首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The oxygen distribution in the retina of six anesthetized macaques was investigated as a model for retinal oxygenation in the human retina in and adjacent to the fovea. P(O2) was measured as a function of retinal depth under normal physiological conditions in light and dark adaptation with O(2) microelectrodes. Oxygen consumption (Q(O2)) of the photoreceptors was extracted by fitting a steady-state diffusion model to P(O2) measurements. In the perifovea, the P(O2) was 48 +/- 13 mmHg (mean and SD) at the choroid and fell to a minimum of 3.8 +/- 1.9 mmHg around the photoreceptor inner segments in dark adaptation, rising again toward the inner retina. The P(O2) in the inner half of the retina in darkness was 17.9 +/- 7.8 mmHg. When averaged over the outer retina, photoreceptor Q(O2) (called Q(av)) was 4.6 +/- 2.3 ml O(2).100 g(-1).min(-1) under dark-adapted conditions. Illumination sufficient to saturate the rods reduced Q(av) to 72 +/- 11% of the dark-adapted value. Both perifoveal and foveal photoreceptors received most of their O(2) from the choroidal circulation. While foveal photoreceptors have more mitochondria, the Q(O2) of photoreceptors in the fovea was 68% of that in the perifovea. Oxygenation in macaque retina was similar to that previously found in cats and other mammals, reinforcing the relevance of nonprimate animal models for the study of retinal oxygenation, but there was a smaller reduction in Q(O2) with light than observed in cats, which may have implications for understanding the influence of light under some clinical conditions.  相似文献   

2.
These experiments were done to investigate the effects of light and darkness on the oxygenation of the retina in anesthetized cats. Measurements were made with double-barreled oxygen microelectrodes capable of recording both oxygen tension (PO2) and local voltages. Diffuse white illumination presented to a dark-adapted retina led to an increase in PO2 of up to 30 mmHg in the outer half of the retina. Changes were maximal at approximately 75% depth, corresponding to the outer nuclear layer. No change or decrease in PO2 was observed in the inner retina. Light-evoked increases in outer retinal PO2 were graded with the duration and strength of illumination, and were maximal in response to 60 s of illumination at rod saturation. For these stimuli, the increase at the onset of illumination was slower (average half-time, 12.2 s) than the recovery at the end of illumination (average half-time, 5.9 s), but for stimuli above rod saturation, PO2 recovered much more slowly. The profile of PO2 was measured during electrode penetration and withdrawal and during light and dark adaptation. Dark-adapted profiles were characterized by a minimum PO2 of nearly 0 mmHg at depths of 65-85%, and a steep gradient from the minimum to the choroid. During light adaptation at rod saturation, PO2 was elevated in the outer half of the retina and the minimum was eliminated. Fits of the profiles to a one-dimensional model of oxygen diffusion indicated that light reduced the oxygen consumption of the outer retina to approximately 50% of its dark-adapted value.  相似文献   

3.
The relationship between renal oxygen delivery (RDO2) and function was evaluated during progressive hypoxemia. Seven anesthetized, spontaneously breathing dogs were given progressively lower oxygen concentrations to breathe while monitoring renal O2 consumption (RVO2), renal hemodynamic and excretory function. In addition, basal RVO2 was determined in three models of kidneys without filtration. RDO2 averaged 3648 mumole O2/min/100 g during normoxia. Basal RVO2 averaged 100 mumole O2/min/100 g kidney while total RVO2 was 466 mumole O2/min/100 g kidney during normoxia, leaving 366 mumole O2/min/100 g consumed by those processes involved in tubular transport. During hypoxemia, all renal parameters were well maintained until the lowest PaO2 (24.2 Torr). At this level, total RVO2 and RDO2 were significantly reduced. However, RDO2 remained well above RVO2 throughout hypoxemia. The reduction in RVO2 was a direct result of decreased O2 demand, as glomerular filtration and tubular load were also reduced. This associated decrease in O2 demand and RVO2 was indicated by the fact that the renal (a - v)O2 difference remained low and unchanged (1.9 vol%), fractional sodium excretion was unchanged, and the ratio of tubular sodium reabsorption to RVO2 also remained unchanged (30.8 meq Na/mmole O2). It was concluded that hypoxemia, while reducing both RDO2 and RVO2 at the lowest PaO2 (24.2 Torr), did not functionally impair renal excretory function by limiting RDO2 to the tubular transport processes. A reduction in RBF is far more likely to compromise the RDO2 needed to sustain basal and active transport processes than hypoxemia itself.  相似文献   

