首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Imines or Schiff bases formed through the interaction of reducing sugars with amino acids are known to play a critical role not only in initiating the Maillard reaction but also in its propagation through isomerization reactions initiated by the intermediate oxazolidin-5-one. FTIR spectroscopic evidence for the formation of this intermediate in a phenylalanine-glycolaldehyde model system was provided by taking advantage of a strong absorption band centered at 1778 cm−1. The identity of this peak was confirmed by observing a shift to 1736 cm−1 when [13C-1]phenylalanine was used. The intensity of this peak decreased over time with concomitant increase of two bands in the carbonyl absorption region, one centered at 1730 and the other at 1720 cm−1. The former band was shifted to 1685 cm−1, while the band at 1720 remained unchanged when [13C-1]phenylalanine was used. The simultaneous formation of a carboxylic acid and a carbonyl band is consistent with the formation of an Amadori rearrangement product. Furthermore, time-dependent analysis of the formation and decomposition of the oxazolidin-5-one intermediate suggests that it is an important precursor of the Amadori rearrangement product. In addition, through the use of appropriate model systems, [15N]phenylalanine and second-derivative spectral analysis, evidence was also provided for the formation of decarboxylated imines at 80 °C.  相似文献   

2.
The electrochemical and photophysical properties of two bis-nitrilo ruthenium(II) complexes formulated as [Ru(bpy)2(L)2](PF6)2, where bpy is 2,2′-bipyridine and L is AN = CH3CN and sn = NC-CH2CH2-CN, have been investigated. Electrochemical data are typical of Ru-bpy complexes with two reversible reduction peaks located near −1.3 and −1.6 V assigned to each bipyridine ligand and one RuII/RuIII oxidation wave centered at approximately +1.5 V. The sn derivative is both IR and Raman active with its coordinated CN stretch appearing at 2277 cm−1 and 2273 cm−1, respectively. The UV/Vis absorption spectrum of the sn derivative is dominated by an intense (εmax ∼ 58700 M−1 cm−1) absorption band at 287 nm assigned as a LC (π → π∗) transition. The peak observed at 418 nm (ε ∼ 10 400 M−1 cm−1) is an MLCT band while the one at 244 nm (ε ∼ 23 600 M−1 cm−1) is of LMLCT character. The AN derivative behaves similarly. Both complexes show low-temperature emission at around 537 nm with a lifetime near 10.0 μs. 1H and 13C assignments are consistent with the formulation of the complexes. The complexes undergo photosubstitution of solvent with quantum efficiencies near one. Calculated and experimental results support replacement of the nitrile ligands by solvent. Based on DFT calculations, the electron density of the HOMO lies on the metal center, the bipyridine ligands and the nitrile ligands and electron density of the LUMO resides primarily on the bipyridine ligands. The electronic spectra obtained from TDDFT calculations closely match the experimental ones.  相似文献   

3.
The fluorescence photocycle of the green fluorescent protein is functionally dependent on the specific structural protein environment. A direct relationship between equilibrium protein side-chain conformation of glutamate 222 and reactivity is established, particularly the rate of ultrafast proton transfer reactions in the fluorescence photocycle. We show that parallel transformations in the photocycle have a structural origin, and we report on the vibrational properties of responsive amino acids on an ultrafast timescale. Blue excitation of GFP drives two parallel, excited-state deuteron transfer reactions with 10 ps and 75 ps time constants to the buried carboxylic acid side chain of glutamate 222 via a hydrogen-bonding network. Assignment of 1456 cm−1 and 1441 cm−1 modes to νsym and assignment of 1564 cm−1 and 1570 cm−1 features to νasym of E222 in the 10 ps and 75 ps components, respectively, was possible from the analysis of the transient absorption data of an E222D mutant and was consistent with photoselection measurements. In contrast to the wild-type, measurements of E222D can be described with only one difference spectrum, with the νsym mode at 1435 cm−1 and the νasym mode at 1567 cm−1, also correlating a large Δνasym-sym with slow excited-state proton transfer kinetics. Density Functional Theory calculations and published model compound and theoretical studies relate differences in Δνasym-sym to the strength and number of hydrogen-bonding interactions that are detected via equilibrium geometry and COO stretching frequency differences of the carboxylate. The correlation of photocycle kinetics with side-chain conformation of the acceptor suggests that proton transfer from S205 to E222 controls the rate of the overall excited-state proton transfer process, which is consistent with recent theoretical predictions. Photoselection measurements show agreement for localized CO vibrations of chromophore, Q69, and E222 with Density Functional Theory and ab initio calculations placed in the x-ray geometry and provide their vibrational response in the intermediates in the photocycle.  相似文献   

