首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Samples from three submerged sites (MC, a core obtained in the methane seep area; MR, a reference core obtained at a distance from the methane seep; and HC, a gas-bubbling carbonate sample) at the Kuroshima Knoll in the southern Ryuku arc were analyzed to gain insight into the organisms present and the processes involved in this oxic-anoxic methane seep environment. 16S rRNA gene analyses by quantitative real-time PCR and clone library sequencing revealed that the MC core sediments contained abundant archaea (approximately 34% of the total prokaryotes), including both mesophilic methanogens related to the genus Methanolobus and ANME-2 members of the Methanosarcinales, as well as members of the delta-Proteobacteria, suggesting that both anaerobic methane oxidation and methanogenesis occurred at this site. In addition, several functional genes connected with methane metabolism were analyzed by quantitative competitive-PCR, including the genes encoding particulate methane monooxygenase (pmoA), soluble methane monooxygenase (mmoX), methanol dehydrogenese (mxaF), and methyl coenzyme M reductase (mcrA). In the MC core sediments, the most abundant gene was mcrA (2.5 x 10(6) copies/g [wet weight]), while the pmoA gene of the type I methanotrophs (5.9 x 10(6) copies/g [wet weight]) was most abundant at the surface of the MC core. These results indicate that there is a very complex environment in which methane production, anaerobic methane oxidation, and aerobic methane oxidation all occur in close proximity. The HC carbonate site was rich in gamma-Proteobacteria and had a high copy number of mxaF (7.1 x 10(6) copies/g [wet weight]) and a much lower copy number of the pmoA gene (3.2 x 10(2) copies/g [wet weight]). The mmoX gene was never detected. In contrast, the reference core contained familiar sequences of marine sedimentary archaeal and bacterial groups but not groups specific to C1 metabolism. Geochemical characterization of the amounts and isotopic composition of pore water methane and sulfate strongly supported the notion that in this zone both aerobic methane oxidation and anaerobic methane oxidation, as well as methanogenesis, occur.  相似文献   

2.
The removal of plants and soil to bedrock to eradicate exotic invasive plants within the Hole-in-the-Donut (HID) region, part of the Everglades National Park (Florida), presented a unique opportunity to study the redevelopment of soil and the associated microbial communities in the context of short-term primary succession and ecosystem restoration. The goal of this study was to identify relationships between soil redevelopment and activity and composition of methanogenic assemblages in HID soils. Methane production potentials indicated a general decline in methanogenic activity with restoration age. Microcosm incubations strongly suggested hydrogenotrophic methanogenesis as the most favorable pathway for methane formation in HID soils from all sites. Culture-independent techniques targeting methyl coenzyme M reductase genes (mcrA) were used to assess the dynamics of methanogenic assemblages. Clone libraries were dominated by sequences related to hydrogenotrophic methanogens of the orders Methanobacteriales and Methanococcales and suggested a general decline in the relative abundance of Methanobacteriales mcrA with time since restoration. Terminal restriction fragment length polymorphism analysis indicated methanogenic assemblages remain relatively stable between wet and dry seasons. Interestingly, analysis of soils across the restoration chronosequence indicated a shift in Methanobacteriales populations with restoration age, suggesting genotypic shifts due to site-specific factors.  相似文献   

3.
基于mcrA基因的沁水盆地煤层气田产甲烷菌群与途径分析   总被引:1,自引:0,他引:1  
【目的】分析沁水盆地煤层气田不同煤层气井产出水样中产甲烷菌群和生物成因气的生成途径。【方法】以甲基辅酶M还原酶基因(mcr A)作为目标基因,采用454焦磷酸高通量测序方法,同时比对NCBI功能基因文库中的mcr A序列,分析不同煤层气井产出水中的产甲烷菌群。【结果】高通量测序表明,5个出水样产甲烷菌群OTUs(Operational taxonomic units)数为64–157个,共有的为22个,各占样品总数14%-34%;样品共检测到4种已知菌属,即甲烷杆菌属(Methanobacterium)、甲烷微菌属(Methanomicrobium)、甲烷叶菌属(Methanolobus)和甲烷螺菌属(Methanospirillum),优势菌属均为Methanobacterium。系统发育分析表明,未明确地位的菌属主要与Methanobacterium、Methanomicrobium、产甲烷球菌属(Methanococcus)和甲烷囊菌属(Methanoculleus)有较近的亲缘关系。5个样品中菌属所占比例不同,检测到的菌属类别大致相同。所有检测样品生物成因煤层气(Coalbed methane,CBM)的生成途径主要为氢营养型产甲烷途径。【结论】沁水盆地不同煤层气田产甲烷菌群菌种差异比较大,但生物成因气生成途径基本相似,与地理位置和煤藏条件没有相关性。  相似文献   

