首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trichohyalin is a structural protein that is produced and retained in the cells of the inner root sheath and medulla of the hair follicle. The gene for sheep trichohyalin has been purified and the complete amino acid sequence of trichohyalin determined in an attempt to increase the understanding of the structure and function of this protein in the filamentous network of the hardened inner root sheath cells. Sheep trichohyalin has a molecular weight of 201,172 and is characterized by the presence of a high proportion of glutamate, arginine, glutamine, and leucine residues, together totaling more than 75% of the amino acids. Over 65% of trichohyalin consists of two sets of tandem peptide repeats which are based on two different consensus sequences. Trichohyalin is predicted to form an elongated alpha-helical rod structure but does not contain the sequences required for the formation of intermediate filaments. The amino terminus of trichohyalin contains two EF hand calcium-binding domains indicating that trichohyalin plays more than a structural role within the hair follicle. In situ hybridization studies have shown that trichohyalin is expressed in the epithelia of the tongue, hoof, and rumen as well as in the inner root sheath and medulla of the hair follicle.  相似文献   

2.
Trichohyalin is expressed in specialized epithelia that are unusually mechanically strong, such as the inner root sheath cells of the hair follicle. We have previously shown that trichohyalin is sequentially subjected to post-synthetic modifications by peptidylarginine deaminases, which convert many of its arginines to citrullines, and by transglutaminases, which introduce intra- and interprotein chain cross-links. Here we have characterized in detail the proteins to which it becomes cross-linked in vivo in the inner root sheath of the mouse hair follicle. We suggest that it has three principal roles. First, it serves as an interfilamentous matrix protein by becoming cross-linked both to itself and to the head and tail end domains of the inner root sheath keratin intermediate filament chains. A new antibody reveals that arginines of the tail domains of the keratins are modified to citrullines before cross-linking, which clarifies previous studies. Second, trichohyalin serves as a cross-bridging reinforcement protein of the cornified cell envelope of the inner root sheath cells by becoming cross-linked to several known or novel barrier proteins, including involucrin, small proline-rich proteins, repetin, and epiplakin. Third, it coordinates linkage between the keratin filaments and cell envelope to form a seamless continuum. Together, our new data document that trichohyalin is a multi-functional cross-bridging protein that functions in the inner root sheath and perhaps in other specialized epithelial tissues by conferring to and coordinating mechanical strength between their peripheral cell envelope barrier structures and their cytoplasmic keratin filament networks.  相似文献   

3.
Surfactant protein D (SP-D) is a carbohydrate-binding glycoprotein containing a collagen-like domain that is synthesized by alveolar type II epithelial cells. The complete primary structure of rat SP-D has been determined by sequencing of a cloned cDNA. The protein consists of three regions: an NH2-terminal segment of 25 amino acids, a collagen-like domain consisting of 59 Gly-X-Y repeats, and a COOH-terminal carbohydrate recognition domain of 153 amino acids. There are 6 cysteine residues present in rat SP-D: 2 in the NH2-terminal noncollagenous segment and 4 in the COOH-terminal carbohydrate-binding domain. The collagenous domain contains one possible N-glycosylation site. The protein is preceded by a cleaved, NH2-terminal signal peptide. SP-D shares considerable homology with the C-type mammalian lectins. Hybridization analysis demonstrates that rat SP-D is encoded by a 1.3-kilobase mRNA which is abundant in lung and highly enriched in alveolar type II cells. Extensive homology exists between rat SP-D and bovine conglutinin.  相似文献   

