首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. In a correlative study, we investigated the relative importance of fish predation, refuge availability and resource supply in determining the abundance and size distributions of the introduced and omnivorous signal crayfish (Pacifastacus leniusculus) in lakes and streams. Moreover, the biomass and food selection of predatory fish was estimated in each habitat type and stable isotopes of carbon and nitrogen were measured in perch (Perca fluviatilis), the dominant predator in the lakes, and in its potential food sources (crayfish, juvenile roach and isopods). 2. In lakes, crayfish were the most frequent prey in large perch (46%), followed by other macroinvertebrates (26%, including the isopod Asellus aquaticus) and small fish (25%). Crayfish and fish dominated the gut contents of large perch with respect to biomass. Nitrogen signatures showed that perch were one trophic level above crayfish (approx. 3.4‰) and a two‐source mixing model using nitrogen isotope values indicated that crayfish (81%) contributed significantly more to perch isotope values than did juvenile roach (19%). A positive correlation was found between the abundance of crayfish and the biomass of large perch. Crayfish abundance in lakes was also positively correlated with the proportion of cobbles in the littoral zone. Lake productivity (chlorophyll a) was positively correlated with crayfish size, but not with crayfish abundance. 3. In streams, brown trout (Salmo trutta) were the most abundant predatory fish. Gut contents of large trout in a forested stream showed that terrestrial insects were the most frequently found prey (60%), followed by small crayfish (27%) and isopods (27%). In contrast to lakes, the relative abundance of crayfish was negatively correlated with the total biomass of predatory fish and with total biomass of trout. However, abundance of crayfish at sites with a low biomass of predatory fish varied considerably and was related to substratum grain size, with fewer crayfish being caught when the substratum was sandy or dominated by large boulders. The mean size of crayfish was greater at stream sites with a high standing stock of periphyton, but neither predator biomass nor substratum grain size was correlated with crayfish size. 4. Our results suggest that bottom‐up processes influence crayfish size in lakes and streams independent of predator biomass and substratum availability. However, bottom‐up processes do not influence crayfish abundance. Instead, substratum availability (lakes) and interactions between predation and substratum grain size (streams) need to be considered in order to predict crayfish abundance.  相似文献   

2.
SUMMARY. 1. The impact of crayfish predation on the abundance of macroinvertebrates was examined under semi-natural conditions. Female (Experiment 1) or male (Experiment 2) crayfish (Orconectes virilis) were held for 5 weeks in twelve small pools (4.67 m2 surface area) at biomasses of 0. 5, 10 or 18 g m?2 (live weight). The pools were stocked with known densities of macroinvertebrates. 2. Crayfish significantly affected the abundance of macroinvertebrates in the pools. Differences in the effects of crayfish on macroinvertebrates were related to crayfish sex, the presence of age-0 crayfish, and the species of macroinvertebrate. 3. The abundance of snails (Stagnicola elodes and Physa gyrina) was greatly reduced, in comparison with controls, by biomass of female crayfish ≥10 g m?2 and by biomasses of male crayfish ≥5 g m?2. The total density of non-molluscan invertebrates was inversely correlated with the biomass of female crayfish but the total biomass of non-molluscan invertebrates did not differ between treatments. This is consistent with our observation that small invertebrates (<2 mg wet weight) were less numerous, and large amphipods (32–64 mg) were more numerous, in pools stocked with female crayfish. In contrast, male crayfish had little apparent effect on the abundance of non-molluscan invertebrates. 4. Age-0 crayfish hatched at the end of Experiment 1 and were present in each pool at the start of Experiment 2. Surprisingly, male crayfish preyed little on age-0 crayfish. At the end of Experiment 2, the densities of age-0 crayfish varied between six and 116 individuals m?2 and there was a strong inverse correlation between the mean biomass and density of age-0 crayfish recovered from the pools. This suggests age-0 crayfish were food limited in the pools and may explain the dominance of oligochaetes (which largely escape predation by burrowing) in the invertebrate community at the end of Experiment 2. 5. These results indicate that even relatively low densities of crayfish could greatly affect the abundance of macroinvertebrates in lakes. The introduction of crayfish into lakes (most lakes in Alberta currently have no crayfish) could substantially affect abundance and species composition of the macroinvertebrate community and, ultimately, the fish populations.  相似文献   