4.
A study of anaerobic sediments below cyanobacterial mats of a low-salinity meltwater pond called Orange Pond on the McMurdo Ice Shelf at temperatures simulating those in the summer season (<5 degrees C) revealed that both sulfate reduction and methane production were important terminal anaerobic processes. Addition of [2-(14)C]acetate to sediment samples resulted in the passage of label mainly to CO(2). Acetate addition (0 to 27 mM) had little effect on methanogenesis (a 1.1-fold increase), and while the rate of acetate dissimilation was greater than the rate of methane production (6.4 nmol cm(-3) h(-1) compared to 2.5 to 6 nmol cm(-3) h(-1)), the portion of methane production attributed to acetate cleavage was <2%. Substantial increases in the methane production rate were observed with H(2) (2.4-fold), and H(2) uptake was totally accounted for by methane production under physiological conditions. Formate also stimulated methane production (twofold), presumably through H(2) release mediated through hydrogen lyase. Addition of sulfate up to 50-fold the natural levels in the sediment (interstitial concentration, approximately 0.3 mM) did not substantially inhibit methanogenesis, but the process was inhibited by 50-fold chloride (36 mM). No net rate of methane oxidation was observed when sediments were incubated anaerobically, and denitrification rates were substantially lower than rates for sulfate reduction and methanogenesis. The results indicate that carbon flow from acetate is coupled mainly to sulfate reduction and that methane is largely generated from H(2) and CO(2) where chloride, but not sulfate, has a modulating role. Rates of methanogenesis at in situ temperatures were four- to fivefold less than maximal rates found at 20 degrees C.  相似文献   

5.
6.
The Porcupine Seabight Challenger Mound is the first carbonate mound to be drilled (∼270 m) and analyzed in detail microbiologically and biogeochemically. Two mound sites and a non-mound Reference site were analyzed with a range of molecular techniques [catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH), quantitative PCR (16S rRNA and functional genes, dsrA and mcrA ), and 16S rRNA gene PCR-DGGE] to assess prokaryotic diversity, and this was compared with the distribution of total and culturable cell counts, radiotracer activity measurements and geochemistry. There was a significant and active prokaryotic community both within and beneath the carbonate mound. Although total cell numbers at certain depths were lower than the global average for other subseafloor sediments and prokaryotic activities were relatively low (iron and sulfate reduction, acetate oxidation, methanogenesis) they were significantly enhanced compared with the Reference site. In addition, there was some stimulation of prokaryotic activity in the deepest sediments (Miocene, > 10 Ma) including potential for anaerobic oxidation of methane activity below the mound base. Both Bacteria and Archaea were present, with neither dominant, and these were related to sequences commonly found in other subseafloor sediments. With an estimate of some 1600 mounds in the Porcupine Basin alone, carbonate mounds may represent a significant prokaryotic subseafloor habitat.  相似文献   

