首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analysis of haplotypes is an important tool in population genetics, familial heredity and gene mapping. Determination of haplotypes of multiple single nucleotide polymorphisms (SNPs) or other simple mutations is time consuming and expensive when analyzing large populations, and often requires the help of computational and statistical procedures. Based on double PCR amplification of specific alleles, described previously, we have developed a simple, rapid and low-cost method for direct haplotyping of multiple SNPs and simple mutations found within relatively short specific regions or genes (micro-haplotypes). Using this method, it is possible to directly determine the physical linkage of multiple heterozygous alleles, by conducting a series of double allele-specific PCR amplification sets with simple analysis by gel electrophoresis. Application of the method requires prior information as to the sequence of the segment to be haplotyped, including the polymorphic sites. We applied the method to haplotyping of nine sites in the chicken HSP108 gene. One of the haplotypes in the population apparently arose by recombination between two existing haplotypes, and we were able to locate the point of recombination within a segment of 19 bp. We anticipate rapidly growing needs for SNP haplotyping in human (medical and pharmacogenetics), animal and plant genetics; in this context, the multiple double PCR amplifications of specific alleles (MD-PASA) method offers a useful haplotyping tool.  相似文献   

2.
In spite of the many advances in haplotyping methods, it is still very difficult to characterize rare haplotypes in tissues and different environmental samples or to accurately assess the haplotype diversity in large mixtures. This would require a haplotyping method capable of analyzing the phase of single molecules with an unprecedented throughput. Here we describe such a haplotyping method capable of analyzing in parallel hundreds of thousands single molecules in one experiment. In this method, multiple PCR reactions amplify different polymorphic regions of a single DNA molecule on a magnetic bead compartmentalized in an emulsion drop. The allelic states of the amplified polymorphisms are identified with fluorescently labeled probes that are then decoded from images taken of the arrayed beads by a microscope. This method can evaluate the phase of up to 3 polymorphisms separated by up to 5 kilobases in hundreds of thousands single molecules. We tested the sensitivity of the method by measuring the number of mutant haplotypes synthesized by four different commercially available enzymes: Phusion, Platinum Taq, Titanium Taq, and Phire. The digital nature of the method makes it highly sensitive to detecting haplotype ratios of less than 1:10,000. We also accurately quantified chimera formation during the exponential phase of PCR by different DNA polymerases.  相似文献   

3.
4.
A single nucleotide polymorphism (SNP) may have an impact on phenotype, but it may also be influenced by multiple SNPs within a gene; hence, the haplotype or phase of multiple SNPs needs to be known. Various methods for haplotyping SNPs have been proposed, but a simple and cost-effective method is currently unavailable. Here we describe a haplotyping approach using two simple techniques: polymerase chain reaction–single-strand conformational polymorphism (PCR–SSCP) and haplotype-specific PCR. In this approach, individual regions of a gene are analyzed by PCR–SSCP to identify variation that defines sub-haplotypes, and then extended haplotypes are assembled from the sub-haplotypes either directly or with the additional use of haplotype-specific PCR amplification. We demonstrate the utility of this approach by haplotyping ovine FABP4 across two variable regions that contain seven SNPs and one indel. The simplicity of this approach makes it suitable for large-scale studies and/or diagnostic screening.  相似文献   

5.
Assigning Linkage Haplotypes from Parent and Progeny Genotypes   总被引:2,自引:1,他引:1       下载免费PDF全文
A. Nejati-Javaremi  C. Smith 《Genetics》1996,142(4):1363-1367
Given the genotypes of parents and progeny, their haplotypes over several or many linked loci can be easily assigned by listing the allele type at each locus along the haplotype known to be from each parent. Only a small number (5-10) of progeny per family is usually needed to assign the parental and progeny haplotypes. Any gaps left in the haplotypes may be filled in from the assigned haplotypes of relatives. The process is facilitated by having multiple alleles at the loci and by using more linked loci in the haplotype and with more progeny from the mating. Crossover haplotypes in the progeny can be identified by their being unique or uncommon, and the crossover point can often be detected if the locus linkage map order is known. The haplotyping method applies to outbreeding populations in plants, animals and man, as well as to traditional experimental crosses of inbred lines. The method also applies to half-sib families, whether the genotypes of the mates are known or unknown. The haplotyping procedure is already used in linkage analysis but does not seem to have been published. It should be useful in teaching and in genetic applications of haplotypes.  相似文献   

