首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
O-Acetylserine sulfhydrylase is a pyridoxal 5'-phosphate-dependent enzyme that catalyzes the final step in the cysteine biosynthetic pathway in enteric bacteria and plants, the replacement of the beta-acetoxy group of O-acetyl-l-serine by a thiol to give l-cysteine. Two isozymes are found in Salmonella typhimurium, with the A-isozyme expressed under aerobic and the B-isozyme expressed under anaerobic conditions. The structure of O-acetylserine sulfhydrylase B has been solved to 2.3 A and exhibits overall a fold very similar to that of the A-isozyme. The main difference between the two isozymes is the more hydrophilic active site of the B-isozyme with two ionizable residues, C280 and D281, replacing the neutral residues S300 and P299, respectively, in the A-isozyme. D281 is above the re face of the cofactor and is within hydrogen-bonding distance to Y286, while C280 is located about 3.4 A from the pyridine nitrogen (N1) of the internal Schiff base. The B-isozyme has a turnover number (V/Et) 12.5-fold higher than the A-isozyme and an approximately 10-fold lower Km for O-acetyl-l-serine. Studies of the first half-reaction by rapid-scanning stopped-flow indicate a first-order conversion of the internal Schiff base to the alpha-aminoacrylate intermediate at any concentration of O-acetyl-l-serine. The Kd values for formation of the external Schiff base with cysteine and serine, obtained by spectral titration, are pH dependent and exhibit a pKa of 7.0-7.5 (for a group that must be unprotonated for optimum binding) with values, above pH 8.0, of about 3.0 and 30.0 mM, respectively. In both cases the neutral enolimine is favored at high pH. Failure to observe the pKa for the alpha-amines of cysteine and serine in the pKESB vs pH profile suggests a compensatory effect resulting from titration of a group on the enzyme with a pKa in the vicinity of the alpha-amine's pKa. The pH dependence of the first-order rate constant for decay of the alpha-aminoacrylate intermediate to give pyruvate and ammonia gives a pKa of about 9 for the active site lysine (K41), a pH unit higher than that of the A-isozyme. The difference in pH dependence of the pKESB for cysteine and serine, the higher pKa for K41, and the preference for the neutral species at high pH compared to the A-isozyme can be explained by titration of C280 to give the thiolate. Subtle conformational differences between O-acetylserine sulfhydrylase A and O-acetylserine sulfhydrylase B are detected by comparing the absorption and emission spectra of the internal aldimine in the absence and presence of the product acetate and of the external aldimine with l-serine. The two isozymes show a different equilibrium distribution of the enolimine and ketoenamine tautomers, likely as a result of a more polar active site for O-acetylserine sulfhydrylase B. The distribution of cofactor tautomers is dramatically affected by the ligation state of the enzyme. In the presence of acetate, which occupies the alpha-carboxylate subsite, the equilibrium between tautomers is shifted toward the ketoenamine tautomer, as a result of a conformational change affecting the structure of the active site. This finding, in agreement with structural data, suggests for the O-acetylserine sulfhydrylase B-isozyme a higher degree of conformational flexibility linked to catalysis.  相似文献   