7.
Methanogenesis was characterized in hypersaline microbial mats from Guerrero Negro, Baja California Sur, Mexico both in situ and after long-term manipulation in a greenhouse environment. Substrate addition experiments indicate methanogenesis to occur primarily through the catabolic demethylation of non-competitive substrates, under field conditions. However, evidence for the coexistence of other metabolic guilds of methanogens was obtained during a previous manipulation of sulfate concentrations. To fully characterize methanogenesis in these mats, in the absence of competition for reducing equivalents with sulfate-reducing microorganisms, we maintained microbial mats for longer than 1 year under conditions of lowered sulfate and salinity levels. The goal of this study was to assess whether observed differences in methane production during sulfate and salinity manipulation were accompanied by shifts in the composition of methanogen communities. Culture-independent techniques targeting methyl coenzyme M reductase genes ( mcrA ) were used to assess the dynamics of methanogen assemblages. Clone libraries from mats sampled in situ or maintained at field-like conditions in the greenhouse were exclusively composed of sequences related to methylotrophic members of the Methanosarcinales . Increases in pore water methane concentrations under conditions of low sulfate correlated with an observed increase in the abundance of putatively hydrogenotrophic mcrA , related to Methanomicrobiales . Geochemical and molecular data provide evidence of a significant shift in the metabolic pathway of methanogenesis from a methylotroph-dominated system in high-sulfate environments to a mixed community of methylotrophic and hydrogenotrophic methanogens under low sulfate conditions.  相似文献   

8.
Marine mud volcanoes are geological structures emitting large amounts of methane from their active centres. The Amsterdam mud volcano (AMV), located in the Anaximander Mountains south of Turkey, is characterized by intense active methane seepage produced in part by methanogens. To date, information about the diversity or the metabolic pathways used by the methanogens in active centres of marine mud volcanoes is limited. (14)C-radiotracer measurements showed that methylamines/methanol, H(2)/CO(2) and acetate were used for methanogenesis in the AMV. Methylotrophic methanogenesis was measured all along the sediment core, Methanosarcinales affiliated sequences were detected using archaeal 16S PCR-DGGE and mcrA gene libraries, and enrichments of methanogens showed the presence of Methanococcoides in the shallow sediment layers. Overall acetoclastic methanogenesis was higher than hydrogenotrophic methanogenesis, which is unusual for cold seep sediments. Interestingly, acetate porewater concentrations were extremely high in the AMV sediments. This might be the result of organic matter cracking in deeper hotter sediment layers. Methane was also produced from hexadecanes. For the most part, the methanogenic community diversity was in accordance with the depth distribution of the H(2)/CO(2) and acetate methanogenesis. These results demonstrate the importance of methanogenic communities in the centres of marine mud volcanoes.  相似文献   

9.
10.
Gas hydrates in marine sediments have been known for many years but recently hydrates were found in the sediments of Lake Baikal, the largest freshwater basin in the world. Marine gas hydrates are associated with complex microbial communities involved in methanogenesis, methane oxidation, sulfate reduction and other biotransformations. However, the contribution of microorganisms to the formation of gas hydrates remains poorly understood. We examined the microbial communities in the hydrate-bearing sediments and water column of Lake Baikal using pyrosequencing of 16S rRNA genes. Aerobic methanotrophic bacteria dominated the water sample collected at the lake floor in the hydrate-bearing site. The shallow sediments were dominated by Archaea. Methanogens of the orders Methanomicrobiales and Methanosarcinales were abundant, whereas representatives of archaeal lineages known to perform anaerobic oxidation of methane, as well as sulfate-reducing bacteria, were not found. Affiliation of archaea to methanogenic rather than methane-oxidizing lineages was supported by analysis of the sequences of the methyl coenzyme M reductase gene. The deeper sediments located at 85-90 cm depth close to the hydrate were dominated by Bacteria, mostly assigned to Chloroflexi, candidate division JS1 and Caldiserica. Overall, our results are consistent with the biological origin of methane hydrates in Lake Baikal.  相似文献   

11.
The algal-bacterial mat of a high-sulfate hot spring (Bath Lake) provided an environment in which to compare terminal processes involved in anaerobic decomposition. Sulfate reduction was found to dominate methane production, as indicated by comparison of initial electron flow through the two processes, rapid conversion of [2-14C]acetate to 14CO2 and not to 14CH4, and the lack of rapid reduction of NaH14CO3 to 14CH4. Sulfate reduction was the dominant process at all depth intervals, but a marked decrease of sulfate reduction and sulfate-reducing bacteria was observed with depth. Concurrent methanogenesis was indicated by the presence of viable methanogenic bacteria and very low but detectable rates of methane production. A marked increased in methane production was observed after sulfate depletion despite high concentrations of sulfide (>1.25 mM), indicating that methanogenesis was not inhibited by sulfide in the natural environment. Although a sulfate minimum and sulfide maximum occurred in the region of maximal sulfate reduction, the absence of sulfate depletion in interstitial water suggests that methanogenesis is always severely limited in Bath Lake sediments. Low initial methanogenesis was not due to anaerobic methane oxidation.  相似文献   