6.
Many methods exist for genotyping—revealing which alleles an individual carries at different genetic loci. A harder problem is haplotyping—determining which alleles lie on each of the two homologous chromosomes in a diploid individual. Conventional approaches to haplotyping require the use of several generations to reconstruct haplotypes within a pedigree, or use statistical methods to estimate the prevalence of different haplotypes in a population. Several molecular haplotyping methods have been proposed, but have been limited to small numbers of loci, usually over short distances. Here we demonstrate a method which allows rapid molecular haplotyping of many loci over long distances. The method requires no more genotypings than pedigree methods, but requires no family material. It relies on a procedure to identify and genotype single DNA molecules, and reconstruction of long haplotypes by a ‘tiling’ approach. We demonstrate this by resolving haplotypes in two regions of the human genome, harbouring 20 and 105 single-nucleotide polymorphisms, respectively. The method can be extended to reconstruct haplotypes of arbitrary complexity and length, and can make use of a variety of genotyping platforms. We also argue that this method is applicable in situations which are intractable to conventional approaches.  相似文献   

7.
Haplotype analysis has become increasingly important for the study of human disease as well as for reconstruction of human population histories. Computer programs have been developed to estimate haplotype frequencies statistically from marker phenotypes in unrelated individuals. However, there currently are few empirical reports on the accuracy of statistical estimates that must infer linkage phase. We have analyzed haplotypes at the CD4 locus on chromosome 12 that consist of a short tandem-repeat polymorphism and an Alu insertion/deletion polymorphism located 9.8 kb apart, in 398 individuals from 10 geographically diverse sub-Saharan African populations. Haplotype frequency estimates obtained using gene counting based on molecularly haplotyped (phase-known) data were compared with haplotype frequency estimates obtained using the expectation-maximization algorithm. We show that the estimated frequencies of common haplotypes do not differ significantly with the use of phase-known versus phase-unknown data. However, rare haplotypes are occasionally miscalled when their presence/absence must be inferred. Thus, for those research questions for which the common haplotypes are most important, frequency estimates based on the phase-unknown marker-typing results from unrelated individuals will be sufficient. However, in cases where knowledge of rare haplotypes is critical, molecular haplotyping will be necessary to determine linkage phase unambiguously.  相似文献   

8.
OBJECTIVE: Cohort and case-control genetic association studies offer the greatest power to detect small genotypic influences on disease phenotypes, relative to family-based designs. However, genetic subdivisions could confound studies involving unrelated individuals, but the topic has been little investigated. We examined geographical and interallelic association of SNP and microsatellite haplotypes of the Y chromosome, of regions of chromosome 11, and of autosomal SNP genotypes relevant to cardiovascular risk traits in a UK-wide epidemiological survey. RESULTS: We show evidence (p = 0.00001) of the Danelaw history of the UK, marked by a two-fold excess of a Viking Y haplotype in central England. We also found evidence for a (different) single-centre geographical over-representation of one haplotype, both for APOC3-A4-A5 and for IGF2. The basis of this remains obscure but neither reflect genotyping error nor correlate with the phenotypic associations by centre of these markers. A panel of SNPs relevant to cardiovascular risks traits showed neither association with geographical location nor with Y haplotypes. CONCLUSION: Combinations of Y haplotyping, autosomal haplotyping, and genome-wide SNP typing, taken together with phenotypic2 associations, should improve epidemiological recognition and interpretation of possible confounding by genetic subdivision.  相似文献   

