the cockroach hind leg and converting the animals own limb into a peg leg. Recordings of muscle activities and leg movements before and after denervation showed that: (1) the peg leg is actively used in walking and regular bursts occur in motoneurons to leg extensor muscles; (2) driving of motoneuron activity is sufficient to produce fictive bursting in a muscle whose tendon (apodeme) is cut in the ablation; and (3) similar motoneuron activities are found in walking on an oiled glass surface, when the effects of body weight and mechanical coupling are minimized. When distal segments were completely severed in these preparations, leg use and muscle bursting were disrupted but could be restored if the stumps were pressed against the substrate. These results support the hypothesis that feedback from receptors in proximal leg segments indicating forces allows for active leg use in walking.  相似文献   

4.
Global patterns of dissolved N, P and Si in large rivers   总被引:18,自引:4,他引:14  
The concentration of dissolved inorganic nitrogen (DIN), dissolved nitrate-N, Total-N (TN), dissolved inorganic phosphate (DIP), total phosphorus (TP), dissolved silicate-Si (DSi) and their ratios in the world's largest rivers are examined using a global data base that includes 37% of the earth's watershed area and half its population. These data were compared to water quality in 42 subbasins of the relatively well-monitored Mississippi River basin (MRB) and of 82 small watersheds of the United States. The average total nitrogen concentration varies over three orders of magnitude among both world river watersheds and the MRB, and is primarily dependent on variations in dissolved nitrate concentration, rather than particulate or dissolved organic matter or ammonium. There is also a direct relationship between the DIN:DIP ratio and nitrate concentration. When nitrate-N exceeds 100 g-at l–1, the DIN:DIP ratio is generally above the Redfield ratio (16:1), which implies phosphorus limitation of phytoplankton growth. Compared to nitrate, the among river variation in the DSi concentration is relatively small so that the DSi loading (mass/area/time) is largely controlled by runoff volume. The well-documented influence of human activities on dissolved inorganic nitrogen loading thus exceeds the influences arising from the great variability in soil types, climate and geography among these watersheds. The DSi:nitrate-N ratio is controlled primarily by nitrogen loading and is shown to be inversely correlated with an index of landscape development – the City Lights nighttime imagery. Increased nitrogen loading is thus driving the world's largest rivers towards a higher DIN:DIP ratio and a lower DSi:DIN ratio. About 7.3 and 21 % of the world's population lives in watersheds with a DSi:nitrate-N ratio near a 1:1 and 2:1 ratio, respectively. The empirical evidence is that this percentage will increase with further economic development. When the DSi:nitrate-N atomic ratio is near 1:1, aquatic food webs leading from diatoms (which require silicate) to fish may be compromised and the frequency or size of harmful or noxious algal blooms may increase. Used together, the DSi:nitrate-N ratio and nitrate-N concentration are useful and robust comparative indicators of eutrophication in large rivers. Finally, we estimate the riverine loading to the ocean for nitrate-N, TN, DIP, TP and DSi to be 16.2, 21, 2.6, 3.7 to 5.6, and 194 Tg yr–1, respectively.  相似文献   

5.
We investigated aquatic macrophytes, water quality, and phytoplankton biomass and species composition in three shallow lakes with different levels of vegetation cover and nutrient concentration in Kushiro Moor, during August 2000. Trapa japonica can live in a wide range of nutrient levels. This species forms an environment with a steeper extinction of light, higher concentrations of dissolved organic carbon (DOC), lower concentrations of dissolved oxygen (DO) near the bottom, and lower concentrations of nitrate+nitrite and soluble reactive phosphorus (SRP) than other vegetation types. The pH was much higher in a Polygonum amphibium community, and the DO near the bottom did not decrease compared to a T.japonica community in the summer. The relationship between chlorophyll a and the limiting nutrient (total phosphorus (TP) when total nitrogen (TN):TPis 10 and TN/10 when TN:TP is <10) significantly differed between lakes with and without submerged vegetation. The chlorophyll a concentrations at a given nutrient level were significantly lower in water with submerged macrophytes than in water without them. Correspondence analysis showed that the difference in phytoplankton community structure across sites was largely due to the presence or absence of submerged macrophytes, and the ordination of phytoplankton species in the lakes with submerged macrophytes is best explained by environmental gradients of TN, chlorophyll, pH and SRP.  相似文献   