4.
The addition of divalent metal ions or substrate taurine to TauD, an α-ketoglutarate-dependent dioxygenase, alters its UV absorption, as clearly observed by monitoring the protein’s difference spectra. Binding of metal ions leads to a decrease in absorption at ∼297 nm and modulation of other features. A separate signature with enhanced absorption at ∼295 nm is identified for binding of taurine. These narrow (∼700 cm−1) and intense (∼0.5 mM−1 cm−1) spectral changes are attributed to ligand-induced protein conformational changes affecting the environment of aromatic residues. The changes in the UV difference spectra were exploited to assess directly the thermodynamics and kinetics of ligand interactions in wild-type TauD and selected variants. This approach holds promise as a new tool to probe ligand-induced conformational changes in a wide range of other proteins. Experimental and quantification approaches for a reliable analysis of protein absorption below 320 nm are presented.  相似文献   

5.
Aminocarboxylate complexes of vanadium(III) are of interest as models for biologically and medicinally relevant forms of this interesting and somewhat neglected ion. The V(III) ion is paramagnetic, but not readily suited to conventional EPR, due to its integer-spin ground state (S = 1) and associated large zero-field splitting (zfs). High-frequency and -field EPR (HFEPR), however, has the ability to study such systems effectively. Three complexes, all previously structurally characterized: Na[V(trdta)] · 3H2O, Na[V(edta)(H2O)] · 3H2O, and [V(nta)(H2O)3] · 4H2O (where trdta stands for trimethylenediamine-N,N,N′,N′-tetraacetate and nta stands for nitrilotriacetate) were studied by HFEPR. All the investigated complexes produced HFEPR responses both in the solid state, and in aqueous solution, but those of [V(nta)(H2O)3] · 4H2O were poorly interpretable. Analysis of multi-frequency HFEPR spectra yielded a set of spin Hamiltonian parameters (including axial and rhombic zfs parameters: D and E, respectively) for these first two complexes as solids: Na[V(trdta)] · 3H2O: D = 5.60 cm−1, E = 0.85 cm−1, g = 1.95; Na[V(edta)(H2O)] · 3H2O: D = 1.4 cm−1, E = 0.14 cm−1, g = 1.97. Spectra in frozen solution yielded similar parameters and showed multiple species in the case of the trdta complex, which are the consequence of the flexibility of this ligand. The EPR spectra obtained in frozen aqueous solution are the first, to our knowledge, of V(III) in solution in general and show the applicability of HFEPR to these systems. In combination with very insightful previous studies of the electronic absorption of these complexes which provided ligand-field parameters, it has been possible to describe the electronic structure of V(III) in [V(trdta)] and [V(edta)(H2O)]; the quality of data for [V(nta)(H2O)3] does not permit analysis. Qualitatively, six-coordinate V(III) complexes with O,N donor atoms show no electronic absorption band in the NIR region, and exhibit relatively large magnitude zfs (D ? 5 cm−1), while analogous seven-coordinate complexes do have a NIR absorption band and show relatively small magnitude zfs (D < 2 cm−1).  相似文献   

6.
Dong S  Zhang S  Chi L  He P  Wang Q  Fang Y 《Analytical biochemistry》2008,381(2):199-204
A carbon paste electrode modified with multiwall carbon nanotubes and copper(I) oxide (MWCNT-Cu2O CPME) was fabricated, and the electrochemical behaviors of 19 kinds of natural amino acids at this modified electrode were studied. The experimental results showed that the various kinds of amino acids without any derivatization displayed obvious oxidation current responses at the modified electrode. It was also found that the current response values of amino acids were dependent mainly on pH values of buffer solutions. The phenomenon could be explained by the fact that the amino acids suffered complexation or electrocatalytic oxidation processes under different pH values. Six kinds of amino acids (arginine, tryptophan, histidine, threonine, serine, and tyrosine), which performed high-oxidation current responses in alkaline buffers, were selected to be detected simultaneously by capillary zone electrophoresis coupled with amperometric detection (CZE-AD). These amino acids could be perfectly separated within 20 min, and their detection limits were as low as 10−7 or 10−8 mol L−1 magnitude (signal/noise ratio = 3). The above results demonstrated that MWCNT-Cu2O CPME could be successfully employed as an electrochemical sensor for amino acids with some advantages of convenient preparation, high sensitivity, and good repeatability.  相似文献   