2.
Raboni S  Mozzarelli A  Cook PF 《Biochemistry》2007,46(45):13223-13234
The tryptophan synthase alpha2beta2 complex catalyzes the last two steps in the biosynthesis of l-tryptophan in bacteria, plants, and fungi, the conversion of indole-3-glycerol phosphate and l-serine to l-tryptophan, glyceraldehyde 3-phosphate, and water. The beta-subunit binds pyridoxal 5'-phosphate and catalyzes the beta-replacement reaction with serine and indole. Structural, spectral, and kinetic studies indicate that different monovalent cations stabilize the alternative enzyme conformations and equilibrium distribution of the internal, external, and alpha-aminoacrylate Schiff base. To improve our understanding of the role of monovalent cations, the pH dependence of steady-state and pre-steady-state kinetic parameters and primary kinetic deuterium isotope effects were measured in the presence of l-serine and [alpha-2H]-l-serine in the absence and presence of Na+, K+, and Cs+. For the interpretation of the data obtained in this study, it was necessary to re-interpret a number of results published previously. Overall, data suggest that the enzyme exists in two conformers that equilibrate slowly either in the absence of substrates and monovalent cations or in the presence of K+ or Cs+, whereas they equilibrate faster in the presence of Na+. The rate of interconversion of the conformers increases as a group on the enzyme with a pKa of approximately 8 becomes deprotonated. The pH dependence of deuterium isotope effects is suggestive of a mechanism in which a pH-dependent conformational change that closes the active site precedes the chemical steps, likely a result of formation of one or more salt bridges. As the pH increases, the reaction becomes more committed to proceed to products, which causes the deuterium isotope effect to decrease to a value of unity at high pH. The closure of the site is modulated by the different monovalent cations and is fastest in the presence of Na+, which exhibits the maximum isotope effect of 5.7 (likely the intrinsic effect) on V/Kserine, and slowest in the presence of Cs+, which exhibits the smallest isotope effect of approximately 1.5. The isotope effect on V, in all cases, indicates a contribution to rate limitation from steps in the second half of the reaction. Finally, in the presence of Na+, the steady-state isotope effect on V is greater than that on the pre-steady-state rate constant for decay of the external Schiff base, suggesting that the rate of conversion of the two conformers of the internal aldimine contributes to the pre-steady-state rate, but not the steady-state rate because the high serine concentration traps the enzyme in the active E-serine complex before it can decay to the less active form.  相似文献   

3.
The chemical and spectroscopic properties of 6-fluoropyridoxal 5'-phosphate, of its Schiff base with valine, and of 6-fluoropyridoxamine 5'-phosphate have been investigated. The modified coenzymes have also been combined with the apo form of cytosolic aspartate aminotransferase, and the properties of the resulting enzymes and of their complexes with substrates and inhibitors have been recorded. Although the presence of the 6-fluoro substituent reduces the basicity of the ring nitrogen over 10 000-fold, the modified coenzymes bind predominately in their dipolar ionic ring forms as do the natural coenzymes. Enzyme containing the modified coenzymes binds substrates and dicarboxylate inhibitors normally and has about 42% of the catalytic activity of the native enzyme. The fluorine nucleus provides a convenient NMR probe that is sensitive to changes in the state of protonation of both the ring nitrogen and the imine or the -OH group of free enzyme and of complexes with substrates or inhibitors. The NMR measurements show that the ring nitrogen of bound 6-fluoropyridoxamine phosphate is protonated at pH 7 or below but becomes deprotonated at high pH around a pKa of 8.2. The bound 6-fluoropyridoxal phosphate, which exists as a Schiff base with a dipolar ionic ring at high pH, becomes protonated with a pKa of approximately 7.1, corresponding to the pKa of approximately 6.4 in the native enzyme. Below this pKa a single 19F resonance is seen, but there are two light absorption bands corresponding to ketoenamine and enolimine tautomers of the Schiff base. The tautomeric ratio is altered markedly upon binding of dicarboxylate inhibitors. From the chemical shift values, we conclude that during the rapid tautomerization a proton is synchronously moved from the ring nitrogen (in the ketoenamine) onto the aspartate-222 carboxylate (in the enolimine). The possible implications for catalysis are discussed.  相似文献   