6.
Annual nitrogen and phosphorus budgets for the whole North Sea taking into account the most recent data available were established. The area considered has a total surface of approximately 700,000km2 and corresponds to the definition by OSPARCOM (Oslo and Paris Commission) with the exclusion of the Skagerrak and Kattegat areas. Input and output fluxes were determined at the marine, atmospheric, sediment and continental boundaries, and riverine inputs based on river flows and nutrient concentrations at the river–estuary interface were corrected for possible estuarine retention. The results showed that the North Sea is an extremely complex system subjected to large inter-annual variability of marine water circulation and freshwater land run-off. Consequently, resulting total N (TN) and P (TP) fluxes are extremely variable from 1 year to another and this has an important influence on the budget of these elements. Total inputs to the North Sea are 8870±4860kTNyear–1 and 494±279kTPyear–1. Denitrification is responsible for the loss of 23±7% of the TN inputs while sediment burial is responsible for the retention of only of 2±2% of the TP input. For TN, due to the large variability on marine and estuarine fluxes, and to the uncertainty related to the denitrification rate, it was concluded that the North Sea could either be a source (1930kTNyear–1) or a sink (1700kTNyear–1) for the waters of the North Atlantic Ocean. For TP it was concluded that the North Sea is mostly a source (–4 to 52kTPyear–1) for the waters of the North Atlantic Ocean.  相似文献   

7.
Summary Nitrogen and phosphorus limitations to growth are common in many loblolly pine (Pinus taeda) stands. Interactions of these nutrients may complicate interpretation of foliar nutrient analysis for predicting response to forest fertilization. Proportions of foliar nutrient concentrations (and the changes in these proportions following fertilization) were examined in 36 semi-mature loblolly pine plantations in the southeastern United States. Mean proportions of nutrient concentrations (NPKCaMg) for non-fertilized stands were 1009.336.517.29.2. Potassium and phosphorus were higher. Nitrogen fertilization generally decreased the PN ratio and enhanced growth, indicating a nitrogen deficiency in most stands under study. Additions of nitrogen and phosphorus together yielded a significant increase in the PN ratio. Effects of fertilization effects on other nutrient concentration ratios were also examined.Paper No. 9401 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC 27695.  相似文献   

8.
Diatom assemblages were analysed in the surface sediments of 44 alkaline lakes in south-western Ontario, Canada, and combined with a pre-existing 58 south-eastern Ontario lake set: (1) to determine if shallow, polymictic Ontario lakes contain different diatom assemblages from deeper, dimictic lakes, and if so, which environmental variables most influence assemblages; (2) to improve the existing transfer functions; (3) to construct and compare transfer functions separately for dimictic, deep lakes and for polymictic, shallow lakes. Polymictic and dimictic lakes covered a similar nutrient range (spring total phosphorus (TP)=4–54 g/l, spring total nitrogen (TN)=200–927 g/l; n=101) and spring pH levels (7.6–9; n=101). However, polymictic lakes were shallower (median mean depth = 2.9 m vs. 7.3 m in dimictic lakes). Benthic diatoms (average 60% relative abundance) dominated the polymictic lakes, whereas planktonic diatoms (average 60%) dominated dimictic lakes. A Canonical Correspondence Analyses with forward selection (p < 0.05, 999 Monte Carlo permutations) identified TP, alkalinity, watershed to volume ratios and lake depth as the most important measured environmental variables influencing diatom distribution in both polymictic and dimictic lakes. Additionally, pH was identified as an important variable in polymictic lakes, whereas TN was also forward selected in the dimictic lakes. Adding more lakes to the original southern Ontario calibration set improved the TN transfer function (r2 jack=0.42, root mean squared error of prediction (RMSEP)jack=0.11 [log g TN/l]), although there was a high systematic error in the revised model (r2 residual = 0.48). However, the strongest TP model was derived from the polymictic lakes (r2 boot =0.44, RMSEPboot=0.20 [log g TP/l]), which was the smallest lake set (n=30) with the lowest number of diatom species. The stronger TP model from the polymictic lakes may be partly due to the relatively low macrophyte cover in our polymictic lakes, which may lead to stronger benthic–pelagic coupling than in lakes with large macrophyte populations. Additionally, our study suggests that the Chrysophyceae cyst:diatom frustule ratio may be useful for indicating trends in TP levels of 35 g/l in alkaline lakes that are dimictic, but is not necessarily indicative of trophic state changes in shallow, polymictic lakes. Our study demonstrates that it may be important to construct separate diatom-based nutrient transfer functions for polymictic and dimictic lakes.  相似文献   