7.
The room temperature absorption bandshape for the Q transition region of chlorophyll a is calculated using the vibrational frequency modes and Franck-Condon (FC) factors obtained by line-narrowing spectroscopies of chlorophyll a in a glassy (Rebane and Avarmaa, Chem. Phys. 1982; 68:191-200) and in a native environment (Gillie et al., J. Phys. Chem. 1989; 93:1620-1627) at low temperatures. The calculated bandshapes are compared with the absorption spectra of chlorophyll a measured in two different solvents and with that obtained in vivo by a mutational analysis of a chlorophyll-protein complex. It is demonstrated that the measured distributions of FC factors can account for the absorption bandshape of chlorophyll a in a hexacoordinated state, whereas, when pentacoordinated, reduced FC coupling for vibrational frequencies in the range 540-850 cm−1 occurs. The FC factor distribution for pentacoordinated chlorophyll also describes the native chlorophyll a spectrum but, in this case, either a low-frequency mode (ν < 200 cm−1) must be added or else the 262-cm−1 mode must increase in coupling by about one order of magnitude to describe the skewness of the main absorption bandshape.  相似文献   

8.
Dinuclear nickel(II) complexes [Ni2(bomp)(MeCO2)2]BPh4 (1) and [Ni2(bomp)(PhCO2)2]BPh4 (2) were synthesized with the dinucleating ligand 2,6-bis[bis(2-methoxyethyl)aminomethyl]-4-methylphenol [H(bomp)]. X-Ray analysis revealed that the complex 1 · 0.5CHCl3 contains two nickel(II) ions bridged by phenolic oxygen and two acetate groups, forming a μ-phenoxo-bis(μ-acetato)dinickel(II) core. Electronic spectra were investigated for 1 and 2 in the range of 400-1800 nm, and the data were typical for the octahedral high-spin nickel(II) complexes. Obtained spectral components were well simulated based on the angular overlap model assuming the trigonally distorted octahedral geometry. Magnetic susceptibility was measured for 1 and 2 over a temperature range of 4.5-300 K. The optimized magnetic data were J = 1.75 cm−1, zJ′ = −0.234 cm−1, g = 2.21, D = 15.1 cm−1, and TIP = 370 × 10−6 cm−1 for complex 1 and J = 3.55 cm−1, zJ′ = −0.238 cm−1, g = 2.23, D = 21.8 cm−1, and TIP = 470 × 10−6 cm−1 for complex 2. The data revealed ferromagnetic interactions between the two nickel(II) ions.  相似文献   

9.
Polysaccharides were extracted from fruit shell of Camellia oleifera Abel. Fruit shell of Camellia oleifera Abel polysaccharide (WEP2) was a water-soluble compound. Its molecular weight was about 362 kDa. HPLC analysis showed that this polysaccharide was composed of rhamnose, fucose, arabinose, mannose, galactose and glucose in the molecular ratio of 4.05, 11.62, 1.78, 3.91, 8.76 and 27.06, respectively. The broad intense characteristic peak around 3463 cm−1 due to the hydroxyl stretching vibration of the polysaccharide was observed in the polysaccharide. The characteristic absorption bands at 852 cm−1 and 893 cm−1 indicated that WEP2 contained both α-glycosidic and β-glycosidic linkages. WEP2 exhibited remarkable antitumor activity against Sarcoma180 cell compared to the negative control group. At the highest dose 40 mg/kg days, the tumor inhibition rate reached 65.2%. The scavenging effects of WEP2 to hydroxyl radical and superoxide radical anion were 72.5% and 86.3% at a concentration of 1.0 mg/ml, respectively.  相似文献   

10.
K Ito  H Katabuchi 《Biopolymers》1973,12(4):921-929
The sequential copolymers of glycine and L -alanine, L-valine and L -alanine, L-leucine and L -alanine, and L-phenylalanine and L -alanine and those containing the L-proline residues were synthesized. The infrared spectra in the region from 700 to 200 cm-1 were measured for these polypeptides with the α-helical conformation or the polyglycine II structure and compared with the spectra of the β-form structures. The results showed that several infrared bands observed in the region from 600 to 200 cm-1 clearly reflect not only the backbone conformations but also the local conformations of component amino acid residues of polypeptides with the α-helical, β-form and polyglycine II structures.  相似文献   

