共查询到20条相似文献,搜索用时 15 毫秒
1.
Multinuclear NMR studies of the Langendorff perfused rat heart 总被引:1,自引:0,他引:1
The quantitation of intracellular sodium ion concentration [Na+]in perfused organs using NMR spectroscopy requires a knowledge of the extent of visibility of the 23Na resonance and of the intracellular volume of the organ. We have used a multinuclear NMR approach, in combination with the extracellular shift reagent dysprosium (III) tripolyphosphate, to determine the NMR visibility of intra- and extracellular 23Na and 35Cl ions, intracellular volume, and [Na+]in in the isolated Langendorff perfused rat heart. Based on a comparison of the extracellular volumes calculated using 2H and 23Na, 35Cl, or 59Co NMR of the perfused heart we conclude that resonances of extracellular sodium and chloride ions (including ions in interstitial spaces) are fully visible, contrary to assumptions in the literature. Furthermore, prolonged hypoxia or ischemia caused a dramatic increase in intracellular Na+ and [Na+] in rose to approach that in the external medium indicating full visibility of the intracellular 23Na resonance. Resonance intensities of intra- and extracellular 23Na ions, along with a knowledge of the extracellular space as a fraction of the total organ water space, yielded an average [Na+] in of about 10 mM (10 +/- 1.5 mM) for the rat heart at 37 degrees C. Double-quantum filtered 23Na NMR of the perfused rat heart in the absence and presence of paramagnetic reagents revealed, contrary to assumptions in the literature, that both intra- and extracellular sodium ions contribute to the detected signal. 相似文献
2.
Peter S. Fitt Nishi Sharma John Attial Borivoj Korecky 《Molecular and cellular biochemistry》1987,78(1):37-46
The acid-insoluble product isolated from well-oxygenated Langendorff rat heart after perfusion with [14C]adenosine was purified by phenol extraction and subjected to specific phosphorolysis by pure polynucleotide phosphorylase. TLC analysis of the reaction mixture showed that ADP was the only radioactive product, proving that the original substance was a polyribonucleotide. Studies of the time course of labelling and of the distribution of the acid-insoluble product between the mitochondrial and nuclear fractions showed that both are labelled even after 1 min at 25 °C, but at short times and low temperature more radioactivity is found in the mitochondria. The kinetics of adenosine incorporation resemble those expected for the labelling of hnRNA and mRNA. Isolated, respiring mitochondria incorporate adenosine and adenine nucleotides into acid insoluble form by a process dependent on oxidative phosphorylation and the adenine nucleotide translocase that is specific for adenine derivatives. The results are discussed in terms of the hypothesis that the polyribonucleotide might be a storage form of adenine nucleotides: it is concluded that the bulk of the labelled product is unlikely to play a major role in energy metabolism. 相似文献
3.
Effect of insulin and lack of effect of workload and hypoxia on protein degradation in the perfused working rat heart.
下载免费PDF全文

1. Protein degradation was studied in the glucose (5 mM)-perfused working rat heart preparation of Taegtmeyer, Hems & Krebs [(1980) Biochem. J. 186. 701-711]. 2. The effects of cardiac workload were investigated in three different preparations: (a) control (low workload), (b) increased pressure workload (simulating conditions of aortic pressure in vivo) and (c) increased volume workload. There was no effect of increased workload on protein degradation in preparation (b) or (c) when compared with preparation (a). Insulin inhibited protein degradation in all three preparations. Significantly greater inhibition by insulin was observed in the increased-pressure-workload preparation (b). 3. Hypoxia was induced by the partial replacement of O2 in the gaseous phase by N2. Hearts maintained their cardiac output when O2 content was decreased from 95% to 55% by volume, but the stability of the preparation was less at 50% O2. Lactate output was significantly increased at O2 contents of 65% or less. The rate of protein degradation was not different from control values (95% O2) in perfusions with 65, 55 or 50% O2. 4. We conclude that acutely increased workload or acute hypoxia does not affect protein degradation in the perfused working rat heart when cardiac output is relatively stable. 相似文献
4.
5.
6.