4.
The modulation of serotonin uptake kinetics by Na+, Cl-, H+, and K+ was investigated in brush-border membrane vesicles prepared from normal human term placentas. The presence of Na+ and Cl- in the external medium was mandatory for the function of the serotonin transporter. In both cases, the initial uptake rate of serotonin was a hyperbolic function of the ion concentration, indicating involvement of one Na+ and one Cl- per transport of one serotonin molecule. The apparent dissociation constant for Na+ and Cl- was 145 and 79 mM, respectively. The external Na+ increased the Vmax of the transporter and also increased the affinity of the transporter for serotonin. The external Cl- also showed similar effects on the Vmax and the Kt, but its effect on the Kt was small compared to that of Na+. The presence of an inside-acidic pH, with or without a transmembrane pH gradient, stimulated the NaCl-dependent serotonin uptake. The effect of internal [H+] on the transport function was to increase the Vmax and decrease the affinity of the transporter for serotonin. The presence of K+ inside the vesicles also greatly stimulated the initial rates of serotonin uptake, and the stimulation was greater at pH 7.5 than at pH 6.5. This stimulation was a hyperbolic function of the internal K+ concentration at both pH values, indicating involvement of one K+ per transport of one serotonin molecule. The apparent dissociation constant for K+ was 5.6 mM at pH 6.5 and 4.0 mM at pH 7.5. The effects of internal [K+] on the uptake kinetics were similar to those of internal [H+].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The binding of substrates and inhibitors to wild-type Proteus vulgaris tryptophan indole-lyase and to wild type and Y71F Citrobacter freundii tyrosine phenol-lyase was investigated in the crystalline state by polarized absorption microspectrophotometry. Oxindolyl-lalanine binds to tryptophan indole-lyase crystals to accumulate predominantly a stable quinonoid intermediate absorbing at 502 nm with a dissociation constant of 35 microm, approximately 10-fold higher than that in solution. l-Trp or l-Ser react with tryptophan indole-lyase crystals to give, as in solution, a mixture of external aldimine and quinonoid intermediates and gem-diamine and external aldimine intermediates, respectively. Different from previous solution studies (Phillips, R. S., Sundararju, B., & Faleev, N. G. (2000) J. Am. Chem. Soc. 122, 1008-1114), the reaction of benzimidazole and l-Trp or l-Ser with tryptophan indole-lyase crystals does not result in the formation of an alpha-aminoacrylate intermediate, suggesting that the crystal lattice might prevent a ligand-induced conformational change associated with this catalytic step. Wild-type tyrosine phenol-lyase crystals bind l-Met and l-Phe to form mixtures of external aldimine and quinonoid intermediates as in solution. A stable quinonoid intermediate with lambda(max) at 502 nm is accumulated in the reaction of crystals of Y71F tyrosine phenol-lyase, an inactive mutant, with 3-F-l-Tyr with a dissociation constant of 1 mm, approximately 10-fold higher than that in solution. The stability exhibited by the quinonoid intermediates formed both by wild-type tryptophan indole-lyase and by wild type and Y71F tyrosine phenol-lyase crystals demonstrates that they are suitable for structural determination by x-ray crystallography, thus allowing the elucidation of a key species of pyridoxal 5'-phosphate-dependent enzyme catalysis.  相似文献   

6.
The pyridoxal 5'-phosphate-dependent beta-subunit of the tryptophan synthase alpha(2)beta(2) complex catalyzes the condensation of L-serine with indole to form L-tryptophan. The first stage of the reaction is a beta-elimination that involves a very fast interconversion of the internal aldimine in a highly fluorescent L-serine external aldimine that decays, via the alpha-carbon proton removal and beta-hydroxyl group release, to the alpha-aminoacrylate Schiff base. This reaction is influenced by protons, monovalent cations, and alpha-subunit ligands that modulate the distribution between open and closed conformations. In order to identify the ionizable residues that might assist catalysis, we have investigated the pH dependence of the rate of the external aldimine decay by rapid scanning UV-visible absorption and single wavelength fluorescence stopped flow. In the pH range 6-9, the reaction was found to be biphasic with the first phase (rate constants k(1)) accounting for more than 70% of the signal change. In the absence of monovalent cations or in the presence of sodium and potassium ions, the pH dependence of k(1) exhibits a bell shaped profile characterized by a pK(a1) of about 6 and a pK(a2) of about 9, whereas in the presence of cesium ions, the pH dependence exhibits a saturation profile characterized by a single pK(a) of 9. The presence of the allosteric effector indole acetylglycine increases the rate of reaction without altering the pH profile and pK(a) values. By combining structural information for the internal aldimine, the external aldimine, and the alpha-aminoacrylate with kinetic data on the wild type enzyme and beta-active site mutants, we have tentatively assigned pK(a1) to betaAsp-305 and pK(a2) to betaLys-87. The loss of pK(a1) in the presence of cesium ions might be due to a shift to lower values, caused by the selective stabilization of a closed form of the beta-subunit.  相似文献   