11.
New diruthenium complexes (PPN)4[(NC)4Ru(μ-bptz)Ru(CN)4], (PPN)41, and [(bpy)2Ru(μ-bptz)Ru(CN)4], 2, (PPN+ = bis(triphenylphospine)iminium; bptz = 3,6-bis(2-pyridyl)-1,2,4,5-tetrazine; bpy = 2,2′-bipyridine), were synthesised and characterised by spectroscopic and electrochemical techniques. The comproportionation constant Kc = 107.0 of the mixed-valent species [(NC)4Ru(μ-bptz)Ru(CN)4]3− as obtained by oxidation of 14 in CH3CN is much lower than the Kc = 1015.0 previously detected for [(H3N)4Ru(bptz)Ru(NH3)4]5+, reflecting the competition between CN and bptz for the π-electron density of the metals. Comparison with several other bptz-bridged diruthenium(II,III) complexes reveals an approximate correlation between Kc and the diminishing effective π acceptor capacity of the ancillary terminal ligands. In addition to the intense MLCT absorption at λmax = 624 nm, the main IVCT (intervalence charge transfer) band of 13− was detected by spectroelectrochemistry at λmax = 1695 nm (in CH3CN; ε = 3200 M−1 cm−1). The experimental band width at half-height, Δν1/2 = 2700 cm−1, is slightly smaller than the theoretical value Δν1/2 = 3660 cm−1, calculated from the Hush approximation for Class II mixed-valent species. In agreement with comparatively moderate metal-metal coupling, the mixed-valent intermediate 13− was found to be EPR silent even at 4 K. The unsymmetrical mixed-valent complex [(bpy)2RuII(μ-bptz)RuIII(CN)4]+, obtained in situ by bromine oxidation of 2 in CH3CN/H2O, displays a broad NIR absorption originating from an IVCT transition at λmax = 1075 nm (ε ≈ 1000 M−1 cm−1, Δν1/2 ≈ 4000 cm−1). In addition, the lifetime of the excited-state of the mononuclear precursor complex [Ru(bptz)(CN)4]2− was measured in H2O by laser flash photolysis; the obtained value of τ = 19.6 ns reveals that bptz induces a metal-to-ligand electronic delocalisation effect intermediate between that induced by bpy and bpz (bpz = 2,2′-bipyrazine) in analogous tetracyanoruthenium complexes.  相似文献   

12.
Synthesis, spectroscopic and magnetic properties, and X-ray crystal structures of two copper(II) polymers Cu(2-qic)Br (2-qic = quinoline-2-carboxylate) (1) and Cu(2-pic)Br (2-pic = pyridine-2-carboxylate) (2) are described. These compounds are isostructural with Cu(2-qic)Cl and Cu(2-pic)Cl, respectively, the X-ray crystal structures of which were reported recently. Both complexes are polynuclear copper(II) compounds (1D and 2D, respectively) based on syn-anti carboxylate bridges and additionally on linear monobromo- (in 1) and dibromo-bridging (in 2) motifs. The magnetic properties were investigated in the temperature range 1.8-300 K. They reveal the occurrence of strong antiferromagnetic coupling (J1 = −102.5 cm−1) through the single bromo-bridge in 1, which is much stronger than that transmitted by the single chloro-bridge (J = −57.0 cm−1). Very weak ferromagnetic interaction through the syn-anti carboxylate bridge J2 is expected as it was observed in isomorphous Cu(2-qic)Cl (J = 0.37 cm−1). For 2 a weak ferromagnetic couplings through the syn-anti carboxylate (zJ′ = 1.35 cm−1) and dibromo-bridges (J = 8.31 cm−1) were found. The experimental results indicate that the observed ferromagnetic exchange through dibromo-bridge is weaker than that in the chloride analog (J = 15.0 cm−1). The magnitude of magnetic interactions is discussed on the basis of structural data of compounds 1 and 2 and their halide analogues.  相似文献   