4.
Skeletal muscle O2 consumption and energy metabolism during hypoxemia   总被引:2,自引:0,他引:2  
We determined the relationship of O2 transport (TO2) to O2 consumption (VO2) and to changes in cellular bioenergetics in an isolated blood-perfused rabbit hindlimb preparation (n = 8) during hypoxemia. The preparations were subjected to reductions in TO2 by progressively decreasing partial pressure of arterial O2 (PaO2). At each level of PaO2 we obtained simultaneous measures of arterial and venous blood gases, venous lactate concentration, and changes in the relative concentrations of inorganic phosphate, phosphocreatine, and ATP measured with 31P magnetic resonance spectroscopy. The ratio of the change in vascular resistance (R) to the corresponding decrease in TO2 was taken as an index of vascular autoregulation with hypoxemia. Linear and logarithmic functions were fitted by least squares to the TO2-VO2 data from each experiment. TO2-VO2 relationships were characterized as O2 conforming (linear function, n = 4) or O2 regulating (logarithmic function, n = 4), depending on the goodness of fit. Those preparations showing an O2-conforming pattern had higher control VO2 (2.42 +/- 0.14 vs. 1.66 +/- 0.19 ml.min-1.kg-1; P less than 0.05) and a lesser degree of vascular autoregulation (0.07 +/- 0.03 vs. 0.21 +/- 0.02; P less than 0.01) than the O2-regulating group. Decreases in VO2 were always accompanied by increases in inorganic phosphate and lactate and decreases in phosphocreatine, indicating O2 supply limitation and anaerobic ATP production. There was no evidence of cellular adaptation to hypoxia by decreasing energy needs or of VO2 limitation by the depletion of adenine nucleotides.  相似文献   

5.
Oxygen consumption during constant-load exercise   总被引:5,自引:0,他引:5  
  相似文献   

6.
When cat retina is incubated in vitro with the fluorescent dye, 4',6-diamidino-2-phenyl-indole (DAPI), a uniform population of neurons is brightly labelled at the inner border of the inner nuclear layer. The dendritic morphology of the DAPI-labelled cells was defined by iontophoretic injection of Lucifer yellow under direct microscopic control: all the filled cells had the narrow-field bistratified morphology that is distinctive of the AII amacrine cells previously described from Golgi-stained retinae. Although the AII amacrines are principal interneurons in the rod-signal pathway, their density distribution does not follow the topography of the rod receptors, but peaks in the central area like the cone receptors and the ganglion cells. There are some 512 000 AII amacrines in the cat retina and their density ranges from 500 cells per square millimetre at the superior margin to 5300 cells per square millimetre in the centre (retinal area is 450 mm2). The isodensity contours are kite-shaped, particularly at intermediate densities, with a horizontal elongation towards nasal retina. The cell body size and the dendritic dimensions of AII amacrines increase with decreasing cell density. The lobular dendrites in sublamina a of the inner plexiform layer span a restricted field of 16-45 microns diameter, while the arboreal dendrites in sublamina b form a varicose tree of 18-95 microns diameter. The dendritic field coverage of the lobular appendages is close to 1.0 (+/- 0.2) at all eccentricities whereas the coverage of the arboreal dendrites doubles within the first 1.5 mm and then remains constant at 3.8 (+/- 0.7) throughout the periphery.  相似文献   

7.
8.
9.
Effect of flow on O2 consumption during progressive hypoxemia   总被引:1,自引:0,他引:1  
Rabbit hindlimb preparations perfused with blood from donor rabbits were used to determine whether O2 consumption (VO2) during hypoxemia is limited by total O2 transport (TO2) or by capillary O2 driving pressure, as reflected by the venous PO2 (PVO2). The preparations were randomized into two groups: low flow (LF) and high flow (HF), perfused at 18 and 32 ml.min-1.kg of preparation wt-1, respectively. After a 1-h base-line period with arterial PO2 (PaO2) greater than 100 Torr, both groups were exposed to progressive decrements in PaO2 to less than 10 Torr. Sequential sets of arterial and venous blood gases were obtained, and VO2, TO2, and O2 extraction ratio (ERO2) were calculated. A plot of PVO2 vs. TO2 showed higher levels of PVO2 (P less than 0.05) in LF than HF, when compared at similar levels of TO2. Therefore the experimental protocol allowed the comparison of the separate effects of TO2 or PVO2 on VO2. Plotting VO2 as a function of TO2 revealed two distinct curves (P less than 0.05), with LF having a greater VO2 than HF at a given TO2. Conversely, a plot of VO2 as a function of PVO2 did not show a difference between the groups. The ERO2 of LF was greater than HF when compared at similar levels of TO2 (P less than 0.05). We conclude from these data that during progressive hypoxemia VO2 appears to be primarily limited by factors that determine capillary O2 diffusion. This conclusion supports the Kroghian theory of capillary O2 exchange.  相似文献   