3.
Aquatic predators and habitat permanence can jointly affect benthic invertebrate biomass and community composition. In 2006 I sampled fish and invertebrates in ten ponds embedded in a seasonal wetland before and after a natural drought. Drought reduced fish biomass and density leaving some ponds in a fishless condition when rains returned in July. In July, large aquatic insects and crayfish colonized and reproduced in the ponds, but did not colonize all of the ponds equally. Using measurements of fish abundance and other environmental parameters of the ponds, I conducted linear regression analyses to explore potential drivers of variable invertebrate biomass in July. Fish biomass had a negative effect on invertebrate biomass and it explained more of the variation in total invertebrate biomass and total non-shrimp biomass than fish abundance (number of fish caught). Dissolved oxygen and pond depth were both correlated with fish biomass, but were poorer predictors of invertebrate biomass. Ponds with few or no fish had 20× greater total biomass and 200× more non-shrimp biomass than ponds with high fish biomass. Shrimp dominated the invertebrate composition, and were only found in the two deepest ponds with the highest fish biomass; predatory insects and crayfish dominated the other eight ponds. When taxa were analyzed separately, fish biomass explained a large portion of the variation for predatory insects (Coleoptera, Hemiptera, and Odonata) and crayfish (Procambarus alleni), but dissolved oxygen was the best predictor of larval stratiomyid (order Diptera) biomass. These results are generally consistent with studies demonstrating negative effects of fish on large predatory invertebrates, but also suggest that more severe local droughts can seasonally enhance insect and crayfish populations by generating fishless or nearly fishless conditions. Handling editor: J. Trexler  相似文献   

4.
The production of the young stages of four species of cyprinid fish in the River Thames was estimated. From the time when underyearling fish became fully vulnerable to the special fine mesh net used, to the end of their first year, production is 39 g/ma/year compared with 83-3 g/m2/year for fish over 1-year old. The contribution of fecundity to population production varied widely, from 6.1 to 0.4 g/m2/year, but was only a small part of total production. The most productive part of the population was that found between spawning and prior to full vulnerability to the net. Production of this part of the population could be estimated only indirectly and was found to be 58-6 g/m2/year. In the four populations studied production during the first year of life was 66 to 73 % of total cohort production in 1967 and only 39 to 64% in 1968. Total fish production in the Thames was estimated at 197 k cal/m2/year; this high result is a consequence of the very high densities found: up to 96-9 fish/m2 were present in August 1967. Ten km of the Thames would contain about 54 000 000 fish in August, falling to around 8 000 000 in winter. The production: biomass ratios for the four species varied from 1–1 to 1'9 in 1967 and from 0–7 to 2-0 in 1968.
Very heavy, possibly density dependent, mortality occurs in the first year of life; the annual instantaneous mortality rates are very high, ranging from 6–4 to 8–7. Mortality is heaviest during the first 2 to 3 months after spawning; the instantaneous mortality rates during this period vary from 4-0 to 7-3.  相似文献   

5.
Patterns in benthic food webs: a role for omnivorous crayfish?   总被引:10,自引:0,他引:10  
1. The biomass and species richness of macrophytes and invertebrates in artificial ponds at two sites in southern Sweden (twenty-one ponds at each site) were investigated. Alkalinity was high at one site (H ponds) and low at the other site (L ponds). The ponds chosen had different densities of signal crayfish (Pacifastacus leniusculus), with mean crayfish abundance (estimated by trapping and expressed as catch per unit effort) significantly higher in the L ponds (10.7) than in the H ponds (4.9). Macrophytes, invertebrates, the amount of periphyton on stones and the organic content of the sediment were determined in each pond. 2. Macrophyte biomass, cover and species richness declined with increasing crayfish density. Macrophyte species composition differed between ponds and was related to crayfish abundance. 3. The total biomass of invertebrates and the biomass of herbivorous/detritivorous invertebrates declined with increasing crayfish abundance, but the biomass of predatory invertebrates declined only in the L ponds. The relative biomass of Gastropoda and Odonata declined in ponds where crayfish were abundant. In ponds where crayfish were abundant the invertebrate fauna was dominated by sediment-dwelling taxa (Sialis (H and L ponds) and Chironomidae (H ponds)). 4. The number of invertebrate taxa in macrophytes declined with increasing crayfish abundance. The percentage of macrophyte-associated invertebrate taxa differed between ponds, but also between sites. The relative biomass of Gastropoda declined in H ponds where crayfish were abundant. In H ponds Trichoptera or Gammarus sp. and Heteroptera dominated where crayfish were abundant, whereas Odonata dominated in L ponds with abundant crayfish. 5. The organic content of the sediment decreased in ponds with high crayfish densities, while the amount of periphyton on stones was not related to crayfish density. 6. We conclude that the signal crayfish may play an important role as a keystone consumer in pond ecosystems, but lower trophic levels did not respond to changes in the abundance of the crayfish according to the trophic cascade model. Omnivorous crayfish may decouple the cascading effect.  相似文献   