E Q Colquhoun M Hettiarachchi J M Ye E A Richter A J Hniat S Rattigan M G Clark 《Life sciences》1988,43(21):1747-1754
Vasopressin and angiotensin II markedly stimulated oxygen uptake in the perfused rat hindlimb. The increase due to each agent approached 70% of the basal rate, and was greater than that produced by a maximal concentration of norepinephrine. Half-maximal stimulation occurred at 60 pM vasopressin, 0.5 nM angiotensin II and 10 nM norepinephrine. Angiotensins I and III were less potent than angiotensin II. For each agent, the dose-dependent increase in oxygen uptake coincided with a dose-dependent increase in perfusion pressure. The effects of both vasopressin and angiotensin to increase oxygen uptake and pressure were not inhibited by either phentolamine, propranolol or a combination of the two, but were completely inhibited by the vasodilator, nitroprusside. Nitroprusside also inhibited flow-induced increases in hindlimb oxygen uptake and perfusion pressure. The findings indicate a key role for the vascular system in the control of hindlimb oxygen uptake. 相似文献
7.
Removal of exogenously administered rat ANF (99-126) (rANF) from the rabbit coronary vasculature was investigated. Rabbit hearts were perfused using a modified Langendorff technique and ANF concentrations in the perfusate were measured by a radio-receptor assay. Under these conditions no major degradation of ANF was observed. On perfusion, however, the heart liberated large amounts of ANF. This release peaked 15 minutes after the initiation of perfusion, (685 + 220 pM) and then fell to a sustained basal level (305 + 80 pM) after 45 minutes. Although an increase in the perfusate flow rate reduced the ANF concentration, there was no significant difference in the rate of ANF release between the two flow rates used. After momentary cessation of flow ANF concentration fell to a significantly lower level, however, once again no significant change in rate of release occurred. These results suggest that the heart is not a major site of ANF degradation and that alterations in flow rate through the coronary vascular bed can cause changes in amounts of ANF released. 相似文献
8.
Perfusion of the isolated rat heart with Ca2+ concentrations exceeding 3 mM activated phosphofructokinase and phosphorylase, and decreased the concentration of cyclic AMP. Half-maximal activation of phosphofructokinase occurred at 5 mM-CaCl2; significant activation of phosphorylase did not occur until the concentration of CaCl2 exceeded 12 mM. The time course for the activation of phosphofructokinase at 12 mM-CaCl2 indicated that maximal activation occurred within 2 min; when the perfusion-medium Ca2+ concentration was re-adjusted to 3 mM, the phosphofructokinase activity returned to pre-activation values within 30 s. The addition of Ca2+ to extracts of heart did not activate phosphofructokinase. The activation of phosphofructokinase by sub-maximal doses of adrenaline and Ca2+ were not additive. The activation of phosphofructokinase by 1 microM-adrenaline + 10 microM-propranolol and by 1 microM-isoprenaline was inhibited by high concentrations of K+ (22-56 mM). The activation of phosphofructokinase by 1 microM-adrenaline + 10 microM-propranolol, 12 mM-CaCl2 and by 1 microM-isoprenaline was blocked by the slow Ca2+-channel blocker nifedipine. These findings suggest that both the beta- and alpha-adrenergic mechanisms for the activation of rat heart phosphofructokinase involve an increase in the myoplasmic Ca2+ concentration. This increase may result from an inhibition of Ca2+ efflux or a stimulation of Ca2+ influx. 相似文献
9.
Oxygen evolution by photosystem II (PSII) is activated by chloride and other monovalent anions. In this study, the effects of iodide on oxygen evolution activity were investigated using PSII-enriched membrane fragments from spinach. In the absence of Cl(-), the dependence of oxygen evolution activity on I(-) concentration showed activation followed by inhibition in both intact PSII and NaCl-washed PSII, which lacked the PsbP and PsbQ subunits. Using a substrate inhibition model, the range of values of the Michaelis constant K(M) in intact PSII (0.5-1.5 mM) was smaller than that in NaCl-washed PSII (1.5-5 mM), whereas values of the inhibition constant K(I) in intact PSII (9-17 mM) were larger than those in NaCl-washed PSII (1-4 mM). Studies of I(-) inhibition of Cl(-)-activated oxygen evolution in intact PSII revealed that I(-) was primarily an uncompetitive inhibitor, with uncompetitive constant K(i)' = 37 mM and Cl(-)-competitive constant K(i) > 200 mM. This result indicated that the activating Cl(-) must be bound for inhibition to take place, which is consistent with the substrate inhibition model for I(-) activation. The S(2) state multiline and g = 4.1 EPR signals in NaCl-washed PSII were examined in the presence of 3 and 25 mM NaI, corresponding to I(-)-activated and I(-)-inhibited conditions, respectively. The two S(2) state signals were observed at both I(-) concentrations, indicating that I(-) substitutes for Cl(-) in formation of the signals and that advancement to the S(2) state was not prevented by high I(-) concentrations. A model is presented that incorporates the results of this study, including the action of both chloride and iodide. 相似文献
10.