7.
Observation of the 93-kDa cytosolic aspartate aminotransferase by 500-MHz 1H NMR spectroscopy in H2O has revealed a series of resonances in the 10-18 ppm range arising from exchangeable protons. One of these (peak A) has been assigned to the proton bound to the ring nitrogen of the coenzyme pyridoxal 5'-phosphate. A second (peak B) is assigned to H143 which participates in a chain of hydrogen bonds that includes also the coenzyme-bound proton. There is a mutual nuclear Overhauser effect between these two resonances. Peaks A and B respond to changes in pH and to interaction of the enzyme with coenzyme derivatives and inhibitors. Peak A moves from 15.4 to 17.4 ppm as the pH is lowered, while peak B moves in the opposite direction from 14.7 to 13.7 ppm, both with an apparent pKa of 6.15. This pKa is associated with deprotonation of the imine nitrogen at the Schiff base linkage of the coenzyme with K258 of the enzyme. In spectra of enzyme containing pyridoxamine 5'-phosphate, peak A is observed at 16.5 ppm and peak B is at 13.9 ppm over a broad pH range. Peaks A and B are found at 17.8 and 14.0 ppm, respectively, for the enzyme complex with glutarate. When alpha-methylaspartate is added to the enzyme several new resonances appear in the spectrum, which are attributed to formation of the external aldimine. The position of peak A in spectra of various forms of the enzyme is interpreted to reflect the electronic distribution in the coenzyme ring. Several other peaks in this region of the spectrum also are sensitive to changes in pH or the addition of inhibitors. Some possible assignments of these resonances are discussed.  相似文献   

8.
Formation and hydrolysis rate constants as well as equilibrium constants of the Schiff base derived from pyridoxal 5'-phosphate and n-hexylamine were determined between pH 3.5 and 7.5 in ethanol/water mixtures (3:17, v/v, and 49:1, v/v). The results indicate that solvent polarity scarcely alters the values of these constants but that they are dependent on the pH. Spectrophotometric titration of this Schiff base was also carried out. We found that a pKa value of 6.1, attributed in high-polarity media to protonation of the pyridine nitrogen atom, is independent of solvent polarity, whereas the pKa of the monoprotonated form of the imine falls from 12.5 in ethanol/water (3:17) to 11.3 in ethanol/water (49:1). Fitting of the experimental results for the hydrolysis to a theoretical model indicates the existence of a group with a pKa value of 6.1 that is crucial in the variation of kinetic constant of hydrolysis with pH. Studies of the reactivity of the coenzyme (pyridoxal 5'-phosphate) of glycogen phosphorylase b with hydroxylamine show that this reaction only occurs when the pH value of solution is below 6.5 and the hydrolysis of imine bond has started. We propose that the decrease in activity of phosphorylase b when the pH value is less than 6.2 must be caused by the cleavage of enzyme-coenzyme binding and that this may be related with protonation of the pyridine nitrogen atom of pyridoxal 5'-phosphate.  相似文献   