9.
Models to predict lake annual mean total phosphorus   总被引:1,自引:0,他引:1  
A lake is a product of processes in its watershed, and these relationships should be empirically quantifiable. Yet few studies have made that attempt. This study quantifies and ranks variables of significance to predict annual mean values of total phosphorus (TP) in small glacial lakes. Several new empirical models based on water chemistry variables, on map parameters of the lake and its catchment, and combinations of such variables are presented. Each variable provides only a limited (statistical) explanation of the variation in annual mean values of TP among lakes. The models are markedly improved by accounting for the distribution of the characteristics (e.g., the mires) in the watershed. The most important map parameters were the proportion of the watershed lying close to the lake covered by rocks and open land (as determined with the drainage area zonation method), relief of the drainage area, lake area and mean depth. These empirical models can be used to predict annual mean TP but only for lakes of the same type. The model based on map parameters (r 2=0.56) appears stable. The effects of other factors/variables not accounted for in the model (like redox-induced internal loading and anthropogenic sources) on the variation in annual mean TP may then be estimated quantitatively by residual analysis. A new mixed model (which combines a dynamic mass-balance approach with empirical knowledge) was also developed. The basic objective was to put the empirical results into a dynamic framework, thereby increasing predictive accuracy. Sensitivity tests of the mixed model indicate that it works as intended. However, comparisons against independent data for annual mean TP show that the predictive power of the mixed model is low, likely because crucial model variables, like sedimentation rate, runoff rate, diffusion rate and precipitation factor, cannot be accurately predicted. These model variables vary among lakes, but this mixed model, like most dynamic models, assumed that they are constants.  相似文献   

10.
Kairesalo  Timo  Matilainen  Tuula 《Hydrobiologia》1994,275(1):285-292
Seasonal fluctuation of phosphorus in water, and total phosphorus and different inorganic P fractions (extracted by NH4Cl, NH4F, NaOH and H2SO4) and organic P fraction (residual P) in surface sediment, were measured in the littoral of oligotrophic Lake Pääjärvi (southern Finland). After the emergence of Equisetum fluviatile L. shoots in mid June, water exchange between the littoral and pelagial area diminished and phosphorus concentrations in water and in surface sediment increased in the inner and mid littoral zones. Phosphorus pool in flocculent, easily resuspensible sediment composed on average 62% of inorganic phosphorus and 38% of organic phosphorus. 63% of the inorganic phosphorus, on the average, was extracted from apatite-P fraction 29% from iron-P fraction 7% from aluminum-P fraction and less than 1% from loosely-bound P fraction. During the growing season, net accumulation of sediment and phosphorus was measured only in the inner littoral zone whereas the outer littoral zones acted rather as a source of phosphorus for the pelagic area. The results of this study indicated that nutrient dynamics in littoral environment was through changes in flow environment greatly governed by the macrophytes.  相似文献   

11.
Some considerations on the functioning of tropical riparian ecotones   总被引:2,自引:0,他引:2  
The fundamental function of a riparian wetland is the prevention against eutrophication and various types of pollution of a water body. This is done through the typical and dominant vegetation of the African tropical ecotone wetland, the papyrus which is very productive and has considerable adsorbing root surfaces as it spreads out over the water and at the river and lake edges. Because of the twelve-hour light day and high temperatures, the production is high. In this way, nutrients (nitrogen, phosphorus and others) are concentrated and accumulated in different parts of the plant from water flowing through the ecotone wetland. The amounts of, and the rate of flow of the material substances are regulated and the interface zone acts as a sink to most of those anthropogenic substances. It also functions as a refuge for waterfowl and other wildlife, and contributes to human food needs and well-being.  相似文献   

12.
The stable isotope ratios of nitrogen were measured in the mysid,Neomysis intermedia, together with various biogenic materials in a eutrophic lake, Lake Kasumigaura, in Japan throughout a year of 1984/85. The mysid, particulate organic matter (POM, mostly phytoplankton), and zooplankton showed a clear seasonal change in 15N with high values in spring and fall, but the surface bottom mud did not. A year to year variation as well as seasonal change in 15N was found in the mysid. The annual averages of 15N of each material collected in 1984/85 are as follows: surface bottom mud, 6.3 (range: 5.7–6.9); POM, 7.9 (5.8–11.8); large sized mysid, 11.6 (7.7–14.3); zooplankton, 12.5 (10.0–16.4); prawn, 13.2 (9.9–15.4); goby, 15.1 (13.8–16.7). The degree of15N enrichment by the mysid was determined as 3.2 by the laboratory rearing experiments. The apparent parallel relationship between the POM and the mysid in the temporal patterns of 15N with about 3 difference suggests the POM (mostly phytoplankton) as a possible food source ofN. intermedia in this lake through the year.  相似文献   