13.
A mononuclear cobalt(II) complex, [Co(ac)2(H2O)2(MeIm)2], with heteroleptic coordination sphere possessing the {CoO2O′2N2} chromophore has been prepared and structurally characterized. The magnetic data down to 2 K show an enhanced magnetic anisotropy manifesting itself in a large zero-field splitting (ZFS) parameter. As a consequence, the magnetization deviates substantially from the Brillouin-function behavior. A fit to the zero-field splitting model gave the following set of magnetic parameters: D/hc = +95 cm−1, gx = 2.530, zj/hc = −0.078, χTIP = 16.7 × 10−9 m3 mol−1, (gz = 2.0). The Griffith-Figgis model and the Generalized Crystal-Field model lie beyond the spin-Hamiltonian formalism; they gave analogous, although not identical ZFS parameters: D/hc = 109 cm−1, and D/hc = 77 cm−1, respectively. The absorption spectrum taken in the FAR-IR region exhibits manifold absorption peaks referring to the transitions among the crystal-field multiplets of the parent 4A2g + 4Eg terms (D4h), originating in a crystal-field splitting of the octahedral 4T1g ground term.  相似文献   

14.
A novel β-mannanase gene (CsMan5A) was cloned from Chaetomium sp. CQ31 and expressed in Pichia pastoris. It had an open reading frame of 1251 bp encoding 416 amino acids and contained two introns. The deduced amino acid sequence shared the highest similarity (73%) with the β-mannanase from Emericella nidulans and belongs to glycosyl hydrolase family 5. The recombinant β-mannanase (CsMan5A) was secreted at extremely high levels of 50,030 U mL−1 and 6.1 mg mL−1 in high cell density fermentor. The purified enzyme was optimally active at pH 5.0 and 65 °C and displayed broad pH stability (pH 5.0-11.0) and exhibited specificity towards locust bean gum (Km = 3.1 mg mL−1), guar gum (Km = 9.3 mg mL−1) and konjac powder (Km = 10.5 mg mL−1). It efficiently degraded mannan polysaccharides into mannose and mannooligosacccharides, and also hydrolyzed mannotriose and mannotetraose. These properties make CsMan5A highly useful in food, feed and paper/pulp industries.  相似文献   

15.
Fourier transform infrared (FT-IR) spectroscopic studies (3500-600 cm−1) showed some different bands of chitosan. The absorption at 3439 cm−1 is stretching vibration of -OH and -NH2 bonds, indicating the association of the hydrogen-bond between them. The bands at 1659, 1599 and 1321 cm−1 are attributable to the peaks of stretching vibrations of amide I (ν(CO)), II (δ(N-H)), and the peak of stretching and bending vibrations of III (ν(C-N)) (δ(N-H)). The chitosan showed strong free radical scavenging activities. Pretreatment with chitosan significantly prevented the decrease of antioxidant enzymes activities and the increase of p-JNK at 3 h after renal ischemia and reduced renal tubular epithelial cell apoptosis.  相似文献   

16.
Sublevel structure of the 8S7/2 electronic ground state of anionic bis(phthalocyaninato)gadolinium(III) has been determined by simulation analysis of an ESR spectrum in frozen solution. The simplex multidimensional minimization algorithm was employed to find the zero-field-splitting parameter set giving the minimum RMS error from the observed spectrum. The parameter set {B20,B40,B60} for the potential of D4d symmetry has been determined to be ±{(1.54 ± 0.01)× 10−2 cm−1, (0.9 ± 0.1)× 10−4 cm−1, (−0.6 ± 0.9)× 10−6 cm−1}. The energy difference between the lowest and highest sublevels has been found to be about 0.5 cm−1.  相似文献   

17.
The in-situ formed hydrazone Schiff base ligand (E)-N′-(2-oxy-3-methoxybenzylidene)benzohydrazide (L2−) reacts with copper(II) acetate to a tetranuclear open cubane [Cu(L)]4 complex which crystallizes as two symmetry-independent (Z′ = 2) S4-symmetrical molecules in different twofold special positions with a homodromic water tetramer. The two independent (A and B) open- or pseudo-cubanes with Cu4O4 cores of 4 + 2 class (Ruiz classification) each have three different magnetic exchange pathways leading to an overall antiferromagnetic coupling with J1B = J2B = −17.2 cm−1, J1A = −36.7 cm−1, J2A = −159 cm−1, J3A = J3B = 33.5 cm−1, g = 2.40 and ρ = 0.0687. The magnetic properties have been analysed using the H = −Σi,jJij(SiSj) spin Hamiltonian.  相似文献   

18.