9.
In contrast to shorter homologs which only form a single-stranded nucleic acid alpha-helix in acid solution at [Na+]</=0.02 M Na+, d(A-G)20,30 form in addition a parallel-stranded duplex with (A+.A+) and (G.G) base pairs and interstrand dA+...PO2-ionic and dA+NH2... O=P H-bonds. Under conditions where duplex prevails over alpha-helix, the contribution of the base-backbone interactions to stability varies directly with [H+] and inversely with [Na+], just as in poly(A+.A+). These duplexes are characterized by intense circular dichroism and a large cooperative thermally-induced hyperchromic transition that is dependent on oligomer concentration. Dimethylsulfate reactivity of the dG residues indicates G.G and therefore dA+.dA+rather than dA+.G base pairs. At much higher ionic strength (Na+>/=0.2 M) the protonated base-backbone interactions are so weakened that duplex stability becomes increasingly dependent upon H-bonded base pairing and stacking and almost independent of pH. Between pH 6 and 8 this duplex structure is devoid of protonated dA residues and shows positive dependence of T m on ionic strength similar to that of DNA.  相似文献   

10.
To establish the state of protonation of quinonoid species formed nonenzymically from pyridoxal phosphate (PLP) and diethyl aminomalonate, we have studied absorption spectra of the rapidly established steady-state mixture of species. We have evaluated the formation constant and the spectrum of the mixture of Schiff base and quinonoid species. For N-methyl-PLP a singly protonated species with a peak at 464 nm is formed from the unprotonated aldehyde and the conjugate acid of diethyl aminomalonate with a formation constant Kf of 240 M-1. The very intense absorption band with characteristic vibrational structure (most evident as a shoulder at 435 nm) is accompanied by a weaker, structured band at about 380 nm and a weak, broad band at 330 nm. We suggest that the 380-nm band may represent a tautomeric form of the quinonoid compound. Protonation of the phosphate group appears to affect the spectrum only slightly. The corresponding mixture of Schiff base and quinonoid species formed from PLP has a very similar spectrum at pH 6-7. It has a formation constant Kf of 230 M-1 and a pKa of 7.8, which must be attributed to the ring nitrogen atom. The dissociated species, which may be largely carbanionic, has a strong structured absorption band at 430 nm and a weaker one, again possibly a tautomer, in the 330-nm region. The analysis establishes that in all species a proton remains on either the phenolic oxygen or the imine nitrogen. Proton NMR spectroscopy, under some conditions, reveals only two components: free PLP and what appears to be Schiff base. However, we suggest that the latter may, in fact, be a quinonoid form, either alone or in rapid equilibrium with the Schiff base. Absorption spectra of quinonoid species formed in enzymes are analyzed and compared with the spectra of the nonenzymic species.  相似文献   

11.
This work was aimed at studying the effect of monovalent inorganic cations (Li+, Na+, K+, Rb+, Cs+, NH+4) on the catalytic and spectral characteristics of tyrosine phenol-lyase from Citrobacter intermedius. These cations were shown to influence the proportion of the beta-elimination reaction rate to the rate of side transamination reaction. Most of the monovalent cations are non-competitive activators of the beta-elimination reaction; Li+ exerts no effect on the enzyme activity in this reaction; Na+ is an inhibitor of the beta-elimination reaction. The activation of tyrosine phenol-lyase by monovalent cations stems from the creation of an active holoenzyme form (lambda max 420 nm) due to conformational rearrangements of the protein molecule.  相似文献   

12.
Effects of anion binding on the deprotonation reactions of halorhodopsin   总被引:3,自引:0,他引:3  
The retinal Schiff base of halorhodopsin deprotonates with a pKa of 7.4 in 0.5 M Na2SO4 in the dark. In the presence of various anions, such as chloride or nitrate, etc., the pKa is raised by up to 1.5 units. Analysis of the dependency of the pKa on anion concentration favors the model in which the anions do not bind to the positively charged Schiff base nitrogen, but to a site near it, and exert their effect on the pKa by direct (perhaps electrostatic) interaction. Adding nitrate, or one of several other anions, causes also a small blueshift in the visible absorption band of the chromophore. These effects on the pKa and the absorption band define an anion binding site in halorhodopsin, termed Site I. Chloride and bromide apparently bind in addition to another site, which is associated with a small red-shift of the absorption band and changes in the photocycle. This other anion binding site is termed Site II. Illumination of halorhodopsin samples results in the deprotonation of the Schiff base with a much lowered pKa, but at very low rates probably determined by the generation of a deprotonating photointermediate. Binding of Site I anions increases the pKa of deprotonation in the light also. The similarity of the responses of the apparent pKa in the dark and in the light to anion concentration suggests that anion binding to Site I influences deprotonation of the Schiff base similarly in the photointermediate and in the parent halorhodopsin molecule.  相似文献   