4.
Biased usage of synonymous codons has been elucidated under the perspective of cellular tRNA abundance for quite a long time now. Taking advantage of publicly available gene expression data for Saccharomyces cerevisiae, a systematic analysis of the codon and amino acid usages in two different coding regions corresponding to the regular (helix and strand) as well as the irregular (coil) protein secondary structures, have been performed. Our analyses suggest that apart from tRNA abundance, mRNA folding stability is another major evolutionary force in shaping the codon and amino acid usage differences between the highly and lowly expressed genes in S. cerevisiae genome and surprisingly it depends on the coding regions corresponding to the secondary structures of the encoded proteins. This is obviously a new paradigm in understanding the codon usage in S. cerevisiae. Differential amino acid usage between highly and lowly expressed genes in the regions coding for the irregular protein secondary structure in S. cerevisiae is expounded by the stability of the mRNA folded structure. Irrespective of the protein secondary structural type, the highly expressed genes always tend to encode cheaper amino acids in order to reduce the overall biosynthetic cost of production of the corresponding protein. This study supports the hypothesis that the tRNA abundance is a consequence of and not a reason for the biased usage of amino acid between highly and lowly expressed genes.  相似文献   

5.

Background  

Genome wide and cross species comparisons of amino acid repeats is an intriguing problem in biology mainly due to the highly polymorphic nature and diverse functions of amino acid repeats. Innate protein repeats constitute vital functional and structural regions in proteins. Repeats are of great consequence in evolution of proteins, as evident from analysis of repeats in different organisms. In the post genomic era, availability of protein sequences encoded in different genomes provides a unique opportunity to perform large scale comparative studies of amino acid repeats. ProtRepeatsDB is a relational database of perfect and mismatch repeats, access to which is designed as a resource and collection of tools for detection and cross species comparisons of different types of amino acid repeats.  相似文献   

6.
N Geisler  K Weber 《The EMBO journal》1982,1(12):1649-1656
The complete amino acid sequence of muscle desmin reported here is the first for an intermediate filament protein. Alignment with partial data available for vimentin, glial fibrillary acid protein, neurofilament 68 K, two wool alpha-keratins, and a recently described DNA clone covering 90% of an epidermal keratin shows that all seven proteins have extensive homologies and therefore form a complex multigene family, the intermediate filament proteins. The hard alpha-keratins of wool appear to be a special subset of epithelial keratins. The sequence information reveals, as the dominant structural principle, a rod-like middle domain arising from several alpha-helical segments able to form interchain coiled-coil elements. The proposed helices are separated by short spacers, which like the two terminal domains seem built from non-alpha-helical material. Attention is drawn to the sometimes very striking sequence homologies along the rod and the high sequence variability in the terminal domains. Finally, chemical cross-linking experiments performed on the isolated desmin rod show that intermediate filament structure seems not to be based on triple-stranded coiled-coils as currently thought, but rather reflects protofilament units built as a dimer of normal interchain double-stranded coiled-coils.  相似文献   

7.
Episialin is a mucin-type glycoprotein present at the luminal side of most glandular epithelial cells. We have isolated cDNA clones encoding episialin and determined the structure of the gene. The gene encodes a transmembrane protein which consists of, for the greater part, tandem repeats of 20 amino acids. The number of these repeats varies between 40 and 90 among different alleles. The repeats and most of the remainder of the protein are very rich in potential O-linked glycosylation sites. Two different splice variants were found. Interestingly, the proteins encoded by these two variants differ in their signal sequences and in the extreme amino-terminal parts of the mature proteins, suggesting alternative processing of these two species.  相似文献   

8.
We used PCR-based cDNA subtraction to screen for genes up-regulated during mouse hair morphogenesis. One gene selected was predominantly expressed at the tip of developing hair follicles and encoded a protein characterized by the presence of twelve tandem repeats of approximately 120 amino acids and a novel N-terminal domain containing an Arg-Gly-Asp cell-adhesive motif. Immunohistochemistry demonstrated that the protein encoded by this gene, named QBRICK, was localized at the basement membrane zone of embryonic epidermis and hair follicles, in which it was more enriched at the tip rather than the stalk region. Cell adhesion assays showed that QBRICK was active in mediating cell-substratum adhesion through integrins containing alphav or alpha8 chain, but not integrin alpha5beta1. Immunohistochemistry showed that QBRICK colocalized with alphav-containing integrins in the interfollicular region, but with the alpha8-containing integrin at the tip region of developing hair follicles. These results, together, indicate that QBRICK is an adhesive ligand of basement membrane distinctively recognized by cells in the embryonic skin and hair follicles through different types of integrins directed to the Arg-Gly-Asp motif.  相似文献   