9.
Molecular haplotyping at high throughput   总被引:4,自引:2,他引:2       下载免费PDF全文
Reconstruction of haplotypes, or the allelic phase, of single nucleotide polymorphisms (SNPs) is a key component of studies aimed at the identification and dissection of genetic factors involved in complex genetic traits. In humans, this often involves investigation of SNPs in case/control or other cohorts in which the haplotypes can only be partially inferred from genotypes by statistical approaches with resulting loss of power. Moreover, alternative statistical methodologies can lead to different evaluations of the most probable haplotypes present, and different haplotype frequency estimates when data are ambiguous. Given the cost and complexity of SNP studies, a robust and easy-to-use molecular technique that allows haplotypes to be determined directly from individual DNA samples would have wide applicability. Here, we present a reliable, automated and high-throughput method for molecular haplotyping in 2 kb, and potentially longer, sequence segments that is based on the physical determination of the phase of SNP alleles on either of the individual paternal haploids. We demonstrate that molecular haplotyping with this technique is not more complicated than SNP genotyping when implemented by matrix-assisted laser desorption/ionisation mass spectrometry, and we also show that the method can be applied using other DNA variation detection platforms. Molecular haplotyping is illustrated on the well-described β2-adrenergic receptor gene.  相似文献   

10.
11.
Direct determination of the association of multiple genetic polymorphisms, or haplotyping, in individual samples is challenging because of chromosome diploidy. Here, we describe the ability of hybridization probes, commonly used as genotyping tools, to establish single nucleotide polymorphism (SNP) haplotypes in a single step. Three haplotypes found in the beta 2-adrenergic receptor (β2AR) gene and characterized by three different SNPs combinations are presented as examples. Each combination of SNPs has a unique stability, recorded by its melting temperature, even when intervening sequences from the template must loop out during probe hybridization. In the course of this study, two haplotypes in β2AR not described previously were discovered. This approach provides a tool for molecular haplotyping that should prove useful in clinical molecular genetics diagnostics and pharmacogenetic research where methods for direct haplotyping are needed.  相似文献   

12.
Single-cell whole-genome haplotyping allows simultaneous detection of haplotypes associated with monogenic diseases, chromosome copy-numbering and subsequently, has revealed mosaicism in embryos and embryonic stem cells. Methods, such as karyomapping and haplarithmisis, were deployed as a generic and genome-wide approach for preimplantation genetic testing (PGT) and are replacing traditional PGT methods. While current methods primarily rely on single-nucleotide polymorphism (SNP) array, we envision sequencing-based methods to become more accessible and cost-efficient. Here, we developed a novel sequencing-based methodology to haplotype and copy-number profile single cells. Following DNA amplification, genomic size and complexity is reduced through restriction enzyme digestion and DNA is genotyped through sequencing. This single-cell genotyping-by-sequencing (scGBS) is the input for haplarithmisis, an algorithm we previously developed for SNP array-based single-cell haplotyping. We established technical parameters and developed an analysis pipeline enabling accurate concurrent haplotyping and copy-number profiling of single cells. We demonstrate its value in human blastomere and trophectoderm samples as application for PGT for monogenic disorders. Furthermore, we demonstrate the method to work in other species through analyzing blastomeres of bovine embryos. Our scGBS method opens up the path for single-cell haplotyping of any species with diploid genomes and could make its way into the clinic as a PGT application.  相似文献   

13.
The problem of determining haplotypes from genotypes has gained considerable prominence in the research community. Here the focus is on determining sets of SNP values on individual chromosomes since such information captures the genetic causes of diseases. The most efficient algorithmic tool for haplotyping is based on perfect phylogenetic trees. A drawback of this method is that it cannot be applied in situations when the data contains homoplasies (multiple mutations of the same character) or recombinations. Recently, Song et al. ( 2005 ) studied the two cases: haplotyping via imperfect phylogenies with a single homoplasy and via galled-tree networks with one gall. In Gupta et al. ( 2010 ), we have shown that the haplotyping via galled-tree networks is NP-hard, even if we restrict to the case when every gall contains at most 3 mutations. We present a polynomial algorithm for haplotyping via galled-tree networks with simple galls (each having two mutations) for genotype matrices which satisfy a natural condition which is implied by presence of at least one 1 in each column that contains a 2. In the end, we give the experimental results comparing our algorithm with PHASE on simulated data.  相似文献   