12.
The rates of microbial processes of sulfate reduction and of the methane cycle were measured in the bottom sediments of the Sevastopol basin, where seeps of gaseous methane have been previously found. Typically for marine environments, sulfate reduction played the major role in the terminal phase of decomposition of organic matter (OM) in reduced sediments of this area. The rate of this process depended on the amount of available OM. The rate of methanogenesis in the sediments increased with depth, peaking in the subsurface horizons, where decreased sulfate concentration was detected in the pore water. The highest rates of sulfate-dependent anaerobic methane oxidation were found close to the methane-sulfate transition zone as is typical of most investigated marine sediments. The data on the carbon isotopic composition of gaseous methane from the seeps and dissolved CH4 from the bottom sediments, as well as on the rates of microbial methanogenesis and methane oxidation indicate that the activity of the methane seeps results from accumulation of biogenic methane in the cavities of the underlying geological structures with subsequent periodic release of methane bubbles into the water column.  相似文献   

13.
In Arctic wet tundra, microbial controls on organic matter decomposition are likely to be altered as a result of climatic disruption. Here, we present a study on the activity, diversity and vertical distribution of methane-cycling microbial communities in the active layer of wet polygonal tundra on Herschel Island. We recorded potential methane production rates from 5 to 40?nmol?h(-1) g(-1) wet soil at 10?°C and significantly higher methane oxidation rates reaching values of 6-10?μmol?h(-1) g(-1) wet soil. Terminal restriction fragment length polymorphism (T-RFLP) and cloning analyses of mcrA and pmoA genes demonstrated that both communities were stratified along the active layer vertical profile. Similar to other wet Arctic tundra, the methanogenic community hosted hydrogenotrophic (Methanobacterium) as well as acetoclastic (Methanosarcina and Methanosaeta) members. A pronounced shift toward a dominance of acetoclastic methanogens was observed in deeper soil layers. In contrast to related circum-Arctic studies, the methane-oxidizing (methanotrophic) community on Herschel Island was dominated by members of the type II group (Methylocystis, Methylosinus, and a cluster related to Methylocapsa). The present study represents the first on methane-cycling communities in the Canadian Western Arctic, thus advancing our understanding of these communities in a changing Arctic.  相似文献   

14.
The effects of freeze-thaw, freezing and sediment geochemistry on terminal anaerobic processes occurring in sediments taken from below cyanobacterial mats in meltwater ponds of the McMurdo Ice Shelf in Antarctica were investigated. Depending on the geochemical and physical status of the sediments (i.e., frozen or thawed), as well as passage of sediment through a freeze-thaw cycle, terminal carbon and electron flow shifted in which the proportions of hydrogen and acetate utilized for methanogenesis and sulfate reduction changed. Thus, in low-sulfate (or chloride) sediment which was thawed and incubated at 4 degrees C, total carbon and electron flow were mediated by acetate-driven sulfate reduction and H(2)-driven methanogenesis. When the same sediments were incubated frozen, both methanogenesis and sulfate reduction decreased. However, under these conditions methanogenesis was favored over sulfate reduction, and carbon flow from acetate to methane increased relative to sulfate reduction; >70% of methane was contributed by acetate, and more than 80% of acetate was oxidized by pathways not coupled to sulfate reduction. In high-sulfate pond sediments, sulfate reduction was a major process mediating terminal carbon and electron flow in both unfrozen and frozen incubations. However, as with low-sulfate sediments, acetate oxidation became uncoupled from sulfate reduction with freezing. Geochemical and temperature effects could be expressed by linear models in which the log (methanogenesis to sulfate reduction) was negative log linear with respect to either temperature or the log of the sulfate (or chloride) concentration. From these relationships it was possible to predict the ratio for a given temperature (low-sulfate sediments) or sulfate (chloride) concentration. Small transitory changes, such as elevated sulfate reduction coupled to increased acetate turnover, resulted from application of a freeze-thaw cycle to low-salinity pond sediments. The results demonstrate how ecophysiological processes may change in anaerobic systems under extreme conditions (e.g., freezing) and provide new insights into microbial events occurring under these conditions.  相似文献   