9.
10.
We report the cloning and characterization of a murine epidermal differentiation gene, repetin (Rptn), exhibiting striking similarity to the genes of the intermediate filament-associated proteins profilaggrin and trichohyalin. The repetin gene consists of three exons and two introns. The first exon is short and untranslated. The deduced amino acid sequence distributed between exons II and III contains 1130 amino acids with a calculated molecular mass of 130 kDa and pIof 7.7. The amino terminus exhibits significant homology to the S100 proteins containing two calcium-binding motifs of the EF-hand type. The remainder coding sequence contains a central segment consisting of 49 tandem repeats of a 12-amino-acid sequence rich in glutamines. By fluorescencein situhybridization the repetin gene was localized to chromosome band 3 F1-2. Expression of repetin mRNA is detectable in the stratified internal epithelia of forestomach and tongue and to a lesser degree in normal skin epidermis, where it is restricted to the differentiated suprabasal cell layers. Based on its chromosomal localization, its genomic organization, and its stage-specific expression during late epidermal differentiation, as well as on the structural features of the encoded protein, we conclude that the repetin gene represents a novel member of the “fused gene” subgroup of the S100 gene family encoding multifunctional epidermal matrix proteins.  相似文献   

11.
The primary structure of NG2, a novel membrane-spanning proteoglycan   总被引:15,自引:2,他引:13       下载免费PDF全文
The complete primary structure of the core protein of rat NG2, a large, chondroitin sulfate proteoglycan expressed on O2A progenitor cells, has been determined from cDNA clones. These cDNAs hybridize to an mRNA species of 8.9 kbp from rat neural cell lines. The total contiguous cDNA spans 8,071 nucleotides and contains an open reading frame for 2,325 amino acids. The predicted protein is an integral membrane protein with a large extracellular domain (2,224 amino acids), a single transmembrane domain (25 amino acids), and a short cytoplasmic tail (76 amino acids). Based on the deduced amino acid sequence and immunochemical analysis of proteolytic fragments of NG2, the extracellular region can be divided into three domains: an amino terminal cysteine-containing domain which is stabilized by intrachain disulfide bonds, a serine-glycine-containing domain to which chondroitin sulfate chains are attached, and another cysteine-containing domain. Four internal repeats, each consisting of 200 amino acids, are found in the extracellular domain of NG2. These repeats contain a short sequence that resembles the putative Ca(++)-binding region of the cadherins. The sequence of NG2 does not show significant homology with any other known proteins, suggesting that NG2 is a novel species of integral membrane proteoglycan.  相似文献   

12.
The nuclear lamina is the karyoskeletal structure, intimately associated with the nuclear envelope, that is widespread among the diverse types of eukaryotic cells. A family of proteins, termed lamins, has been shown to be a prominent component of this lamina, and various members of this family are differentially expressed in different cell types. In mammals, three major lamins (A, B, C) have been identified, and in all cells so far examined lamin B is constitutively expressed while lamins A and C are not, suggesting that lamin B is sufficient to form a functional lamina. Because of this key importance of lamin B, cDNA clones encoding mammalian lamin B were isolated by screening murine cDNA libraries, representing F9 teratocarcinoma cells and fetal liver, with the corresponding cDNA probe of lamin LI of Xenopus laevis. The nucleotide sequence of the murine lamin B mRNA (approximately 2.9 kb) was determined. The deduced amino acid sequence of the encoded polypeptide (587 amino acids; mol. wt. 66760) is highly homologous to X. laevis lamin LI (72.9% identical residues) but displays lower similarity to A-type lamins (53.8% identical amino acid residues with human lamin A). Lamin B also conforms to the general molecular organization principle of the members of the intermediate filament (IF) protein family, i.e., an extended alpha-helical rod domain that is interrupted by two non alpha-helical linkers and flanked by non-alpha-helical head (amino-terminal) and tail (carboxy-terminal) domains. The tail domain, which does not reveal a hydrophobic region of considerable length, contains a typical karyophilic signal sequence and an uninterrupted stretch of eight negatively charged amino acids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The hair follicle consists of several distinctive epidermal cell layers. The hair root, which undergoes keratinization, is surrounded by two sheaths: the inner root sheath (IRS) and the outer root sheath (ORS). The ORS is continuous with the basal layer of the epidermis. Its cells do not keratinize in situ, unlike IRS. We have previously demonstrated that keratinization of the ORS was prevented by contact with the IRS in hair follicle mid-segments (i.e. fragments dissected from skin at the level above the hair bulb and below the opening of the sebaceous gland duct) cultured on agarose layer. The purpose of this study was to determine whether the same applies to the hair bulb. After isolation, intact bulbs or hair bulb-derived cells were incubated in suspension in a low or high calcium medium. The level of mRNA for differentiation markers: involucrin, filaggrin, keratinocyte differentiation associated protein and trichohyalin, was studied by RealTime PCR. We observed increased Ca(2+) upregulated expression of involucrin, filaggrin, trichohyalin and Kdap in cultures of bulb-derived cells, but in hair bulbs downregulation of involucrin and trichohyalin was observed. We concluded that the inner root sheath exerts an inhibitory effect on the expression of involucrin and trichohyalin already in the hair bulbs. The observation that downregulation of involucrin expression under Ca(2+) influence occurs both in hair bulb and midsegments could simplify future experiments, since their separation does not seem to be necessary.  相似文献   