14.
Methods for haplotyping and DNA copy-number typing of single cells are paramount for studying genomic heterogeneity and enabling genetic diagnosis. Before analyzing the DNA of a single cell by microarray or next-generation sequencing, a whole-genome amplification (WGA) process is required, but it substantially distorts the frequency and composition of the cell’s alleles. As a consequence, haplotyping methods suffer from error-prone discrete SNP genotypes (AA, AB, BB) and DNA copy-number profiling remains difficult because true DNA copy-number aberrations have to be discriminated from WGA artifacts. Here, we developed a single-cell genome analysis method that reconstructs genome-wide haplotype architectures as well as the copy-number and segregational origin of those haplotypes by employing phased parental genotypes and deciphering WGA-distorted SNP B-allele fractions via a process we coin haplarithmisis. We demonstrate that the method can be applied as a generic method for preimplantation genetic diagnosis on single cells biopsied from human embryos, enabling diagnosis of disease alleles genome wide as well as numerical and structural chromosomal anomalies. Moreover, meiotic segregation errors can be distinguished from mitotic ones.  相似文献   

15.
It is well established that host genetics, especially major histocompatibility complex (MHC) genes, are important determinants of human immunodeficiency virus disease progression. Studies with simian immunodeficiency virus (SIV)-infected Indian rhesus macaques have associated Mamu-B*17 with control of virus replication. Using microsatellite haplotyping of the 5-Mb MHC region, we compared disease progression among SIVmac239-infected Indian rhesus macaques that possess Mamu-B*17-containing MHC haplotypes that are identical by descent. We discovered that SIV-infected animals possessing identical Mamu-B*17-containing haplotypes had widely divergent disease courses. Our results demonstrate that the inheritance of a particular Mamu-B*17-containing haplotype is not sufficient to predict SIV disease outcome.  相似文献   

16.
We consider a combinatorial problem derived from haplotyping a population with respect to a genetic disease, either recessive or dominant. Given a set of individuals, partitioned into healthy and diseased, and the corresponding sets of genotypes, we want to infer "bad' and "good' haplotypes to account for these genotypes and for the disease. Assume e.g. the disease is recessive. Then, the resolving haplotypes must consist of bad and good haplotypes, so that (i) each genotype belonging to a diseased individual is explained by a pair of bad haplotypes and (ii) each genotype belonging to a healthy individual is explained by a pair of haplotypes of which at least one is good. We prove that the associated decision problem is NP-complete. However, we also prove that there is a simple solution, provided the data satisfy a very weak requirement.  相似文献   

17.
Novel methods that could improve the power of conventional methods of gene discovery for complex diseases should be investigated. In a simulation study, we aimed to investigate the value of molecular haplotypes in the context of a family-based linkage study. The term "haplotype" (or "haploid genotype") refers to syntenic alleles inherited on a single chromosome, and we use the term "molecular haplotype" to refer to haplotypes that have been determined directly by use of a molecular technique such as long-range allele-specific polymerase chain reaction. In our study, we simulated genotype and phenotype data and then compared the powers of analyzing these data under the assumptions that various levels of information from molecular haplotypes were available. (This information was available because of the simulation procedure.) Several conclusions can be drawn. First, as expected, when genetic homogeneity is expected or when marker data are complete, it is not efficient to generate molecular haplotyping information. However, with levels of heterogeneity and missing data patterns typical of complex diseases, we observed a 23%-77% relative increase in the power to detect linkage in the presence of heterogeneity with heterogeneity LOD scores >3.0 when all individuals are molecularly haplotyped (compared with the power when only standard genotypes are used). Furthermore, our simulations indicate that most of the increase in power can be achieved by molecularly haplotyping a single individual in each family, thereby making molecular haplotyping a valuable strategy for increasing the power of gene mapping studies of complex diseases. Maximization of power, given an existing family set, can be particularly important for late-onset, often-fatal diseases such as cancer, for which informative families are difficult to collect.  相似文献   