Background

Online label-free monitoring of in-vitro differentiation of stem cells remains a major challenge in stem cell research. In this paper we report the use of Raman micro-spectroscopy (RMS) to measure time- and spatially-resolved molecular changes in intact embryoid bodies (EBs) during in-vitro cardiogenic differentiation.

Methods

EBs formed by aggregation of human embryonic stem cells (hESCs) were cultured in defined medium to induce differentiation towards cardiac phenotype and maintained in purpose-built micro-bioreactors on the Raman microscope for 5 days (between days 5 and 9 of differentiation) and spatially-resolved spectra were recorded at 24 h intervals.

Results

The Raman spectra showed that the onset of spontaneous beating of EBs at day 7 coincided with an increase in the intensity of the Raman bands at 1340 cm− 1, 1083 cm− 1, 937 cm− 1, 858 cm− 1, 577 cm− 1 and 482 cm− 1. The spectral maps corresponding to these bands had a high positive correlation with the expression of the cardiac-specific α-actinin obtained by immuno-fluorescence imaging of the same EBs. The spectral markers obtained here are also in agreement with previous studies performed on individual live hESC-derived CMs.

Conclusions

The intensity profile of these Raman bands can be used for label-free in-situ monitoring of EBs to estimate the efficacy of cardiogenic differentiation.

General significance

As the acquisition of the time-course Raman spectra did not affect the viability or the differentiation potential of the hESCs, this study demonstrates the feasibility of using RMS for on-line non-invasive continuous monitoring of such processes inside bioreactor culture systems.  相似文献   

19.
Formation equilibria of copper(II) complexes of 2-(aminomethyl)-benzimidazole (AMBI) and the ternary complexes Cu(AMBI)L (L = amino acid, amide, dicarboxylic acid or DNA constituents) have been investigated. Ternary complexes of amino acids or amides are formed by a simultaneous mechanism. Amino acids form the complex Cu(AMBI)L, whereas amides form two complex species Cu(AMBI)L and Cu(AMBI)(LH−1). The ternary complexes of copper(II) with AMBI and dicarboxylic acids or DNA units are formed by a stepwise mechanism, whereby binding of copper(II) to AMBI is followed by ligation of the dicarboxylic acids or DNA components. The values of Δ log K indicate that the ternary complexes containing aromatic amino acids are significantly more stable than the complexes containing alkyl- and hydroxyalkyl-substituted amino acids. This may be taken as an evidence for a stacking interaction between the aromatic moiety of AMBI and the aromatic side chains of the bio-active ligands. The solid complexes Cu(AMBI)L where L = 1,1-cyclobutanedicarboxylic acid (CBDCA) and malonic acid were separated and identified by elemental analysis and infrared spectroscopy and magnetic moment. The decomposition course and steps for the isolated complexes were analyzed and the kinetic parameters of the non-isothermal decomposition were calculated. The hydrolysis of glycine methyl ester (MeGly) is catalyzed by the Cu(AMBI)2+ complex. The kinetic data is fitted assuming that the hydrolysis reaction proceeds in two steps. The first step, involving coordination of the amino acid ester by the amino and carbonyl groups, is followed by rate-determining attack by OH ion. The second step involves the equilibrium formation of the hydroxo-complex Cu(AMBI)(MeGly)(OH) followed by intramolecular OH attack.  相似文献   

20.
The first trinuclear vanadium complex [(talent-Bu2)(VIVO)3] (1) of a triple tetradentate triplesalen ligand has been synthesized and characterized. The triplesalen ligand (talent-Bu2)6- provides three salen-like coordination environments bridged in a meta-phenylene arrangement by a phloroglucinol backbone. In the electronic absorption spectrum of 1 all four ligand field transitions are detected below 21 400 cm−1. The region above 23 000 cm−1 is dominated by strong absorption from imine π → π and ligand-to-ligand CT transitions. The latter may also be described by a combined phenolate-to-vanadium LMCT and vanadium-to-imine MLCT through the empty metal d orbitals in a push-pull type interaction. The temperature-dependent magnetic susceptibility measurements reveal a ferromagnetic coupling of the three VIVO units in the triplesalen complex with J = +0.44 cm−1. The correlation of the electronic structure to the weakness of the ferromagnetic coupling by the spin-polarization mechanism in the trinuclear VO system is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号