14.
This report describes the primary structure and functional characteristics of human ATA1, a subtype of the amino acid transport system A. The human ATA1 cDNA was isolated from a placental cDNA library. The cDNA codes for a protein of 487 amino acids with 11 putative transmembrane domains. The transporter mRNA ( approximately 9.0 kb) is expressed most prominently in the placenta and heart, but detectable level of expression is evident in other tissues including the brain. When expressed heterologously in mammalian cells, the cloned transporter mediates Na(+)-coupled transport of the system A-specific model substrate alpha-(methylamino)isobutyric acid. The transport process is saturable with a Michaelis-Menten constant of 0. 89 +/- 0.12 mM. The Na(+):amino acid stoichiometry is 1:1 as deduced from the Na(+)-activation kinetics. The transporter is specific for small short-chain neutral amino acids. The gene for the transporter is located on human chromosome 12.  相似文献   

15.
Single amino acid repeats are found in different kinds of proteins. Some of these repeats are pathogenic. It is striking that some amino acids are able to form such repeats, but other amino acids are not. We suggest an explanation for this fact based on the different tendency of each amino acid to form aggregates. Aggregation may be due to the formation of incipient lamellar crystals as they have been described in poly-alpha-amino acids and in most synthetic polymers.  相似文献   

16.
We have isolated cDNA clones encoding a 383-amino acid isoform of the human microtubule-associated protein tau. It differs from previously determined tau sequences by the presence of an additional repeat of 31 amino acids, giving four, rather than three, tandem repeats in its carboxy-terminal half. The extra repeat is encoded by a separate exon. Probes derived from cDNA clones encoding the three (type I) and four repeat (type II) tau protein isoforms detected mRNAs for both forms in all adult human brain areas examined. However, in foetal brain only type I mRNA was found. Type I and type II mRNAs were present in pyramidal cells in cerebral cortex. In the hippocampal formation, type I mRNA was found in pyramidal and granule cells; type II mRNA was detected in most, though not all, pyramidal cells but not in granule cells. These observations indicate that tau protein mRNAs are expressed in a stage- and cell-specific manner. Tau protein is found in the protease-resistant core of the paired helical filament, the major constituent of the neurofibrillary tangle in Alzheimer's disease. Taken in conjunction with previous findings, the present results indicate that both the three and four repeat-containing tau protein isoforms are present in the core of the paired helical filament.  相似文献   