15.
A quantitative fluorogenic PCR method for group-specific methyl coenzyme M reductase subunit A genes (mcrA) from methanotrophic archaea was established and applied to the characterization of microbial communities in anoxic methane seep sediments at the accretionary prism of the Nankai Trough. All of the previously identified subgroups of anaerobic methanotroph (ANME) mcrA genes were detected in the cores up to 25 cm below the seafloor, but distributional patterns of mcrA genes were found to differ according to depth. These findings suggest a distinct distribution of phylogenetically and physiologically diverse methanotrophic archaea that mediate methane oxidation in the anoxic sediments. This quantification method will contribute to future investigations of methanotrophic microbial ecosystems in anoxic marine sediments.  相似文献   

16.
The vertical distribution and diversity of sulfate-reducing prokaryotes (SRPs) in a sediment core from the Pearl River Estuary was reported for the first time. The profiles of methane and sulfate concentrations along the sediment core indicated processes of methane production/oxidation and sulfate reduction. Phospholipid fatty acids analysis suggested that sulfur-oxidizing bacteria (SOB) might be abundant in the upper layers, while SRPs might be distributed throughout the sediment core. Quantitative competitive-PCR analysis indicated that the ratios of SRPs to total bacteria in the sediment core varied from around 2–20%. Four dissimilatory sulfite reductase ( dsrAB) gene libraries were constructed and analyzed for the top layer (0–6 cm), middle layer (18–24 cm), bottom layer (44–50 cm) and the sulfate-methane transition zone (32–42 cm) sediments. Most of the retrieved dsrAB sequences (80.9%) had low sequence similarity with known SRP sequences and formed deeply branching dsrAB lineages. Meanwhile, bacterial 16S rRNA gene analysis revealed that members of the Proteobacteria were predominant in these sediments. Putative SRPs within Desulfobacteriaceae, Syntrophaceae and Desulfobulbaceae of Deltaproteobacteria , and putative SOB within Epsilonproteobacteria were detected by the 16S rRNA gene analysis. Results of this study suggested a variety of novel SRPs in the Pearl River Estuary sediments.  相似文献   

17.
Methane content and the rates of microbial processes of the carbon and sulfur cycles were determined for the sediments of the Vyborg Bay, Baltic Sea. Formation of the gas-bearing surface sediments in the Vyborg Bay was found to depend on the activity of the modern microbial processes of the transformation of organic matter, resulting in production of significant amounts of reduced gases (methane and hydrogen sulfide). Rapid consumption of sulfate in the course of sulfate reduction coupled to organic matter decomposition both suppressed anaerobic oxidation of methane and promoted microbial methanogenesis. The gasbearing sediments of this area therefore become a source of methane, and methane concentration in the near-bottom water increases significantly.  相似文献   

18.
The effects of freeze-thaw, freezing and sediment geochemistry on terminal anaerobic processes occurring in sediments taken from below cyanobacterial mats in meltwater ponds of the McMurdo Ice Shelf in Antarctica were investigated. Depending on the geochemical and physical status of the sediments (i.e., frozen or thawed), as well as passage of sediment through a freeze-thaw cycle, terminal carbon and electron flow shifted in which the proportions of hydrogen and acetate utilized for methanogenesis and sulfate reduction changed. Thus, in low-sulfate (or chloride) sediment which was thawed and incubated at 4°C, total carbon and electron flow were mediated by acetate-driven sulfate reduction and H2-driven methanogenesis. When the same sediments were incubated frozen, both methanogenesis and sulfate reduction decreased. However, under these conditions methanogenesis was favored over sulfate reduction, and carbon flow from acetate to methane increased relative to sulfate reduction; >70% of methane was contributed by acetate, and more than 80% of acetate was oxidized by pathways not coupled to sulfate reduction. In high-sulfate pond sediments, sulfate reduction was a major process mediating terminal carbon and electron flow in both unfrozen and frozen incubations. However, as with low-sulfate sediments, acetate oxidation became uncoupled from sulfate reduction with freezing. Geochemical and temperature effects could be expressed by linear models in which the log (methanogenesis to sulfate reduction) was negative log linear with respect to either temperature or the log of the sulfate (or chloride) concentration. From these relationships it was possible to predict the ratio for a given temperature (low-sulfate sediments) or sulfate (chloride) concentration. Small transitory changes, such as elevated sulfate reduction coupled to increased acetate turnover, resulted from application of a freeze-thaw cycle to low-salinity pond sediments. The results demonstrate how ecophysiological processes may change in anaerobic systems under extreme conditions (e.g., freezing) and provide new insights into microbial events occurring under these conditions.  相似文献   