13.
Summary A comparison was made of several laboratory methods for estimating the yield of phosphorus in plants grown in greenhouse cultures on samples of 22 soils from different parts of the United States. The methods investigated and their rank in order of increasing precision of the estimates of the yield of phosphorus were as follows: extraction with lactic acid, calcium lactate buffer solution extraction with 2 per cent citric acid solution < extraction with 0.03N NH4F, 0.025N HCl solution < percentage phosphorus saturation (found as follows: 100 × labile phosphorus by isotopic dilution/ phosphorus adsorption capacity according to Langmuir adsorption equation) labile phosphorus by isotopic dilution phosphorus extracted by water.Journal Paper No. J-3747 of the Iowa Agricultural and Home Economics Experiment Station, Ames, Iowa. Project No. 1183. Contribution from the Department of Agronomy.  相似文献   

14.
Summary. Analysis of the mitochondrial transmembrane potential (m) with the help of the JC-1 fluorochrome (5,5,6,6-tetrachloro-1,1,3,3-tetraethylbenzimidazolcarbocyanine iodide) during mesophyll leaf senescence was performed in order to determine whether a reduction of m takes place during mesophyll senescence and whether plant mitochondria, like mammalian ones, might be involved in the induction of programmed cell death. Fluorescence analysis of mesophyll protoplasts of Pisum sativum in a confocal microscope, fluorescent spectra analysis and time dependence of fluorescence intensity of monomers and of J-aggregates revealed that JC-1 is incorporated and accumulated specifically in plant mitochondria. Analysis of m during mesophyll protoplast senescence revealed that two subpopulations of mitochondria which differ in m exist in all analyzed stages of leaf senescence. The first subpopulation contains mitochondria with red fluorescence of J-aggregates due to an unperturbed high m. The second subpopulation comprises mitochondria with green fluorescence of monomers due to a low m, proving total depolarization of mitochondrial membranes. Fluorescence analysis demonstrated that even in the latest analyzed stages of leaf senescence, mitochondria with a high m still exist. Fluorometric measurements revealed that the fluorescence intensity of J-aggregates decreases with the age of plants, which indicates that a reduction of m during the mesophyll senescence process takes place; however, it does not take place within the whole population of mitochondria of the same protoplast. The reason of this can be due to a dramatic reorganization of mitochondria in mesophyll cells and the appearance of large mitochondria with local heterogeneity of m in the oldest analyzed stages. All mitochondria in every stage of senescence maintained their membrane organization even when their size, distribution, and spatial organization in protoplasts changed dramatically. We stated that the reduction of m does not directly induce programmed cell death in mesophyll cells, as opposed to animal apoptosis.Correspondence and reprints: Department of Plant Anatomy and Cytology, Institute of Experimental Biology of Plants, Warsaw University, Miecznikowa 1, 02-096 Warszawa, Poland.  相似文献   

15.
Two potato (Solanum tuberosum L.) cultivars (Astrid and Bodenkraft) differing in their nitrogen acquisition from the soil (Hunnius, 1981) were used in nutrient solutions to study the effect of increasing concentrations of nitrate (0.05; 0.5; 5.0 mol m-3) particularly on root growth and morphology. In each variety increasing nitrogen concentrations stimulated shoot growth more than root growth. At all nitrate concentrations, the variety with higher nitrogen acquisition (Astrid) had a significantly larger root system. The larger root system of Astrid compared to Bodenkraft was particularly evident when surface area and total length of the roots, instead of root dry weight were used as parameters. The results stress the importance of root length and surface area for nitrogen acquisition from soils.  相似文献   

16.
K. Ritz  E. I. Newman 《Oecologia》1986,70(1):128-131
Summary It is known that nitrogen and phosphorus can be transferred from one living plant to another, but it is not known whether the amounts transferred are large enough to influence the growth of the species in the field. Two Lolium perenne plants were grown per pot of unfertilized soil. During 25 weeks one plant (the donor) in each pot was fed nutrients through leaves; donors in control pots received only water. The receiver plants which shared a pot with the nutrient-fed donors increased significantly, compared with the controls, in leaf number and concentration of phosphorus, though not in concentration of nitrogen, potassium, calcium or magnesium. The rate of phosphorus transfer agreed well with previous results using 32P. The results are compared with rates of phosphorus uptake in the field. It is concluded that nutrient transfer could have an influence on the balance between coexisting species in the field, but probably the influence will be small.  相似文献   