18.
Variegate porphyria (VP; OMIM 176200) is characterized by a partial defect in the activity of protoporphyrinogen oxidase (PPO), the seventh enzyme of the porphyrin-heme biosynthetic pathway. The disease is usually inherited as an autosomal dominant trait displaying incomplete penetrance. In an effort to characterize the spectrum of molecular defects in VP, we identified 3 distinct mutations in 6 VP families from Chile by PCR, heteroduplex analysis, automated sequencing, restriction enzyme digestion and haplotyping analysis. The mutations consisted of 2 deletions and 1 missense mutation, designated 1239delTACAC, 1330delT and R168H. The occurrence of the missense mutation R168H had been reported previously in American, German and Dutch VP families, suggesting that this may represent a frequent recurrent mutation. Interestingly, the mutation 1239delTACAC was found in patients from 4 unrelated families living in different parts of Chile, suggesting that it might represent a common mutation in Chile. Haplotype analysis using 15 microsatellite markers which closely flank the PPO gene on chromosome 1q22, spanning approximately 21 cM, revealed the presence of R168H on different haplotypes in 6 VP patients from 3 unrelated families. In contrast, we found the occurrence of 1239delTACAC on the same chromosome 1 haplotype in 11 mutation carriers from 4 unrelated families with VP. These findings are consistent with R168H representing a hotspot mutation and 1239delTACAC existing as a founder mutation in the PPO gene. Our data comprise the first genetic studies of the porphyrias in South America and will streamline the elucidation of the genetic defects in VP patients from Chile by allowing an initial screening for the founder mutation 1239delTACAC.  相似文献   

19.
BARD1 Val507Met (1592A>G) is an interesting marker for association studies on cancer risk. However, studies are scarce in the literature, probably reflecting the methodological problem imposed by the fact that next to the 1592A>G stands the 1591C>T single nucleotide polymorphism (SNP). We have designed an allele-specific PCR method capable of molecular haplotyping tandem SNPs. In the tandem SNPs haplotyping assay (tSNPh), four reverse primers are designed to be perfect matches of each potential haplotype. The forward primer is labeled with a fluorochrome. PCR products are analyzed by capillary electrophoresis. Haplotyping is performed by size calling. To ascertain the accuracy and reproducibility of the assay, we measured the level of concordance with sequencing data in 124 samples. In vitro-generated templates have been used for further testing. We developed a novel and reliable assay that permits typing two SNPs directly adjacent to each other, avoiding mutual interferences. The method is amenable to automation and high throughput. We expect that this assay will contribute to clarifying the role of BARD1 in cancer susceptibility. In addition, we suggest that tandem SNPs are potentially interesting polymorphic markers in which molecular haplotyping can be performed easily.  相似文献   

20.
Ligation Haplotyping is a robust, novel method for experimental determination of haplotypes over long distances, which can be applied to assaying both sequence and structural variation. The simplicity and efficacy of the method for genotyping large chromosomal rearrangements and haplotyping SNPs over long distances make it a valuable and powerful addition to the methodological repertoire, which will be beneficial to studies of population genetics and evolution, disease association and inheritance, and genomic variation. We illustrate the versatility of the method both by genotyping a Yp paracentric inversion, found in approximately 60% of Northwest European males, that strongly influences the germline rate of infertility-causing XY translocations and by haplotyping two autosomal SNPs that lie 16.4 kb apart on chromosome 7, and which influence an individual's susceptibility to systemic lupus erythematosus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号