Moreau R Heath SH Doneanu CE Harris RA Hagen TM 《Biochemical and biophysical research communications》2004,325(1):48-58
Mitochondrial uptake and beta-oxidation of long-chain fatty acids are markedly impaired in the aging rat heart. While these alterations would be expected to adversely affect overall pyridine nucleotides, NADH levels do not change significantly with age. This conundrum suggests that specific compensatory mechanisms occur in the aging heart. The comparison of cardiac pyruvate dehydrogenase complex (PDC) kinetics in 4- and 24- to 28-month-old F344 rats revealed a 60% significant increase in V(max) with no change in PDC expression, and a 1.6-fold decrease in the Michaelis constant (K(m)) in old compared to young rats. The observed kinetic adjustments were selective to PDC, as neither the V(max) nor K(m) of citrate synthase changed with age. PDC kinase-4 mRNA levels decreased by 57% in old vs young rat hearts and correlated with a 45% decrease in PDC phosphorylation. We conclude that PDC from old rat hearts catabolizes pyruvate more efficiently due to an adaptive change in phosphorylation. 相似文献
11.
Petrosillo G Matera M Moro N Ruggiero FM Paradies G 《Free radical biology & medicine》2009,46(1):88-94
Reactive oxygen species (ROS) are considered a key factor in the heart aging process. Mitochondrial respiration is an important site of ROS generation and a potential contributor to heart functional changes with aging. We have examined the effects of aging on various parameters related to mitochondrial bioenergetics in rat heart, such as complex I activity, oxygen consumption, membrane potential, ROS production, and cardiolipin content and oxidation. A loss in complex I activity, state 3 respiration, and membrane potential was found in mitochondria with aging. The capacity of mitochondria to produce H(2)O(2) was significantly increased in aged rats. The mitochondrial content of cardiolipin, a phospholipid required for optimal activity of complex I, significantly decreased as a function of aging, whereas there was a significant increase in the level of oxidized cardiolipin. The lower complex I activity in mitochondria from aged rats could be almost completely restored to the level of young heart by exogenously added cardiolipin, but not by other phospholipids nor by peroxidized cardiolipin. It is proposed that aging causes heart mitochondrial complex I deficiency, which can be attributed to ROS-induced cardiolipin peroxidation. These results may prove useful in elucidating the mechanism underlying mitochondrial dysfunction associated with heart aging. 相似文献
12.
Epinephrine activation of phosphofructokinase in perfused rat heart independent of changes in effector concentrations 总被引:3,自引:0,他引:3
Phosphofructokinase was determined at low substrate concentration using a new isotopic assay in extracts of perfused rat heart. Epinephrine treatment of the perfused heart resulted in an activation of the enzyme. Half-maximal activation of phosphofructokinase occurred at 5 X 10(-7) M epinephrine, which was approximately that required to produce half-maximal activation of phosphorylase. Time course studies indicated that epinephrine-mediated changes in beating rate, cyclic AMP concentration, and phosphorylase a activity were maximal at 1 to 2 min and preceded maximal activation of phosphofructokinase by approximately 3 min. the activated form of the enzyme as expressed in heart extracts was sensitized to the activators, cyclic AMP, AMP, glucose 1,6-bisphosphate, and fructose 1,6-bisphosphate. Passage of control extract that was untreated, activated by AMP, or inhibited by citrate through Sephadex G-25 columns gave eluate activities approaching control extract values. The epinephrine-activated form of the enzyme remained activated following similar treatment. The data suggest that epinephrine mediates a modification of phosphofructokinase that is independent of changes in intracellular effector concentration. 相似文献
13.
14.
Michael Solomon Kenneth G. Cook Stephen J. Yeaman 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》1987,931(3):335-338
In rats fed a high-protein diet, the branched-chain 2-oxo-acid dehydrogenase complex in liver was essentially fully acitve and its activity state was unaffected by subsequent starvation for 48 h. Feeding with a low-protein diet led to a decrease in the activity state which was essentially reversed by 48 h of starvation. In heart, the enzyme was primarily inactive (activity state 18%) in rats fed a high-protein diet, with both low-protein diet and starvation leading to a further decrease in the activity state. 相似文献
15.