6.
Estuaries are well known for their role as nutrient and detrital sinks that stimulate high levels of both primary and secondary production which, in turn, support a large biomass of fishes per unit area. This study reviews available information on coastal fish biomasses (g m?2 wet mass) and productivity (g m?2 wet mass year?1) in order to place South African data on these topics into a global perspective. Using biogeographic fish productivity estimates, together with estuarine water area, the approximate annual teleost production in South African estuaries was calculated at 585, 1706 and 13 904 t in the cool temperate, warm temperate and subtropical regions, respectively. Total annual fish production in estuaries on the subcontinent is conservatively estimated at 16 195 t, but this figure is likely to fluctuate widely, depending on recruitment success and annual environmental conditions pertaining to these systems. Approximately 2000 t of fish are estimated to be harvested by fishing activities in South African estuaries each year, which represents c. 12% of annual fish production. Although this figure may appear sustainable, the reality is that there are a few heavily targeted estuary‐associated marine species at the top of the food chain that are being overexploited by both anglers and subsistence fishermen. Natural mortalities due to piscivorous fish and bird predation has been estimated at c. 3% of total fish biomass per month in the East Kleinemonde Estuary, but this figure will vary considerably depending on bird abundance and foraging patterns along the coast. In contrast to catches made by the fishermen, piscivorous fishes and birds are targeting mainly juvenile marine fish and small estuarine resident species that are very abundant and generally low down in the food web.  相似文献   

7.
Quantitative samples were used to investigate density, biomass and annual production of the benthic invertebrate fauna in a small Danish stream. Forty-eight taxa were found and the total invertebrate densities varied from 3 810 m?2 in July to 20 040 m?2 in December. The total mean annual biomass of the invertebrate fauna was 6.1 g ash-free dry wt m?2. The annual production of the invertebrates was estimated from their mean annual biomass and their annual P/B ratio. Production of the primary consumers (herbivores and detritivores) was 21.4 g ash-free dry wt m?2 y?1 and of secondary consumers (carnivores) 1.1 g m?2 y?1. The amount of invertebrate production available to the trout population and the importance of the species as food for trout are discussed.  相似文献   