17.
Henry M. Page 《Oecologia》1995,104(2):181-188
To provide insight into the importance of the salt-marsh ecotone as a sink for inorganic nitrogen in perched groundwater, measurements were made of the natural abundance of 15N in dissolved NO3-N and NH4-N and in the salt-marsh halophyte, Salicornia virginica, along an environmental gradient from agricultural land into a salt-marsh. The increase in the natural abundance of 15N (expressed by convention as 15N) of NO3-N, accompanied by the decrease in NO3-N (and total dissolved inorganic N, DIN) concentration along the gradient, suggested that the salt-marsh ecotone is a site of transformation, most likely through denitrification, of inorganic nitrogen in groundwater. 15N enrichment in S. virginica (and the parasitic herb, Cuscuta salina), along the tidal marsh boundary, relative to high and middle marsh locations, indicated the retention of groundwater nitrogen as vegetative biomass. The correlation between 15N Salicornia and 15NNH4 suggested a preference for NH4-N over NO3-N during uptake by this plant. Groundwater inputs enhanced the standing crop, above-ground productivity, and nitrogen content of S. virginica but the ralative effects of pore water salinity and DIN concentration on these parameters were not determined. 15N enrichment of marsh plants by groundwater DIN inputs could prove useful in tracing the fate of these inputs in the marsh food web.  相似文献   

18.
Forests losing large quantities of nitrogen have elevated 15N:14N ratios   总被引:1,自引:0,他引:1  
Peter Högberg 《Oecologia》1990,84(2):229-231
Summary Urea (U) and ammonium nitrate (AN) had been applied to a Scots pine (Pinus sylvestris L.) forest in northern Sweden for 18 consecutive years at four doses resulting in total N applications ranging from 0 to 1980 kg ha–1. The 15N abundance ( 15N) of the grass Deschampsia flexuosa (L.) Trin. increased linearly (from –0.7 to 11.0) with application rate in the case of U. The response to AN was in the same direction but smaller. While others have shown that the initial response of nitrogen-limited systems to additions of N is a change of 15N abundance towards that of added N, this study shows that further and excessive additions leads to a retention of 15N. Monitoring 15N abundance over time in dose-response trials of this type thus opens new possibilities to estimate critical loads of N and the point of nitrogen saturation.  相似文献   

19.
Bimolecular oxygenation of tri-liganded R-state human hemoglobin (HbA) is described by bi-exponential kinetics with association rate constants k = 27.2 ± 1.3 (M·sec)-1 and k = 62.9 ± 1.6 (M·sec)-1. Both the observed processes have been assigned to the bimolecular oxygenation of - and -subunits of the native tetrameric protein by molecular oxygen. The quantum yields of photodissociation within the completely oxygenated R-state HbA are = 0.0120 ± 0.0017 and = 0.044 ± 0.005 for - and -subunits, respectively. The oxygenation reactions of isolated PCMB- and PCMB-hemoglobin chains are described by mono-exponential kinetics with the association rate constants k = 44 ± 2 (M·sec)-1 and k = 51 ± 1 (M·sec)-1, respectively. The quantum yields of photodissociation of isolated PCMB- and PCMB-chains (0.056 ± 0.006 and 0.065 ± 0.006, respectively) are greater than that observed for appropriate subunits within the R-state of oxygenated HbA.  相似文献   

20.
Gene sequences encoding gibberellin (GA) biosynthetic and catabolic enzymes were isolated from Himalaya barley. These genes account for most of the enzymes required for the core pathway of GA biosynthesis as well as for the first major catabolic enzyme. By means of DNA gel blot analysis, we mapped coding sequences to chromosome arms in barley and wheat using barley-wheat chromosome addition lines, nulli-tetrasomic substitution and ditelosomic lines of wheat. These same sequences were used to identify closely related sequences from rice, which were mapped in silico, thereby allowing their syntenic relationship with map locations in barley and wheat to be investigated. Determination of the chromosome arm locations for GA metabolic genes provides a framework for future studies investigating possible identity between GA metabolic genes and dwarfing genes in barley and wheat.Wolfgang Spielmeyer and Marc Ellis have contributed equally to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号