10.
In cat retinal wholemounts, substance-P-like immunoreactivity (SP-IR) was localized in a distinct population of amacrines whose cell bodies were normally placed in the ganglion cell layer. Although displaced amacrines accounted for 80-95% of the SP-IR amacrines in peripheral retina, this proportion decreased considerably within the area centralis, accounting for 50-80% of the labelled cells at maximum density. The SP-IR cells in both the inner nuclear and ganglion cell layers gave rise to well-defined varicose dendrites of uniform appearance that stratified around 60% depth (S3/S4) of the inner plexiform layer. In addition, sparse fine dendrites in stratum 1 (S1) could sometimes be traced to inner nuclear cells and occasionally to displaced amacrines. The combined SP-IR cell density ranged from less than 50 cells mm-2 in the far periphery to more than 500 cells mm-2 in the area centralis; the maximum density showed little individual variation despite wide differences in the proportion of displaced cells. The 39,000 SP-IR amacrines in a mapped retina had a triangular topographic distribution, with intermediate isodensity lines extending vertically in superior retina and horizontally along both arms of the visual streak. Colocalization experiments established that all SP-IR cells in cat retina showed GABA-like immunoreactivity, and that the SP-IR amacrines were quite distinct from the cholinergic amacrines identified by choline acetyltransferase immunohistochemistry.  相似文献   

11.
Rhodopsin kinetics in the cat retina   总被引:3,自引:2,他引:1       下载免费PDF全文
The bleaching and regeneration of rhodopsin in the living cat retina was studied by means of fundus reflectometry. Bleaching was effected by continuous light exposures of 1 min or 20 min, and the changes in retinal absorbance were measured at 29 wavelengths. For all of the conditions studied (fractional bleaches of from 65 to 100%), the regeneration of rhodopsin to its prebleach levels required greater than 60 min in darkness. After the 1-min exposures, the difference spectra recorded during the first 10 min of dark adaptation were dominated by photoproduct absorption, and rhodopsin regeneration kinetics were obscured by these intermediate processes. Extending the bleaching duration to 20 min gave the products of photolysis an opportunity to dissipate, and it was possible to follow the regenerative process over its full time-course. It was not possible, however, to fit these data with the simple exponential function predicted by first-order reaction kinetics. Other possible mechanisms were considered and are presented in the text. Nevertheless, the kinetics of regeneration compared favorably with the temporal changes in log sensitivity determined electrophysiologically by other investigators. Based on the bleaching curve for cat rhodopsin, the photosensitivity was determined and found to approximate closely the value obtained for human rhodopsin; i.e., the energy Ec required to bleach 1-e-1 of the available rhodopsin was 7.09 log scotopic troland-seconds (corrected for the optics of the cat eye), as compared with approximately 7.0 in man.  相似文献   

12.
13.
14.
15.
16.
17.
18.
The purpose of this study was threefold: 1) to determine whether untrained rats that refused to run on treadmill would climb on a laddermill (75 degrees incline); 2) to determine O2 consumption (VO2) in untrained rats as a function of laddermill climbing speed; and 3) to determine whether the circulatory response of untrained rats to laddermill climbing is similar to that previously reported for treadmill running at an equivalent VO2. Eighteen female Sprague-Dawley rats that would not perform on a treadmill as part of another study were used to measure VO2 as a function of laddermill speed (5-17 m/min). Data were obtained from all 18 rats; VO2 increased linearly as a function of laddermill speed (r = 0.83, y = 3.0 x + 63.2). Twenty-four female Sprague-Dawley rats that also refused to run on a treadmill were used to measure mean arterial pressure, heart rate, and blood flow distribution (with microspheres) during climbing at 5 and 10 m/min. These exercise intensities were metabolically equivalent to level treadmill running at 45 and 60 m/min (VO2 approximately 78 and 93 ml.min-1.kg-1, respectively). Of the 24 animals, 23 were willing to climb. Mean arterial pressures were higher (approximately 10%) during laddermill climbing than during equivalent treadmill running, but heart rates were the same. General blood flow distribution among muscles as a function of fiber type (with red muscles receiving higher flows) and between muscles and visceral tissues (muscle blood flow increased as a function of exercise intensity while visceral blood flows decreased) were similar to data for rats running on the level.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号