8.
The introduction of the alocthonous Louisiana red swamp crayfish (Procambarus clarkii) in Chozas (a small shallow lake situated in León (North-West Spain)) in 1996 switched the clear water conditions that harboured an abundant and a quite high richness of plants, invertebrates, amphibians and birds to a turbid one followed by strong losses in abundance and richness in the aforementioned groups. Crayfish exclusion experiments done in Chozas previous to this work confirmed the role of crayfish herbivorism on macrophyte destruction that had a trophic cascade effect on the wetland ecosystem. Direct and indirect effects of crayfish introduction on Chozas lake communities have been evaluated and compared with previous conditions before 1996 or with other related lakes in which crayfish were no present. Crayfish had a main role in submerged plant destruction and a potential effect on amphibia and macroinvertebrate population decrease. Plant destruction (99 % plant coverage reduction) was directly related to invertebrates (71 % losses in macroinvertebrate genera), amphibia (83 % reductions in species), and waterfowls (52 % reduction). Plant-eating birds were negatively affected (75 % losses in ducks species); nevertheless, fish and crayfish eating birds increased their presence since the introduction. Introduction of crayfish in shallow plant-dominated lakes in Spain is a main risk for richness maintenance in these endangered ecosystems. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
1. We examined the export of invertebrates (aquatic and terrestrial) and coarse organic detritus from forested headwaters to aquatic habitats downstream in the coastal mountains of southeast Alaska, U.S.A. Fifty‐two small streams (mean discharge range: 1.2–3.6 L s?1), representing a geographic range throughout southeast Alaska, were sampled with 250‐μm nets either seasonally (April, July, September) or every 2 weeks throughout the year. Samples were used to assess the potential subsidy of energy from fishless headwaters to downstream systems containing fish. 2. Invertebrates of aquatic and terrestrial origin were both captured, with aquatic taxa making up 65–92% of the total. Baetidae, Chironomidae and Ostracoda were most numerous of the aquatic taxa (34, 16 and 8%, respectively), although Coleoptera (mostly Amphizoidae) contributed the greatest biomass (30%). Mites (Acarina) were the most numerous terrestrial taxon, while terrestrial Coleoptera accounted for most of the terrestrial invertebrate biomass. 3. Invertebrates and detritus were exported from headwaters throughout the year, averaging 163 mg invertebrate dry mass stream?1 day?1 and 10.4 g detritus stream?1 day?1, respectively. The amount of export was highly variable among streams and seasons (5–6000 individuals stream?1 day?1 and <1–22 individuals m?3 water; <1–286 g detritus stream?1 day?1 and <0.1–1.7 g detritus m?3 water). Delivery of invertebrates from headwaters to habitats with fish was estimated at 0.44 g dry mass m?2 year?1. We estimate that every kilometre of salmonid‐bearing stream could receive enough energy (prey and detritus) from fishless headwaters to support 100–2000 young‐of‐the‐year (YOY) salmonids. These results illustrate that headwaters are source areas of aquatic and terrestrial invertebrates and detritus, linking upland ecosystems with habitats lower in the catchment.  相似文献   

10.
The role of omnivorous crayfish in littoral communities   总被引:5,自引:0,他引:5  
Dorn NJ  Wojdak JM 《Oecologia》2004,140(1):150-159
Large omnivorous predators may play particularly important roles determining the structure of communities because of their broad diets and simultaneous effects on multiple trophic levels. From June 2001 to June 2002 we quantified community structure and ecosystem attributes of six newly establishing freshwater ponds (660 m2 each) after populations of omnivorous crayfish (Orconectes virilis) were introduced to three of the ponds. Crayfish preyed heavily on fish eggs in this experiment, which reduced recruitment of young-of-year fish. This effect indirectly enhanced zooplankton biomass in crayfish ponds. Phytoplankton abundance exhibited a more complex pattern and was probably influenced by non-trophic (e.g., bioturbation) effects of crayfish. Peak dissolved oxygen levels were lower in the crayfish ponds indicating that they had lower primary production: respiration ratios. Metaphytic algae were strongly affected by crayfish presence; filamentous greens quickly disappeared and the blue-green Gleotrichia (a less preferred food item) eventually dominated the composition in crayfish ponds. Chara vulgaris and vascular macrophytes established 34% cover in control ponds by June 2002, but were not able to establish in crayfish ponds. Two important periphyton herbivores (tadpoles and gastropods) were absent or significantly reduced in the crayfish ponds, but periphyton differences were temporally variable and not easily explained by a simple trophic cascade (i.e., crayfish—snails and tadpoles—periphyton). Our results indicate that crayfish can have dramatic direct and indirect impacts on littoral pond communities via feeding links with multiple trophic levels (i.e., fish, invertebrates, and plants) and non-trophic activities (bioturbation). Although the effects of omnivorous crayfish on littoral communities can be large, their complex effects do not fit neatly into current theories about trophic interactions or freshwater community structure.  相似文献   

11.
Pike in the Ruidera Lakes (central Spain) chiefly ate the recently introduced crayfish Procambarus clarkii . It was the dominant prey in occurrence, number and biomass for every size class and season. Likewise, number (up to 27) and total weight of ingested crayfish were directly related with pike size. The principal prey fish were all introduced species (except the endangered Blennius fluviatilis ), most native species having disappeared since pike were introduced in 1953. (c) 1996 The Fisheries Society of the British Isles  相似文献   