13.
Bass gill microsomal preparations contain both a Na+, K+ and Mg2+-dependent ATPase, which is completely inhibited by 10(-3)M ouabain and 10(-2)M Ca2+, and also a ouabain insensitive ATP-ase activity in the presence of both Mg2+ and Na+. Under the optimal conditions of pH 6.5, 100 mM Na+, 20 mM K+, 5 mM ATP and 5 mM Mg2+, (Na+ + K+)-ATPase activity at 30 degrees C is 15.6 mumole Pi hr/mg protein. Bass gill (Na+ + K+)-ATPase is similar to other (Na+ + K+)-ATPases with respect to the sensitivity to ionic strength, Ca2+ and ouabain and to both Na+/K+ and Mg2+/ATP optimal ratios, while pH optimum is lower than poikilotherm data. The enzyme requires Na+, whereas K+ can be replaced efficiently by NH+4 and poorly by Li+. Both Km and Vm values decrease in the series NH+4 greater than K+ greater than Li+. The break of Arrhenius plot at 17.7 degrees C is close to the adaptation temperature. Activation energies are scarcely different from each other and both lower than those generally reported. The Km for Na+ poorly decreases as the assay temperature lowers. The comparison with literature data aims at distinguishing between distinctive and common features of bass gill (Na+ + K+)-ATPase.  相似文献   

14.
The rate of oxidation of L-(-)-tyrosine by horseradish peroxidase compound 1 has been studied as a function of pH at 25 degrees C and ionic strength 0.11. Over the pH range of 3.20--11.23 major effects of three ionizations were observed. The pKa values of the phenolic (pKa = 10.10) and amino (pKa = 9.21) dissociations of tyrosine and a single enzyme ionization (pKa = 5.42) were determined from nonlinear least squares analysis of the log rate versus pH profile. It was noted that the less acidic form of the enzyme was most reactive; hence, the reaction is described as base catalyzed. The rate of tyrosine oxidation falls rapidly with the deprotonation of the phenolic group.  相似文献   

15.
The pH dependence of papain catalysis was analyzed by a scheme which evaluates the kinetic contribution of both protonated and unprotonated species of functional groups involved in catalysis. Kinetic measurements were made at constant pH, without buffers, by automatic titration. The rate-determining step for papain-catalyzed hydrolysis of alpha-N-benzoyl-L-arginine ethyl ester, determined by nucleophile competition, changed from acylation below pH 6.5 to mixed acylation-deacylation above pH 6.5. Kinetic analysis indicated that three prototropic groups governed the pH-specificity of alpha-N-benzoyl-L-arginine ethyl ester hydrolysis. These prototropic groups had pKa values of 4.8, 6.5 to 6.7, and 8.7. Theoretical treatment of the kinetics provided an excellent fit with the experimentally found profile when the contribution of all three prototropic groups was considered. Analysis showed that, in acid, the pathways of papain catalysis were functional with either two or three active-site protons. In base, a single functional ionic pathway is associated with an active site with only one proton. Pathways involving an unprotonated active site are catalytically inoperative in both acid and base. These results indicate that papain exhibits several catalytically functional ionic pathways. The results are discussed in terms of pKa assignments, and the mechanism of papain catalysis.  相似文献   