Effect of diet and starvation on the activity state of branched-chain 2-oxo-acid dehydrogenase complex in rat liver and heart 总被引:1,自引:0,他引:1
In rats fed a high-protein diet, the branched-chain 2-oxo-acid dehydrogenase complex in liver was essentially fully active and its activity state was unaffected by subsequent starvation for 48 h. Feeding with a low-protein diet led to a decrease in the activity state which was essentially reversed by 48 h of starvation. In heart, the enzyme was primarily inactive (activity state 18%) in rats fed a high-protein diet, with both low-protein diet and starvation leading to a further decrease in the activity state. 相似文献
16.
17.
Dumitrescu C Narayan P Cheng Y Efimov IR Altschuld RA 《American journal of physiology. Heart and circulatory physiology》2002,282(4):H1311-H1319
We examined the contributions of the Ca(2+) channels of the sarcolemma and of the sarcoplasmic reticulum to electromechanical restitution. Extrasystoles (F(1)) were interpolated 40-600 ms following a steady-state beat (F(0)) in perfused rat ventricles paced at 2 or 3 Hz. Plots of F(1)/F(0) versus the extrasystolic interval consisted of phase I, which occurred before relaxation of the steady-state beat, and phase II, which occurred later. Phase I exhibited a period of enhanced left ventricular pressure development that coincided with action potential prolongation. Phase I was eliminated by -BAY K 8644 (100 nM) and FPL 64176 (150 nM), augmented by 3 microM thapsigargin plus 200 nM ryanodine and unaffected by KN-93 and KB-R7943. Phase II was accelerated by the Ca(2+) channel agonists and by isoproterenol but was eliminated by thapsigargin plus ryanodine. The results suggest that phase I of electromechanical restitution is caused by a transient L-type Ca(2+) current facilitation, whereas phase II represents the recovery of the ability of the sarcoplasmic reticulum to release Ca(2+). 相似文献
18.
19.
Distinction between major chloroquine-inhibitable and adrenergic-responsive pathways of protein degradation and their relation to tissue ATP content in the Langendorff isolated perfused rat heart.
下载免费PDF全文

T D Lockwood 《The Biochemical journal》1988,251(2):341-346
In the Langendorff isolated perfused rat heart, 36% of total basal protein degradation was inhibited by the lysosomal inhibitor chloroquine (30 microM), after elimination of rapid turnover proteins during a 3 h preliminary degradation period. Prior inhibition of degradation with chloroquine was additive to the 30% inhibition caused by simultaneous infusion of 50-200 nM-isoprenaline. This additivity suggests that the adrenergic-controlled process is independent of the lysosomal degradative pathway. After discontinuation of drug infusions, the isoprenaline-inhibited degradation rate returned to the previous baseline; however, the chloroquine-inhibited degradation rate transiently exceeded the previous baseline. NaN3 (0.3 mM) caused a decrease of left-ventricular myocardial ATP content of approx. 60% at 14 min and extreme impairment of contractile function; however, the total lysosomal and non-lysosomal protein degradation was not changed at this time. Conversely, left-ventricular tissue ATP content was not changed during proteolytic inhibition by 10 nM-isoprenaline or 10 microM-chloroquine at 14 min. The results indicate that depletion of myocardial energy stores in this preparation is neither necessary nor sufficient to cause inhibition of the total of lysosomal and non-lysosomal protein degradation. 相似文献
20.
Mena NP Bulteau AL Salazar J Hirsch EC Núñez MT 《Biochemical and biophysical research communications》2011,(2):241-246
Alpha-toxin-induced phosphorylation of PDK1 via the tyrosine kinase A (TrkA) receptor signaling pathway plays an important role in the activation of rabbit neutrophils. The relation between the toxin and TrkA, however, remains poorly understood. Here, we show that the toxin-induced phosphorylation of TrkA is closely related to the induction of neurite-outgrowth in PC12 cells. The toxin induced neurite-outgrowth and phosphorylation of TrkA in the cells in a dose-dependent manner. K252a, a TrkA inhibitor, and shRNA for TrkA inhibited the toxin-induced neurite-outgrowth, and phosphorylation of TrkA and ERK1/2. PD98059, an inhibitor of the ERK1/2 cascade, inhibited phosphorylation of ERK1/2 and the neurite-outgrowth induced by alpha-toxin. The wild-type toxin induced the formation of diacylglycerol, and neurite-outgrowth, but H148G, a variant toxin which binds to cell membranes and has lost the enzymatic activity did not. We demonstrated that the phosphorylation of TrkA through the phospholipid metabolism induced by the toxin synergistically play a key role in neurite-outgrowth. 相似文献