12.
The fungal flora in different parts of a beech forest ecosystem was investigated through a four year period as part of an IBP project. Both colony counts and direct measurements of fungal mycelium indicated that a vast majority of the fungal biomass is concentrated in the upper horizons of the soil, especially in the mull layer. The litter also contained large amounts of fungi when calculated per g dry weight, but still the litter fungi accounted for only a quite small percentage of the total fungal biomass. The fungi growing in direct contact with the living plants, i.e. in the rhizosphere and phylloplane, also accounted for only a few per cent of the total amount of fungi in the ecosystem.
On basis of direct measurements of fungal mycelium the total biomass was estimated to be about 100 g dry wt per m2. However, no attempts were made to distinguish between living and dead hyphae, and a large proportion of the observed hyphae may very well be dead or inactive.
Qualitative studies revealed that the upper soil layers not only contained the largest amounts of fungal mycelium, but also by far the highest species diversity. Other parts of the ecosystem, e.g. the phylloplane, were often strongly dominated by one or a few species, whereas soil always contained a large variety of different types.  相似文献   

13.
1. A 2‐year study was carried out on the roles of nutrients and fish in determining the plankton communities of a shallow lake in north‐west Spain. Outcomes were different each year depending on the initial conditions, especially of macrophyte biomass. In 1998 estimated initial ‘per cent water volume inhabited’ (PVI) by submerged macrophytes was about 35%. Phytoplankton biomass estimated as chlorophyll a was strongly controlled by fish, whereas effects of nutrient enrichment were not significant. In 1999 estimated PVI was 80%, no fish effect was observed on phytoplankton biomass, but nutrients had significant effects. Water temperatures were higher in 1998 than in 1999. 2. In the 1998 experiment, cladoceran populations were controlled by fish and cyanobacteria were the dominant phytoplankton group. There were no differences between effects of low (4 g fresh mass m?2) and high (20 g fresh mass m?2) fish density on total zooplankton biomass, but zooplankton biomass was higher in the absence of fish. With the high plant density in 1999, fish failed to control any group of the zooplankton community. 3. Total biovolume of phytoplankton strongly decreased with increased nutrient concentrations in 1998, although chlorophyll a concentrations did not significantly change. At higher nutrient concentrations, flagellate algae became more abundant with likely growth rates that could have overcompensated cladoceran feeding rates. This change in phytoplankton community composition may have been because of increases in the DIN : SRP ratio. Both chlorophyll a concentration and total phytoplankton biovolume increased significantly with nutrients in the 1999 experiment. 4. A strong decline of submerged macrophytes was observed in both years as nutrients increased, resulting in shading by periphyton. This shading effect could account for the plant decline despite lower water turbidity at the very high nutrient levels in 1998.  相似文献   

14.
1. The introduction of invasive species is one of the main threats to global biodiversity, ecosystem structure and ecosystem processes. In freshwaters, invasive crayfish alter macroinvertebrate community structure and destroy macrophyte beds. There is limited knowledge on how such invasive species‐driven changes affect consumers at higher trophic levels. 2. In this study, we explore how the invasive rusty crayfish Orconectes rusticus, a benthic omnivore, affects benthic macroinvertebrates, as well as the broader consequences for ecosystem‐level trophic flows in terms of fish benthivory and trophic position (TP). We expected crayfish to decrease abundance of benthic macroinvertebrates, making most fish species less reliant on benthic resources. We expected crayfish specialists (e.g. Lepomis sp. and Micropterus sp.) to increase their benthic dependence. 3. In 10 northern Wisconsin lakes, we measured rusty crayfish relative abundance (catch per unit effort, CPUE), macroinvertebrate abundance, and C and N stable isotope ratios of 11 littoral fish species. We used stable isotope data and mixing models to characterise the trophic pathways supporting each fish species, and related trophic structure to crayfish relative abundance, fish body size and abiotic predictors using hierarchical Bayesian models. 4. Benthic invertebrate abundance was negatively correlated with rusty crayfish relative abundance. Fish benthivory increased with crayfish CPUE for all 11 fish species; posterior probabilities of a positive effect were >95%. TP also increased slightly with crayfish CPUE for some species, particularly smallmouth bass, largemouth bass, rock bass and Johnny darter. Moreover, both fish body size and lake abiotic variables explained variation in TP, while their effects on benthivory were small. 5. Rusty crayfish abundance explained relatively little of the overall variation in fish benthivory and TP. Although rusty crayfish appear to have strong effects on abundances of benthic macroinvertebrates, energy flow pathways and trophic niches of lentic fishes were not strongly influenced by invasive rusty crayfish.  相似文献   