16.
Yuan C  Kuwata O  Liang J  Misra S  Balashov SP  Ebrey TG 《Biochemistry》1999,38(14):4649-4654
The binding of chloride is known to shift the absorption spectrum of most long-wavelength-absorbing cone-type visual pigments roughly 30 nm to the red. We determined that the chloride binding constant for this color shift in the gecko P521 visual pigment is 0.4 mM at pH 6.0. We found an additional effect of chloride on the P521 pigment: the apparent pKa of the Schiff base in P521 is greatly increased as the chloride concentration is increased. The apparent Schiff base pKa shifts from 8.4 for the chloride-free form to >10.4 for the chloride-bound form. We show that this shift is due to chloride binding to the pigment, not to the screening of the membrane surface charges by chloride ions. We also found that at high pH, the absorption maximum of the chloride-free pigment shifts from 495 to 475 nm. We suggest that the chloride-dependent shift of the apparent Schiff base pKa is due to the deprotonation of a residue in the chloride binding site with a pKa of ca. 8.5, roughly that of the Schiff base in the absence of chloride. The deprotonation of this site results in the formation of the 475 nm pigment and a 100-fold decrease in the pigment's ability to bind chloride. Increasing the concentration of chloride results in the stabilization of the protonated state of this residue in the chloride binding site and thus increased chloride binding with an accompanying increase in the Schiff base pK.  相似文献   

17.
Ouabain-sensitive Na+ and K+ fluxes and ATP content were determined in high potassium sheep erythrocytes at different values of membrane potential and internal pH. Membrane potential was adjusted by suspending erythrocytes in media containing different concentrations of MgCl2 and sucrose. Concomitantly either the external pH was changed sufficiently to maintain a constant internal pH or the external pH was kept constant with a resultant change of internal pH. The erythrocytes were preincubated before the flux experiment started in a medium which produced increased ATP content in order to avoid substrate limitation of the pump. It was found that an increased cellular pH reduced the rates of active transport of Na+ and K+ without significantly altering the ratio of pumped Na+/K+. This reduction was not due to limitation in the supply of ATP although ATP content decreased when internal pH increased. Changes of membrane potential in the range between -10 and +60 mV at constant internal pH did not affect the rates of active transport of Na+ or K+.  相似文献   

18.
The pH optimum for (Na+ + K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) depends on the combination of monovalent cations, on the ATP concentration and on temperature. ATP decreases the Na+ concentration necessary for half maximum activation, K0.5 for Na+ (Na+ + K+ = 150 mM), and the effect is pH and temperature dependent. At a low ATP concentration a decrease in pH leads to an increase in K0.5 for Na+, while at the high ATP concentration it leads to a decrease. K0.5 for ATP for hydrolysis decreases with an increase in pH. The fractional stimulation by K+ in the presence of Na+ decreases with the ATP concentration, and at a low ATP concentration K+ becomes inhibitory, this being most pronounced at 0 degrees C. The results suggest that (a) ATP at a given pH has two different effects: it increases the Na+ relative to K+ affinity on the internal site (K0.5 for ATP at pH 7.4, 37 degrees C, is less than 10 microM); it increases the molar activity in the presence of Na+ + K+ (K0.5 for ATP at pH 7.4, 37 degrees , is 127 microM), (b) binding of the cations to the external as well as the internal sites leads to pK changes (Bohr effect) which are different for Na+ and for K+, i.e. the selectivity for Na+ relative to K+ depends both on ATP and on the degree of protonation of certain groups on the system, (c) ATP involves an extra dissociable group in the determination of the selectivity of the internal site, and thereby changes the effect of an increase in protonation of the system from a decrease to an increase in selectivity for Na+ relative to K+.  相似文献   