17.
M Frasch 《The EMBO journal》1991,10(5):1225-1236
Using monoclonal antibodies I have identified a nuclear protein of Drosophila, BJ1 (Mr approximately 68 kd), and isolated its gene. Biochemical analysis demonstrates that the BJ1 protein is associated with nucleosomes and is released from chromatin by agents which intercalate into DNA, as previously shown for the high mobility group proteins (HMGs). On polytene chromosomes the protein is localized in all bands, with no preference for particular loci. Both the BJ1 protein and in particular the BJ1 mRNA are strongly expressed maternally. In early embryos all nuclei contain equal amounts of BJ1. During neuroblast formation, BJ1 mRNA becomes restricted to cells of the central nervous system, and higher protein levels are found in the nuclei of this tissue. In late embryonic stages, the mRNA almost completely disappears, but significant amounts of BJ1 protein persist until morphogenesis. The BJ1 gene encodes a 547 amino acid polypeptide featuring two different types of internal repeats. The sequence from amino acids 46 to 417 containing seven repeats of the first type has been highly conserved in evolution. 45% of the amino acids in this region are conserved in seven similar tandem repeats of the human gene Regulator of Chromatin Condensation, RCC1. The phenotype of a cell line carrying a mutation of RCC1 suggested a main function for this gene in cell cycle control. A yeast gene, SRM1/PRP20, also contains these repeats and shows 30% amino acid identity to BJ1 in this region. Mutations in this gene perturb mRNA metabolism, disrupt nuclear structure and alter the signal transduction pathway for the mating pheromone. Complementation experiments argue for a common function of these genes in the different species. I propose that their gene products bind to the chromatin to establish or maintain a proper higher order structure as a prerequisite for a regulated gene expression. Disruption of this structure could cause both mis-expression and default repression of genes, which might explain the pleiotropic phenotypes of the mutants.  相似文献   

18.
We have isolated a cDNA clone from a bovine bladder urothelium library which encodes the smallest intermediate filament (IF) protein known, i.e. the simple epithelial cytokeratin (equivalent to human cytokeratin 19) previously thought to have mol. wt 40,000. This clone was then used to isolate the corresponding gene from which we have determined the complete nucleotide sequence and deduced the amino acid sequence of the encoded protein. This cytokeratin of 399 amino acids (mol. wt 43,893) is identified as a typical acidic (type I) cytokeratin but differs from all other IF proteins in that it does not show the carboxyterminal, non-alpha-helical tail domain. Instead it contains a 13 amino acids extension of the alpha-helical rod. The gene encoding cytokeratin 19 is also exceptional. It contains only five introns which occur in positions corresponding to intron positions in other IF protein genes. However, an intron which in all other IF proteins demarcates the region corresponding to the transition from the alpha-helical rod into the non-alpha-helical tail is missing in the cytokeratin 19 gene. Using in vitro reconstitution of purified cytokeratin 19 we show that it reacts like other type I cytokeratins in that it does not form, in the absence of a type II cytokeratin partner, typical IF. Instead it forms 40-90 nm rods of 10-11 nm diameter which appear to represent lateral associations of a number of cytokeratin molecules. Our results demonstrate that the non-alpha-helical tail domain is not an indispensable feature of IF proteins. The gene structure of this protein provides a remarkable case of a correlation of a change in protein conformation with an exon boundary.  相似文献   

19.
20.
System T is a Na+-independent transport system that selectively transports aromatic amino acids. Here, we determined the structure of the human T-type amino-acid transporter-1 (TAT1) cDNA and gene (SLC16A10). The human TAT1 cDNA encoded a 515-amino-acid protein with 12 putative membrane-spanning domains. Human SLC16A10 was localized on human chromosome 6, mapped to 6q21-q22. SLC16A10 contains six exons spanning 136 kb. In contrast to rat TAT1, which is mainly present in the intestine, human TAT1 was strongly expressed in human kidney as well as in human intestine. Expression of human TAT1 in Xenopus laevis oocytes demonstrated the Na+-independent transport of tryptophan, tyrosine, phenylalanine, and L-dopa, indicating that human TAT1 is a transporter subserving system T. Because human TAT1 is proposed to be crucial to the efficient absorption of aromatic amino acids from intestine and kidney, its defect could be involved in the disruption of aromatic amino-acid transport, such as in blue diaper syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号