15.
La Guajira is an exploited tropical upwelling ecosystem in the Colombian Caribbean coast. A trophic model of 27 functional groups was constructed using the ECOPATH 5.0 Beta software to integrate the available information on the ecosystem. The model allowed a comparison with other trophic flow models of upwelling ecosystems. Total system biomass (68 t/km2/year), net system production (1,248.5 t/km2/year), and total system throughput (3,275 t/km2/year) make La Guajira moderate when compared with other systems. The largest amount of energy throughput is achieved from trophic level I to II (68.93 %), although an important proportion of the total flow originates from detritus (32 %). The production/respiration ratio exceeds 1, suggesting that La Guajira is an immature ecosystem and is in development, as determined by its low ascendency (33.7 %) and high development capacity (66.3 %), similar to other upwellings that have values of ascendency between 20 % and 35 %. Although the basic input data were good and covered 1995 to 2000, appropriate information is still not available on some trophic groups such as biomass (for phytoplankton, invertebrates, catfishes and pelagic predator fishes), secondary production data (invertebrates, pelagic predator fishes, and small pelagic fishes), and seabird and mammal populations, which are top trophic levels and an essential part of upwelling ecosystems.  相似文献   

16.
1. The effects of omnivorous exotic species on native communities are often difficult to predict because of the broad diets and behavioural flexibility of the omnivore, and the diverse abiotic and biotic characteristics of invaded systems. We investigated experimentally the effects of a gradient of density of the introduced, omnivorous red swamp crayfish Procambarus clarkii (Decapoda: Cambaridae) on two stream communities in southern California, U.S.A. 2. The Ventura River is a clear, flowing stream with a cobble substratum, with abundant algae but low densities of large invertebrates, small herbivores and snails. The Santa Ynez River at the time of the study consisted of a series of drying pools underlain by sand, with abundant charophytes, large predatory invertebrates and herbivores, including snails. 3. In the Ventura River, periphyton biomass and inorganic sediment decreased with increasing crayfish abundance, but in the Santa Ynez River, periphyton and sediment were unrelated to crayfish densities. 4. In the Ventura River, the biomass and density of all benthic invertebrates combined, chironomids, micropredators, the meiofauna (chydorid cladocerans, copepods and ostracods), and specific predatory and herbivorous taxa, as well as taxon richness, were negatively related to crayfish density. In the Santa Ynez River, the biomass and average body size of benthic invertebrates, predatory invertebrates, herbivores and chironomids, but not total invertebrate density or taxon richness, were negatively related to crayfish density. 5. Fewer large predatory invertebrates and snails (Physella gyrina) in both streams, and baetid mayflies in the Ventura River, were visible at night in channels where crayfish were abundant. Snails responded to crayfish by moving above the water line in the Santa Ynez River, but not in the Ventura River. 6. We suggest that the same omnivore had different effects on these neighbouring streams because of crayfish predation on large invertebrates in the Santa Ynez River and the scarcity of such prey in the Ventura River, leading to increased crayfish grazing on periphyton, and reductions in periphyton‐associated invertebrates, in the Ventura River.  相似文献   