19.
This study provides data on the diversities of bacterial and archaeal communities in an active methane seep at the Kazan mud volcano in the deep Eastern Mediterranean sea. Layers of varying depths in the Kazan sediments were investigated in terms of (1) chemical parameters and (2) DNA-based microbial population structures. The latter was accomplished by analyzing the sequences of directly amplified 16S rRNA genes, resulting in the phylogenetic analysis of the prokaryotic communities. Sequences of organisms potentially associated with processes such as anaerobic methane oxidation and sulfate reduction were thus identified. Overall, the sediment layers revealed the presence of sequences of quite diverse bacterial and archaeal communities, which varied considerably with depth. Dominant types revealed in these communities are known as key organisms involved in the following processes: (1) anaerobic methane oxidation and sulfate reduction, (2) sulfide oxidation, and (3) a range of (aerobic) heterotrophic processes. In the communities in the lowest sediment layer sampled (22–34 cm), sulfate-reducing bacteria and archaea of the ANME-2 cluster (likely involved in anaerobic methane oxidation) were prevalent, whereas heterotrophic organisms abounded in the top sediment layer (0–6 cm). Communities in the middle layer (6–22 cm) contained organisms that could be linked to either of the aforementioned processes. We discuss how these phylogeny (sequence)-based findings can support the ongoing molecular work aimed at unraveling both the functioning and the functional diversities of the communities under study.  相似文献   

20.
Submarine mud volcanoes are formed by expulsions of mud, fluids, and gases from deeply buried subsurface sources. They are highly reduced benthic habitats and often associated with intensive methane seepage. In this study, the microbial diversity and community structure in methane-rich sediments of the Haakon Mosby Mud Volcano (HMMV) were investigated by comparative sequence analysis of 16S rRNA genes and fluorescence in situ hybridization. In the active volcano center, which has a diameter of about 500 m, the main methane-consuming process was bacterial aerobic oxidation. In this zone, aerobic methanotrophs belonging to three bacterial clades closely affiliated with Methylobacter and Methylophaga species accounted for 56%+/-8% of total cells. In sediments below Beggiatoa mats encircling the center of the HMMV, methanotrophic archaea of the ANME-3 clade dominated the zone of anaerobic methane oxidation. ANME-3 archaea form cell aggregates mostly associated with sulfate-reducing bacteria of the Desulfobulbus (DBB) branch. These ANME-3/DBB aggregates were highly abundant and accounted for up to 94%+/-2% of total microbial biomass at 2 to 3 cm below the surface. ANME-3/DBB aggregates could be further enriched by flow cytometry to identify their phylogenetic relationships. At the outer rim of the mud volcano, the seafloor was colonized by tubeworms (Siboglinidae, formerly known as Pogonophora). Here, both aerobic and anaerobic methane oxidizers were found, however, in lower abundances. The level of microbial diversity at this site was higher than that at the central and Beggiatoa species-covered part of the HMMV. Analysis of methyl-coenzyme M-reductase alpha subunit (mcrA) genes showed a strong dominance of a novel lineage, mcrA group f, which could be assigned to ANME-3 archaea. Our results further support the hypothesis of Niemann et al. (54), that high methane availability and different fluid flow regimens at the HMMV provide distinct niches for aerobic and anaerobic methanotrophs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号