19.
Sea urchin sperm motility can be activated by alkalinization of the internal pH, and previous studies have shown that the internal pH can be regulated by a voltage-sensitive Na+/H+ exchanger present in the flagellar plasma membrane. In this study, the effects of speract, a peptide purified from egg conditioned media, on the Na+/H+ exchange were investigated. Evidence presented indicates that speract activates K+ channels in the flagellar membrane and modulates the Na+/H+ exchange activity through resultant changes in membrane potential. In the presence of tetraphenylphosphonium, a lipophilic ion, or high external Na+, the isolated flagella were depolarized, and Na+/H+ exchanger was inhibited. Speract and valinomycin, a K+ ionophore, were able to reactivate 22Na+ uptake, H+ efflux, and alkalinization of intraflagellar pH under either of the depolarizing conditions. Membrane potential measurements using 3,3'-dipropylthiodicarbocyanide iodide indicated repolarization by either speract or valinomycin. The speract-induced voltage changes did not require Na+ but were sensitive to [K+]. Thus, speract induced a slight depolarization in Na+-free seawater with 10 mM K+ but a hyperpolarization with 2 mM K+. Further support for the activation of K+ channels in the flagella was the 2-5-fold stimulation of K+ efflux induced by speract as measured with a K+ electrode. The ionic selectivity of the speract-activated channel assessed by voltage measurements was K+ greater than Rb+ greater than Cs+. The half-maximally effective concentration of speract was about 0.2 nM. That the H+ and K+ efflux in response to peptide was receptor-mediated was confirmed by the use of speract or resact on intact sea urchin spermatozoa, where the peptides were found to stimulate K+ efflux and to reverse the tetraphenylphosphonium inhibition on H+ efflux only in the homologous spermatozoa. Modulation of the voltage-sensitive Na+/H+ exchange by egg peptides, therefore, appears to be indirect and is coupled through its action on membrane potential.  相似文献   

20.
R Miura  D E Metzler 《Biochemistry》1976,15(2):283-290
The 5-trans-vinylcarboxylic acid analogue of pyridoxal 5'-phosphate has been prepared. Its pKa values were determined as 3.08, 4.10, and 7.33. The third pKa, that of the pyridinium nitrogen, is considerably lower than that of 8.2 observed for the corresponding saturated compound, 5'-carboxymethyl-5'-deoxypyridoxal. Absorption spectra of individual ionic forms have been resolved into component bands using lognormal distribution curves. The vinylcarboxylic acid analogue inactivates apoaspartate aminotransferase slowly at pH 8.3. An initial product absorbs at 26 kK (385 nm) and is converted slowly to a species with a narrow absorption band at 24.0 kK (417 nm). Meanwhile, the circular dichroism in the same region changes from positive to negative. At pH 5.2 the product abosrbs at 25.2 kK (397 nm). The 24.0-kK (417 nm) form is not reducible with sodium borohydride and the tightly bound chromophore is not released from the protein during denaturation by acid, base, or heat. L-Glutamate and erythro-beta-hydroxyaspartate both facilitate the formation of the 24.0-kK form. The reaction of the analogue with apoenzyme in the presence of erythro-beta-hydroxyaspartate is also accompanied by transient peaks, presumably representing quinonoid forms, at 19.0 kK (526 nm) and 20.3 kK (492 nm). The analogue reacts at basic pH with arginine, alpha-amino-gamma-guanidinobutyric acid, ornithine, cysteine, alpha, gamma-diaminobutyric acid, eh narrow absorption bands centered in the 24.0-24.4-kK (417-410 nm) region and resembling the product formed with the apoenzyme. Nuclear magnetic resonance and absorption spectroscopy indicate that the reaction with alpha- gamma-diaminobutyric acid proceeds via a hexahydropyrimidine derivative to a substituted tetrahydropyrimidine (a cyclic Schiff base) which is the final product. A similar reaction sequence with the apoenzyme is postulated and a structure with an unknown X group from the enzyme replacing the gamma-amino group of alpha, gamma-diaminobutyric acid is proposed for the 24.0-kK (417 nm) chromophore obtained with the apoenzyme. The proposed reactions are closely related to enzymatic and nonenzymatic reactions of pyridoxal 5'-sulfate (Yang, I. -Y., Khomutov, R. M., and Metzler, D. E. (1974), Biochemistry 13, 3877).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号