17.
This article considers the role of marine mammals in a sea or ocean ecosystem based on the example of the Far Eastern seas with adjacent waters of the North Pacific, which is one of the regions of the World Ocean that is distinguished by its high biological and fish capacity and by a high abundance of cetaceans and pinnipeds. Based on extensive data, which was published mostly by Russian experts, the authors have estimated the quantities of annual consumption of fish and invertebrates by marine mammals in three Far Eastern seas: 14.6–18.2 million tons in the early 20th century; 12.3–15.1 million tons in the late 1970s; 22.7–28.8 million tons in the pre-harvest period; and 24.0–24.7 million tons in the early 21st century (27.0–29.5 million tons, if 3–5 million tons in ocean waters off the Kuril Islands and Kamchatka are taken into account). More than half of this quantity is formed by zooplankton and zoobenthos; the second largest portion consists of fish and squid. At the same time, the values of food consumption by fish and large invertebrates are much higher than these estimates for the 0–1000 m layer: 516 million tons were consumed in the 1980s–1990s; 389 million tons in 1991–1995; and 461 million tons in 1996–2005. In the years of high abundance, large walleye pollock alone consumed nearly 40 million tons of small fish and squid. Based on the data of 35-year-long ecosystem studies that were conducted by the Pacific Research Fisheries Center (TINRO Center), the following biomass estimates have been obtained for the biota of the Far Eastern Economic Zone of Russia: mesoand macroplankton, 1000 million tons; zoobenthos, 500 million tons; nekton, 100 million tons; benthic fish, 5 million tons; and large benthic invertebrates that are not included in the benthos, 2.43 million tons. By using these estimates and by comparing the quantities of food consumption by marine mammals, the conclusion was made that the role of marine mammals in food webs of waters of the Russian Far East is remarkable, but it does not reach a level that is high enough to regulate such a large-scale ecosystem as the macro-ecosystem of a sea or ocean.  相似文献   

18.
Mortierella isabellina cultivated in nitrogen-limited media presented remarkable cell growth (up to 35.9 g/l) and high glucose uptake even with high initial sugar concentrations (e.g. 100 g/l) in media. After nitrogen depletion, significant fat quantities were accumulated inside the fungal mycelia (50-55%, wt/wt oil in dry biomass), resulting in a notable single cell oil production of 18.1 g/l of culture medium. Total dry biomass and lipid yields presented greatly increased values (0.34 and 0.17 g respectively per gram of glucose consumed). The microbial lipid produced contained gamma-linolenic acid (GLA) at a concentration of 3.5+/-1.0%, wt/wt, which corresponded to 16-19 mg GLA per gram of dry microbial mass and a maximum concentration of 0.801 g GLA per liter of culture medium.  相似文献   

19.
During a 6-year field study on the game farm ‘Benfontein’ in the central Republic of South Africa 1725 prey items were observed consumed by 17 free-ranging habituated black-footed catsFelis nigripes Burchell, 1824. Average prey size was 24.1 g. Eight males fed on significantly larger prey (27.9 g) than 9 females (20.8 g). Fifty-four prey species were classified by their average mass into 8 different size classes, 3 for mammals, 3 for birds, 1 for amphibians/reptiles, and 1 for invertebrates. Small mammals (5–40 g) constituted the most important prey class (39%) of total prey biomass followed by larger mammals (>100 g; 17%) and small birds (<40 g; 16%). Mammals and birds pooled comprised 72% and 26% of total prey biomass, respectively, whereas invertebrates and amphibians/reptiles combined constituted just 2% of total prey mass consumed. Three seasons of 4-months duration were recognized. Heterotherm prey items were unavailable during winter, when larger birds and mammals (> 100 g) were mainly consumed. Small rodents like the large-eared mouseMalacothrix typica, captured 595 times by both sexes, were particularly important during the reproductive season for females with kittens. Male black-footed cats showed less variation between prey size classes consumed among climatic seasons. This sex-specific difference in prey size consumption may help to reduce intra-specific competition.  相似文献   

20.
Fish landings in the Baltic Sea from 1970 to 2000 were used as a proxy for fish biomass to explore variability of total fish biomass. Total demersal (total D) and total pelagic (total P) landings proved relatively invariant over time compared with most of their component species. This was explained in terms of the energy limitation imposed on the ecosystem by its carrying capacity, forcing species interactions (predation, competition, etc.) with compensations that allowed the total biomasses to remain relatively stable. Extensive interactions were demonstrated among the Baltic fish species by linear correlation with appropriate negative signs, indicating compensatory interactions consistent with the energy limitation theory. The variances of the landings of cod, herring, sprat and total landings reflected the magnitudes of variation of their biomasses as estimated from the Virtual Population Analysis (VPA), thus justifying the use of landings data in this analysis as a proxy for biomass. Significant demersal–pelagic coupling was indicated from the landings data, which could be explained by trophic interactions. Species interactions generally explained between 17 and 66% of the variations in landings. Thus, substantial portions of the variations in the landings must be attributed to other factors: biological, fishery and environmental.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号